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Abstract

Adversarial attacks expose important blind
spots of deep learning systems. While word-
and sentence-level attack scenarios mostly
deal with finding semantic paraphrases of the
input that fool NLP models, character-level
attacks typically insert typos into the input
stream. It is commonly thought that these are
easier to defend via spelling correction mod-
ules. In this work, we show that both a stan-
dard spellchecker and the approach of Pruthi
et al. (2019), which trains to defend against in-
sertions, deletions and swaps, perform poorly
on the character-level benchmark recently pro-
posed in Eger and Benz (2020) which includes
more challenging attacks such as visual and
phonetic perturbations and missing word seg-
mentations. In contrast, we show that an
untrained iterative approach which combines
context-independent character-level informa-
tion with context-dependent information from
BERT’s masked language modeling can per-
form on par with human crowd-workers from
Amazon Mechanical Turk (AMT) supervised
via 3-shot learning.

1 Introduction

Adversarial attacks to machine learning systems are
malicious modifications of their inputs designed to
fool machines into misclassification but not hu-
mans (Goodfellow et al., 2015). One of their goals
is to expose blind-spots of deep learning models,
which can then be shielded against. In the NLP
community, typically two different kinds of attack
scenarios are considered. “High-level” attacks para-
phrase (semantically or syntactically) the input sen-
tence (Iyyer et al., 2018; Alzantot et al., 2018; Jin
et al., 2020) so that the classification label does not
change, but the model changes its decision. Of-

Aɠuyĩˢpɬayįng aṱrǜmₚèt.

Substring Levenshtein
          distance

1. a buy is paying trumpet.
3. abuyla paying trumpet.

2.  a buy is paying a trumpet.

Hypothesis before BERT improvements

4. abuyla paying a trumpet.

BERT

1. a guy is playing trumpet.
3. andyla playing trumpet..

2. a guy is playing a trumpet.

Hypothesis after BERT improvements

4. abuyla playing a trumpet.

GPT

A guy is playing a trumpet.

Figure 1: A high-level overview of the processing of an
example sentence in our adversarial-defense pipeline.
The sentences shown for the hypothesis have been cre-
ated by choosing the maximum of their associated prob-
ability distributions over words.

ten, this is framed as a search problem where the
attacker has at least access to model predictions
(Zang et al., 2020). “Low-level” attackers operate
on the level of characters and may consist of adver-
sarial typos (Belinkov and Bisk, 2018; Ebrahimi
et al., 2018a; Pruthi et al., 2019; Jones et al., 2020)
or replacement of characters with similarly look-
ing ones (Eger et al., 2019; Li et al., 2020a). Such
attacks may also be successful when the attacker
operates in a blind mode, without having access
to model predictions, and they are arguably more
realistic, e.g., in social media. However, Pruthi
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et al. (2019) showed that orthographic attacks can
be addressed by placing a spelling correction mod-
ule in front of a downstream classifier, which may
be considered a natural solution to the problem.1

In this work, we apply their approach to the
recently proposed benchmark Zéroe of Eger and
Benz (2020), illustrated in Table 1, which provides
an array of cognitively motivated orthographic at-
tacks, including missing word segmentation, pho-
netic and visual attacks. We show that the spelling
correction module of Pruthi et al. (2019), which has
been trained on simple typo attacks such as charac-
ter swaps and character deletions, fails to general-
ize to this benchmark. This motivates us to propose
a novel technique to addressing various forms of or-
thographic adversaries that does not require to train
on the low-level attacks: first, we obtain probabil-
ity distributions over likely true underlying words
from a dictionary using a context-independent ex-
tension of the Levenshtein distance; then we use
the masked language modeling objective of BERT,
which gives likelihoods over word substitutions in
context, to refine the obtained probabilities. We
iteratively repeat this process to improve the word
context from which to predict clean words. Finally,
we apply a source text independent language model
to produce fluent output text.

Our contributions: (i) We empirically show
that this approach performs much better than
the trained model of Pruthi et al. (2019) on the
Zéroe benchmark. Furthermore, (ii) we also eval-
uate human robustness on Zéroe and (iii) demon-
strate that our iterative approach, which we call
BERT-Defense, sometimes even outperforms hu-
man crowd-workers trained via 3-shot learning.

