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Abstract

Inspired by evidence that pretrained language
models (LMs) encode commonsense knowl-
edge, recent work has applied LMs to auto-
matically populate commonsense knowledge
graphs (CKGs). However, there is a lack of
understanding on their generalization to mul-
tiple CKGs, unseen relations, and novel enti-
ties. This paper analyzes the ability of LMs
to perform generalizable commonsense infer-
ence, in terms of knowledge capacity, transfer-
ability, and induction. Our experiments with
these three aspects show that: (1) LMs can
adapt to different schemas defined by multiple
CKGs but fail to reuse the knowledge to gen-
eralize to new relations. (2) Adapted LMs gen-
eralize well to unseen subjects, but less so on
novel objects. Future work should investigate
how to improve the transferability and induc-
tion of commonsense mining from LMs.1

1 Introduction
Large-scale commonsense knowledge graphs
(CKGs), like ConceptNet (Speer et al., 2017) and
ATOMIC (Sap et al., 2019), store structured knowl-
edge that can benefit various knowledge-driven
applications. Given the usefulness of CKGs, but
also their inability to flexibly provide information,
(Paulheim, 2018), recent work has paid much at-
tention to populating CKGs with commonsense
knowledge mined from pretrained language models
(LMs) (Wang et al., 2020c; Bosselut et al., 2019).
Enhancing the knowledge of CKGs is essential
to support reasoning on downstream tasks (Talmor
et al., 2019; Wang et al., 2020b; Young et al., 2018).

The task of completing CKGs has typically been
posed as commonsense knowledge inference, where
the goal is to predict the object of a fact triplet,
given its subject and a relation (predicate) (Petroni

1The code is avaiable at https://github.com/
wangpf3/LM-for-CommonsenseInference.
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Figure 1: Unlike previous studies that adapt LM on one
single CKG (0), we investigate LM’s three aspects of
generlizability: (1) knowledge capacity by multi-task
learning, (2) transferability by transfer learning and (3)
induction by controlled low-resource learning.

et al., 2019; Bosselut et al., 2019). Commonsense
inference techniques, such as COMET (Bosse-
lut et al., 2019), typically fine-tune an LM, like
GPT (Radford et al., 2018), over the training set
from a single CKG. While such methods are able
to dynamically enhance the completeness of CKGs,
their application so far has been limited to the re-
lation set of the source (training) CKG (Da et al.,
2021). In addition, the generated object concepts
are found to be largely biased towards the ones in
the training set (Wang et al., 2020a). It remains
unclear to which extent LMs can generalize to mul-
tiple CKGs, new relations, and novel objects. To
this end, we pose the question: do language models
perform generalizable commonsense inference?

To answer this question, we study three aspects
of the LM generalizability for commonsense infer-
ence, namely: knowledge capacity, transferability,
and induction. To measure the knowledge capac-
ity ability of LMs, we examine whether LMs can
be adapted to multiple CKGs simultaneously, and
tested on each of the CKGs. We test their transfer-
ability by assessing whether an initial adaptation
of a LM on multiple source CKGs can reduce the
effort on further adapting it to a new CKG. The
inductive power of LMs is measured by varying
the overlap between the objects in the training and
test splits of a CKG. The overview of our analysis
is depicted in Figure 1. Our results show that LMs
are able to infer knowledge for multiple CKGs si-
multaneously without loss of performance on the

https://github.com/wangpf3/LM-for-CommonsenseInference
https://github.com/wangpf3/LM-for-CommonsenseInference
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target inference task, though the transferability of
knowledge across tasks is limited. In addition, we
observe that the inductive power of LMs for com-
monsense inference relies heavily on whether an
object is observed during training.

2 Analysis Setup
To shed light on the LM’s generalizalibility for
commonsense inference, we investigate: whether
LMs have the capability to adapt to multiple CKGs
(Q1: capacity), whether LMs can reuse the knowl-
edge learned from source CKGs to efficiently adapt
to a target CKG (Q2: transferability), and whether
LMs can predict unseen objects or mainly repeat
the observed ones (Q3: induction). In this Sec-
tion, we define the task, the CKGs we consider, our
experimental settings, and relate to prior studies.

2.1 Task Formulation
Following Hwang et al. (2020); Da et al. (2021),
we formalize commonsense inference as a task
of predicting the object of a triplet, given a pair
of (subject, relation) as input. The subject s
and the object o are both expressed as free-form
phrases, while the relation r is a predefined rela-
tion type from the CKG. A training example from
ConceptNet could have (go to a concert,
MotivatedByGoal) as input, and listen
to music as output. Assuming that a CKG is
given, the goal is to leverage the commonsense
triplets in the CKG as training examples to adapt
the LM for commonsense inference.