2 Related work

Zeng et al. (2020) classify adversarial attack scenar-
ios in terms of the accessibility of the victim model
to the attacker:2 white-box attackers (Ebrahimi
et al., 2018b) have full access to the victim model
including its gradient to construct adversarial ex-
amples. In contrast, black-box attackers have only
limited knowledge of the victim models: score-
(Alzantot et al., 2018; Jin et al., 2020) and decision-
based attackers (Ribeiro et al., 2018) require access

1One could argue that such a pipeline solution is not en-
tirely satisfactory from a more theoretical perspective, and that
downstream classifiers should be innately robust to attacks in
the same way as humans.

2Another recent survey of adversarial attacks in NLP is
provided by Roth et al. (2021).

Attacker Sentence

inner-shuffle A man is drnviig a car.
full-shuffle A amn is ginvdir a acr.
disemvowel A mn is drvng a cr.
intrude A ma#n i*s driving a caˆr.
keyboard-typo A mwn is dricing a caf.
natural-typo A wan his driving as car.
truncate A man is drivin a car.
segmentation Aman isdriving a car.
phonetic Ae man izz dreyvinn a cahar.
visual

Table 1: Examples for the adversarial attacks from
the Zéroe benchmark. The phonetic and visual exam-
ples show our modified implementations (see appendix
A.2).

to the victim models’ prediction scores (classifi-
cation probabilities) and final decisions (predicted
class), respectively. A score-based black-box at-
tacker of particular interest in our context is BERT-
ATTACK (Li et al., 2020b). BERT-ATTACK uses
the masked language model (MLM) of BERT to
replace words with other words that fit the context.
BERT-ATTACK is related to our approach because
it uses BERT’s MLM in an attack-mode while we
use it in defense-mode. Further, in our terminol-
ogy, BERT-ATTACK is a high-level attacker, while
we combine BERT with an edit distance based
approach to restore low-level adversarial attacks.
Blind attackers make fewest assumptions and have
no knowledge of the victim models at all. Arguably,
they are most realistic, e.g., in the context of on-
line discussion forums and other forms of social
media where users may not know which model
is employed (e.g.) to censor toxic comments and
users may also not have (large-scale) direct access
to model predictions.

In terms of blind attackers, Eger et al. (2019)
design the visual perturber VIPER which replaces
characters in the input stream with visual nearest
neighbors, an operation to which humans are seem-
ingly very robust.3 Eger and Benz (2020) propose
a canon of 10 cognitively inspired orthographic
character-level blind attackers. We use this bench-
mark, which is illustrated in Table 1, in our appli-
cation scenario. While Eger et al. (2019) and Eger
and Benz (2020) are only moderately successful in

3Basing text processing on visual properties was also re-
cently explored in Wang et al. (2020) and Salesky et al. (2021).
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defending against their orthographic attacks with
adversarial learning (Goodfellow et al., 2015) (i.e.,
including perturbed instances at train time), Pruthi
et al. (2019) show that placing a word recognition
(correction) module in front of a downstream clas-
sifier may be much more effective. They use a
correction model trained to recognize words cor-
rupted by random adds, drops, swaps, and keyboard
mistakes. Zhou et al. (2019) also train on the adver-
sarial attacks (insertion, deletion, swap as well as
word-level) against which they defend. In contrast,
we show that an untrained attack-agnostic itera-
tive model based on BERT may perform competi-
tively even with humans (crowd-workers) and that
this correction module may further be improved by
leveraging attack-specific knowledge. Jones et al.
(2020) place an encoding module—which should
map orthographically similar words to the same
(discrete) ‘encoding’—before the downstream clas-
sifier to improve robustness against adversarial ty-
pos. However, in contrast to Pruthi et al. (2019)
and BERT-Defense, their model does not restore
the attacked sentence to its original form so that it
is less desirable in situations where knowing the
underlying surface form may be relevant (e.g., for
human introspection or in tasks such as spelling
normalization).

In contemporaneous work, Hu et al. (2021) use
BERT for masked language modeling together with
an edit distance to correct a misspelled word in a
sentence. They assume a single misspelled word
that they correct by selecting from a set of edit
distance based hypotheses using BERT. In contrast,
in our approach we assume that multiple or even
all words in the sentence have been attacked using
adversarial attacks and that we do not know which
ones. Then, we use an edit distance and integrate its
results probabilistically with context information
obtained by BERT, rather than using edit distance
only for candidate selection.

3 Methods

Our complete model, which is outlined in Figure 1
on a high level, has three intuitive components. The
first component is context-independent and tries to
detect the tokens in a sentence from their given
(potentially perturbed) surface forms. This makes
sense, since we assume orthographic low-level at-
tacks on our data. The second component uses
context, via masked language modeling in BERT,
to refine the probability distributions obtained from

the first step. The third component uses a language
model (in our case, GPT) to make a choice between
multiple hypotheses. In the following, we describe
each of the three components.

3.1 Context-independent probability
In the first step of our sentence restoration pipeline,
we use a modified Levenshtein distance to convert
the sentence into a list of probability distributions
over word-piece tokens from a dictionary D. For
the dictionary, we choose BERT’s (Devlin et al.,
2019) default word-piece dictionary.

We begin by splitting the attacked sentence S
at spaces into word tokens w̃i. However, to be
able to use our word-piece dictionary D, we need
to find the appropriate segmentation of the tokens
into word-pieces.

Modified Levenshtein distance. We developed
a modified version of the Wagner–Fischer algo-
rithm (Wagner and Fischer, 1974) that calculates
a Levenshtein distance to substrings of the input
string and keeps track of start as well as end in-
dices of matching substrings. For each w̃i in S,
this algorithm (which is described in Appendix
A.1) calculates the substring Levenshtein distance
dist to every word-piece wd in D.

Segmentation hypothesis. We store the com-
puted distances dist(w̃i, wd) in a dictionary Ci that
maps each start-index s and end-index e to a list of
distances, i.e., Ci associates

(s, e) 7→
(
dist(w̃i, wd)

)
wd∈D′

Here, D′ selects the subset of all word-pieces in
D that match w̃i at the substring between s and
e. Using Ci, we can then perform a depth-first
search to compose w̃i from start and end-indices
in Ci. For example, a 10 character word w̃i could
be segmented into two words-pieces that match
the substrings from positions 1-5 and 6-10, respec-
tively, or a single word that matches from 1-10.
Let ci be the set of all segmentations of w̃i from
start and end indices. For example, ci could be{(

(1, 5), (6, 10)
)
,
(
(1, 10)

)}
. For each segmenta-

tion ci,α ∈ ci, we then calculate a total distance
d(ci,α) as a sum of the minimum distances of all
parts:

d(ci,α) =

len(ci,α)∑
k=1

min(Ci[ci,α,k]) (1)

Using the total distances to segment each token
w̃i, we can now create hypotheses H about how the
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whole sentence S consisting of n tokens should be
segmented into word-pieces. For this, we calculate
the Cartesian product between the sets of possible
segmentations for each word w̃i, i = 1, . . . , n:

H = c1 × c2 × · · · × cn

We set the loss of one hypothesis h =
(c1,α1 , . . . , cn,αn) ∈ H as the sum of the total dis-
tances of its parts that we calculated in Eq. (1)

loss(h) =
n∑
i=1

d(ci,αi)

By evaluating the softmax on the negative total
distances of the hypothesis, we calculate probabil-
ities if a hypothesis hv ∈ H is equal to the true
(unknown) segmentation h∗ of the n tokens:

dH = (loss(h))h∈H
P(hv=h∗ | S) = [softmax(−dH)]v

(2)

We will refer back to these probabilities in §3.3.

Word probability distributions. In a hypothe-
sis h ∈ H, a token w̃i has a single segmentation of
start and end indices associated with it, ci,α. For
all start- and end-indices (s, e), Ci[s, e] stores the
distances of the words that match w̃i between s
and e. Let D′ again be the dictionary containing
all those words. Let wd be a word-piece in D′ and
let w∗ ∈ D′ be the true match for the substring
between s and e of w̃i. Then, we can compute a
context-independent probability that wd is equal
to w∗, by evaluating the softmax on the negative
distances stored in Ci:

Ph(wd = w∗ | w̃) = [softmax(−Ci[s, e])]d
When we do this for all words in h and concate-
nate the results, we get a vector Vh of probability
distributions over dictionary word-pieces. This is
illustrated in Figure 2. We introduce the following
notation to select a probability distribution based
on its index in h using the subscript j:

Ph,j(wd = w∗ | w̃) := Vh,j

Domain-specific distance. In the remainder, we
will refer to the way of calculating the substring
distance as described above as attack-agnostic. Be-
yond this, we also aim to leverage domain-specific
knowledge. We refer to such an augmented dis-
tance as the domain-specific distance distM . Here,
we modify the operation costs in the substring Lev-
enshtein distance in certain situations.