2.2 CKG Datasets
We consider three large and popular CKGs, with
different foci:(1) ConceptNet’s broad set of com-
monsense knowledge includes taxonomic (e.g.,
IsA), utility (e.g., UsedFor), and temporal
knowledge (e.g., HasPrerequisite). It com-
bines crowdsourced knowledge with that from
existing sources, such as WordNet. We use its
ConceptNet-100K subset, collected by Li et al.
(2016). (2) TupleKB (Dalvi Mishra et al., 2017)
focuses on scientific commonsense knowledge like
(salt, dissolve in, water). It is con-
structed through an information extraction pipeline.
(3) ATOMIC (Sap et al., 2019) has social common-
sense knowledge about causes and effects of every-
day events, and mental states (e.g., xIntent) of
their participants. It is created by crowdsourcing.

As indicated by Jastrzebski et al. (2018), a
large proportion of the subjects in the test set

of ConceptNet-100K overlap with its training set,
while TupleKB does not provide an official split.
Thus, we (re-)split these two datasets to ensure that
the subjects of testing triplets do not appear in the
training set. This criterion is also consistent with
how the ATOMIC dataset is constructed.

2.3 Experimental Settings

Multi-task Learning To answer Q1, we adapt an
LM with balanced training data from ConceptNet,
TupleKB, and ATOMIC. We sample 8 triplets from
each dataset to form one training batch.

Transfer Learning To provide insight into Q2, we
adopt transfer learning under a leave-one-out strat-
egy. In this setting, we adapt an LM on two of the
three CKGs, and then we further adapt it on the
third target CKG. Moreover, we study the data effi-
ciency of this transfer learning by down-sampling
each training set to x = {1, 20, 50}%, in order to
see whether the LM can adapt to the target CKG
with less training effort. Fine-tuning on data as
small as 1% training set may suffer from instability,
and results may change dramatically given a new
split of training data (Gao et al., 2020). To control
the randomness, we re-sample the 1% training data
5 times with a fixed set of random seeds and report
the average performance instead.

Controlled Low-resource Learning To answer
Q3, we design a controlled experiment, where we
first split the training set into two disjoint subsets
depending on whether the triplets in the original
training set contain objects that exist in the test set
or not. We denote the subset where the objects of
the triplets appear in testing data as Ω. We sam-
ple x = {0, 25, 50, 100}% of the training triplets
in Ω for adapting the LM. During the evaluation,
we also separate the test set into two disjoint sub-
sets, according to whether the objects are seen in
the original full training set. The results on these
two split test sets are reported separately for each
adapted LM.

Evaluation Protocol For each (subject, relation)
pair in the test set, we treat all their objects as
ground truth references for evaluating the model
inference. We report scores for commonly used
automatic evaluation metrics for text generation:
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and METEOR (Banerjee and Lavie, 2005), which
are shown to be consistent with human judge-
ments (Hwang et al., 2020). During experiments,
we observe a high correlation among these differ-
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Adaptation method Input Learnable params

Zero-shot (ZS) (s, r) N/A
ZS+demo (s

′
, r, o

′
, s, r) N/A

Fine-tuning (FT) (s, r) Transformer (LM)
FT+demo (s

′
, r, o

′
, s, r) Transformer (LM)

Adapter tuning (AT) (s, r) Adapter

Table 1: Methods for using LMs to conduct common-
sense inference. “+demo” means prepending a demon-
stration triplet (s

′
, r, o

′
) before the input tuple.

ent metrics and choose to report METEOR in the
main text and other metrics in the appendix.

2.4 Connections to Prior Studies

Earlier works (Li et al., 2016; Jastrzebski et al.,
2018; Davison et al., 2019) poses the CKG com-
pletion task as triplet classification, where the
goal is to score the plausibility of a complete
triplet. COMET (Bosselut et al., 2019) is the first
to cast this task as commonsense inference with
LMs. Follow-up contributions utilize COMET as
a commonsense provider in various downstream
tasks (Bosselut and Choi, 2021; Ammanabrolu
et al., 2021; Chakrabarty et al., 2020), thus provid-
ing evidence for LM’s generalization to previously
unseen scenarios. Further efforts include Hwang
et al. (2020), which show that the quality of the
training triplets is a key factor of adapting LMs,
and (Da et al., 2021), which investigates how to
learn COMET in a few-shot learning setting. Mean-
while, the study by Wang et al. (2020a) indicates
the limited generalization of COMET. Ma et al.
(2021) also adapt LMs simultaneously on multiple
CKGs, albeit their goal is to improve downstream
performance rather than CKG inference. In this pa-
per, we aim to provide a more comprehensive study
of a LM’s generalizability for CKG inference.