1. Edit distance is reduced for visually similar

Ĥe is ŗйdɨߒg a sktaebaord

Hypothesis 1 (72%):

0.5%: He
0.4%: Be

0.8%: is
0.3%: its

0.22%: ending
0.21%: riding

3%: a
1%: (

1.1%: starboard
0.5%: steward

Hypothesis 2 (28%):

0.5%: He
0.4%: Be

0.8%: is
0.3%: its

0.22%: ending
0.21%: riding

3%: a
1%: (

0.7%: skate
0.4%: site

0.2%: board
0.1%: baird

Figure 2: A context independent probability distribu-
tion over words calculated for an example input sen-
tence. There are multiple segmentation-hypothesis as-
sociated with the sentence that each consist of a se-
quence of probability distributions over word-tokens.

characters. This builds on visual character rep-
resentations (Eger et al., 2019). See appendix
A.3 for details.

2. Addressing intruder attacks, we reduce dele-
tion costs depending on the frequency f of the
character in the source word. Our assumption
is that the same intruder symbol may be re-
peated in one word. Thus, we decay the cost
exponentially for increasing frequency using
the formula 0.75f−1.

3. Vowel insertion cost is reduced to 0.3 for
words that contain no vowels.

To address letter-shuffling, we additionally com-
pute an anagram distance of how close the attacked
word w̃i is to being an anagram to the dictionary
word wd. Let m be the number of characters that
are in one of the two words, but not in the other.
Then, our anagram distance distA computes to

distA(w̃i, wd) = 2m+ 1

When two words are permutations of each other,
the anagram distance is minimal and otherwise it
increases linearly in the number of different char-
acters between the two words. We then take the
minimum of the anagram distance and the substring
Levenshtein distance with modified operation costs
distM to obtain the domain-specific distF:

distF(w̃i, wd) = min(distA(w̃i, wd), distM(w̃i, wd))

3.2 Context-dependent probability using
BERT

In the following, we describe the context-based
improvement for a single hypothesis h ∈ H. In
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0.3%: The
0.2%: Tee

0.3%: man
0.2%: mad

0.5%: is
0.3%: in

0.12%: klein
0.07%: walking

      Avg. 
Embedding MASK

BERT for masked LM

0.02%: walking
0.005%: klein

0.3%: walking
0.15%: klein

Context-independent probability

Context-dependent
probability

Integrated
probability

Multiply
probabilities

U
se

 a
s fo

r n
e
x
t ite

ra
tio

n

      Avg. 
Embedding

      Avg. 
Embedding

Figure 3: Iterative, context-based improvements of the
word predictions using BERT for masked LM. Each it-
eration, a different token will be masked. We calculate
context-dependent probabilities using Eq. (3) and inte-
grate them with our context-independent probabilities
in Eq. (4).

Figure 3, the whole process is illustrated for an ex-
ample sentence. The number of required iterations
should scale linearly with the amount of tokens in
the hypothesis, so we perform 2 · |h| iterations in
total. To perform one improvement iteration, we
perform the following steps:
1) Select an index j, of a token, that will be masked
for this iteration.
2) For the next part, we slightly modify BERT
for masked LM. Instead of using single tokens as
inputs as in BERT, we want to use our context-
independent probability distributions over word-
piece tokens. Thus, for each token wh,j in h, we
embed all relevant tokens wd from the context-
independent process described above using BERT’s
embedding layer and combine them into a weighted
average embedding using weights Ph,j(wd = w∗ |
w̃).
3) We now bypass BERT’s embedding layer and
feed the weighted average embeddings and the em-
bedding for the mask token directly into the next
layers of BERT1. As a result, BERT provides us
with a vector of scores SBERT for how well the
words from the word-piece dictionary D fit into the
position of the masked word.
4) By applying the softmax on these scores, we
obtain a new probability distribution over word-

1Although BERT has only been trained on the single token
embeddings, we empirically found that feeding in averaged
embeddings produces very sensible results.

pieces which is dependent on the context c of the
token at position j:

Ph,j(wd = w∗ | c) = [softmax(SBERT)]d (3)

5) We make the simplifying assumption that each
word is attacked independently from the other
words. Thus, the context c is independent of the at-
tack on the word w̃. This means that the following
equality holds:

Ph,j(wd = w∗ | w̃, c) =
Ph,j(wd = w∗ | w̃)Ph,j(wd = w∗ | c)

(4)

6) We go back to step 1) and use Ph,j(wd = w∗ |
w̃, c) from Eq. (4) instead of Ph,j(wd = w∗ | w̃)
to create the average embedding at position j.