3 Method

While a set of pretrained LMs exists, we adopt
a widely used generative model, GPT2 (Radford
et al., 2019), as our baseline LM. The investigation
of other generative LMs is orthogonal to our analy-
sis. We experiment with its largest version, GPT2-
XL, which contains 48 transformer layers (Vaswani
et al., 2017), ensuring sufficient capacity for stor-
ing knowledge acquired during its pretraining. We
introduce our experimental method as follows.

Commonsense Inference with LMs Given a train-
ing triplet (s,r,o), we represent s and o as sequences
of tokens, xs and xo, which is trivial given that they
are already expressed as phrases. As for the rela-

tion r, we convert it by using a template taken from
the literature (Davison et al., 2019) into a natural-
language phrase xr, e.g., IsA is converted to “is a”.
This has been shown to facilitate efficient adapta-
tion of LMs (Da et al., 2021). Note that we do not
explicitly provide the LMs with the information
about the source CKG of the triplet as input (e.g.,
prepending a related special token to the triplet).

Adapting LMs with Commonense Knowledge
The training objectives for adapting LMs is to maxi-
mize the probability of generating the object phrase
xo given the tuple (xs, xr). During inference, we
adopt greedy decoding to obtain the predicted ob-
ject from the adapted LM.

There have been various techniques devel-
oped for adapting pretrained LMs to downstream
tasks (Howard and Ruder, 2018; Chen et al., 2020).
Moreover, previously only the vanilla Fine-tuning,
i.e., updating the whole LM architecture during
training, has been employed to adapt LMs for com-
monsense inference (Bosselut et al., 2019; Hwang
et al., 2020; Da et al., 2021). To obtain comprehen-
sive results that are not specific to one particular
way of fine-tuning, here we investigate two more
alternatives, each of which has their own advantage
when considered in different contexts.

Fine-tuning with Demonstration (FT+demo)
Combining the ideas of fine-tuning and in-context
learning (Brown et al., 2020), this technique (Gao
et al., 2020) adds a demonstration to each input
as additional context and fine-tunes the whole LM
as usual. Incorporating demonstrations is shown
to boost performance when the amount of training
data is extremely limited. In our case, a demon-
stration is a top-1 training triplet (s

′
, r, o

′
), ranked

according to the cosine similarity between the em-
bedding of the input tuple (s, r) and the embed-
dings of the training tuples with the same relation
type r. The tuple embeddings are given by a pre-
trained Sentence-BERT (Reimers and Gurevych,
2019). For instance, a demonstration (go to
restaurant, UsedFor, eat out) would be
added before the input (go to pub, UsedFor).
With the demonstrated triplets, the LM could learn
to understand the schema of the CKG instead of
simply learning the knowledge from the training
data.

Adapter Tuning (AT) Unlike fine-tuning, adapter
tuning (Houlsby et al., 2019) fixes the entire LM
and adds one trainable adapter right before the skip
connection in each transformer layer of the LM,
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Figure 2: Results (METEOR) for knowledge capacity of LMs. ”FT+d” refers to FT+demo. We find no notable performance
drop for any method trained in the multi-task setting.
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Figure 3: Results (METEOR) for LM transferability.
”FT+d” refers to FT+demo. Across datasets, we do not ob-
serve that adapting to the source CKGs would enable the LMs
to adapt to the target CKG better or more easily.
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Figure 4: Results (METEOR) for LM induction. ”FT+d”
refers to FT+demo. All the methods perform better on pre-
dicting facts that contain seen objects, while the performance
degrades when less objects are seen during training.

which is more parameter-efficient. Each adapter
is a two-layer bottleneck network with a skip-
connection internally. Following Houlsby et al.
(2019), the parameters of the bottleneck network
are initialized close to zero so that the adapter ap-
proximates an identity function from the beginning.

We compare to two additional baselines, both
using GPT2-XL in a zero-shot setting: Zero-shot
(ZS) is fed with the same input as Fine-tuning,

while zero-shot with demonstrations (ZS+demo)
combines the input plus demonstration, as in the
FT+demo method. By investigating all these meth-
ods, we aim to understand the influence of different
adaptation techniques on the models’ performance.
Table 1 summarizes the set of methods which we
consider in this paper.

4 Results and Discussion

Knowledge Capacity (Q1) The results that quan-
tify the knowledge capacity of LMs for common-
sense inference over multiple CKGs with ME-
TEOR scores are shown in Figure 2. The com-
plete results including other metrics can be found
in the appendix. All adaptation methods perform
considerably better than the zero-shot baselines,
indicating the benefit of adaptation. There is no
clear distinction between the adaptation methods,
though FT+demo performs slightly better than the
others across CKGs. Most importantly, we find no
notable performance drop for any method in the
multi-task training setup despite the challenge that
there is limited overlap between these CKGs. Only
10.0% of the facts from ATOMIC can be found
in ConceptNet (Hwang et al., 2020) while 8.4%
of the facts from ConceptNet can be found in Tu-
pleKB (Dalvi Mishra et al., 2017) 2. This indicates
the prominent capacity of LMs to simultaneously
adapt to different CKGs. Nevertheless, the results
reveal that learning different CKGs jointly do not
interfere with each other positively (via knowledge
sharing) or negatively (due to overfitting).

Transferability (Q2) Figure 3 shows the obtained
results regarding the transferability of LMs. Across
different CKGs and for any training data size, we
observe no indications that adapting to the source
CKGs enhances the performance on the target
CKG. On the contrary, adapting from source CKGs

2We also try to breakdown the results by relation types and
do not observe correlation between the relation-wise perfor-
mance and the extent of overlap.
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even hurts the performance of the Adapter-tuning
method, revealing that this method overfits to the
source CKGs. Overall, we conclude that LMs can-
not reuse the knowledge learned from the source
CKGs to improve the performance on the target
CKG or achieve the same performance with less
training data. Thus, we call for future study on
developing more effective adaptation methods.

Induction (Q3) The results in Figure 4 show that
without down-sampling (x = 100%), all methods
perform much better on predicting facts that con-
tain seen objects, and their performance degrades
more when less object entities are seen to training.
Meanwhile, the performance on facts with unseen
objects stays roughly unaffected. This indicates a
key limitation of the LMs: they adapt notably better
on seen objects. Since the training set and test set
do not share subjects, we conclude that the general-
izability of the LM is largely dependent on finding
the relationship between unseen subjects and ob-
served objects. We thus posit that a novel strategy
for adapting LMs while retaining the knowledge
acquired during pre-training is necessary for bet-
ter generalizability. Promising directions here are
prefix tuning (Li and Liang, 2021) or including an
additional objective during adaptation which would
encourage the generation of novel objects.

5 Conclusion
This work conducted a focused study of three as-
pects of the generalizability of LMs for common-
sense inference: knowledge capacity, transferabil-
ity, and induction. We experiment with five meth-
ods of using a generative LM and three represen-
tative CKGs. Despite their capability to accommo-
date multiple CKGs, we have observed that LMs
have limited ability to transfer knowledge across
CKGs. Moreover, their adaptation relies heavily
on whether the objects to predict are seen during
training. These findings help our understanding
of LMs’ adaptation behavior on commonsense in-
ference, and highlight the need for future work to
improve their transferability and induction.
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BLEU-2 ROUGE-L METEOR

single-task multi-task single-task multi-task single-task multi-task

Zero-shot 0.0069 NA 0.1009 NA 0.0506 NA
ZS+demo 0.0284 NA 0.1281 NA 0.0787 NA
Adapter-tuning 0.1289 0.1279 0.2598 0.2560 0.1739 0.1706
Fine-tuning 0.1325 0.1286 0.2629 0.2575 0.1775 0.1749

C
on

ce
pt

N
et

FT+demo 0.1333 0.1398 0.2678 0.2738 0.1795 0.1851

Zero-shot 0.0017 NA 0.0999 NA 0.0263 NA
ZS+demo 0.0099 NA 0.2748 NA 0.0869 NA
Adapter-tuning 0.1383 0.1323 0.3785 0.3627 0.2094 0.2010
Fine-tuning 0.1371 0.1388 0.3985 0.3812 0.2151 0.2122

Tu
pl

eK
B

FT+demo 0.1699 0.1698 0.4902 0.4714 0.2622 0.2580

Zero-shot 0.0436 NA 0.2523 NA 0.1419 NA
ZS+demo 0.0808 NA 0.2233 NA 0.1572 NA
Adapter-tuning 0.2161 0.2035 0.4008 0.3890 0.2913 0.2832
Fine-tuning 0.2125 0.2057 0.3982 0.3908 0.2913 0.2843

A
TO

M
IC

FT+demo 0.2111 0.2070 0.3915 0.3868 0.2887 0.2800

Table 2: Results of all the evaluation metrics for the knowledge capacity experiments.

A Appendix

A.1 Dataset Statistics

[h]

Train Dev Test

ConceptNet100k 79,770 10,203 10,027
TupleKB 98,674 12,357 12,427
ATOMIC 578,002 64,902 71,127

Table 3: CKG Dataset Statistics.

A.2 Implementation Details
The GPT2-XL language model we adopted in this
work has 1558M parameters in total. We train
all the models on a V100 GPU. As for hyper-
parameters, we adopt the commonly-used learning
rate (1e-5) and batch size (16) for adapting GPT2,
except that in the multi-task learning setting, the
batch size is 24 (8 samples from each CKG).

A.3 Additional Results