3.3 Selecting the best hypothesis with GPT

After performing the context-based improvements,
we are left with multiple hypothesis h ∈ H. Each
of them has a hypothesis probability P(h=h∗ | S)
and a list of word-piece probabilities of length |h|
over dictionary words associated with it. Now,
we finally collapse the probability distributions by
taking the argmax to form actual sentences Sh:

wh,j ← argmax
wd

(Ph,j(wd = w∗ | w̃, c))

Sh ← (wh,j)
|h|
j=1

(5)

This allows us to use GPT (Radford et al., 2018) to
calculate a language modeling (perplexity) score
LMSh

for each sentence. Using softmax, we again
transform these scores into a probability distribu-
tion that describes the probability of a segmentation
hypothesis hv ∈ H being the correct segmentation
h∗, based on the restored sentences SH:

SH ← (Sh)h∈H

LMSH
← (LMSh

)h∈H

P(hv=h∗ | SH) = [softmax(LMSH
)]v

The original probability P(hv=h∗ | S) assigned
to each hypothesis is only based on the results of
the Levenshtein distance for the attacked sentence
S. Thus, as P(hv=h∗ | S) only depends on the
character-level properties of the attacked sentence
and P(hv=h∗ | SH) only depends on the seman-
tic properties of the underlying sentences, it makes
sense to assume that these distributions are inde-
pendent. This allows us to simply multiply them, to
get a probability distribution that captures semantic
as well as character-level properties:

P(hv=h∗ | SH, S) =

P(hv=h∗ | SH)P(hv=h∗ | S)
(6)
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Hypothesis 1 (p=72%):

He is riding a starboard.

Hypothesis 2 (p=28%):

He is riding a skateboard.

GPT

H1: -1175
H2: -330

H1: 2%
H2: 98%

Language modeling
            score

Softmax
θ = 0.005

H1: 5%
H2: 95%

Combine with
original

probability

Figure 4: An example of how we use OpenAI GPT to
decide on which hypothesis to choose as our final sen-
tence prediction. The original probability of the seg-
mentation hypothesis calculated in Eq. (2) is multiplied
with a probability calculated from the language model-
ing score using Eq. (6).

In Figure 4, we visualize the above described pro-
cess for a specific example with only 2 hypotheses.

4 Experimental Setup

To obtain adversarially attacked sentences against
which to defend, we use the Eger and Benz (2020)
benchmark Zéroe of low-level adversarial attacks.
This benchmark contains implementations for a
wide range of cognitively inspired adversarial at-
tacks such as letter shuffling, disemvoweling, pho-
netic and visual attacks. The attacks are parame-
terized by a perturbation probability p ∈ [0, 1] that
controls how strongly the sentence is attacked.

We decided to slightly modify two of the attacks
in Zéroe, the phonetic and the visual attacks. On
close inspection, we found the phonetic attacks to
be too weak overall, with too few perturbations per
word. The visual attacks in Zeroé are based on
pixel similarity which is similar to the visual simi-
larity based defense in our domain-specific model.
Thus, to avoid attacking with the same method we
defend with, we decided to switch to a description
based visual attack model (DCES), just like in the
original paper (Eger et al., 2019).4 Our modifica-
tions are described in Appendix A.2.

Evaluation Instead of evaluating on a down-
stream task, we evaluate on the task of restoring
the original sentences from the perturbed sentences.
This allows us to easier compare to human perfor-
mances. It also provides a more difficult test case,

4Using description based defense and pixel based attacks
would have been possible just as well, but we believe doing it
reversely is consistent with the original specification in Eger
et al. (2019).

as a downstream classifier may infer the correct
solution even with part of the input destroyed or
omitted. Finally, being able to correct the input is
also important when the developed tools would be
used for humans, e.g., in spelling correction.

We evaluate the similarity of the sentences to the
ground-truth sentences with the following metrics:

1. Percent perfectly restored (PPR). The percent
of sentences that have been restored perfectly.
This is a coarse-grained sentence-level measure.

2. Editdistance. The Levenshtein (edit) distance
measures the number of insertions, deletions,
and substitutions necessary (on character-level)
to transform one sequence into another.

3. MoverScore (Zhao et al., 2019). MoverScore
measures the semantic similarity between two
sentences using BERT. It has been show to cor-
relate highly with humans as a semantic evalua-
tion metric.

For all of the metrics, letter case was ignored.

Attack scenarios. We sampled 400 sentences
from the GLUE (Wang et al., 2018) STS-B de-
velopment dataset for our experiments. We use
various attack scenarios to attack the sentences:

i) Each of the attack types of the Zéroe benchmark
(see Table 1). We set p = 0.3 throughout.

ii) To evaluate how higher perturbation levels in-
fluence restoration difficulty, we create 5 attack
scenarios for one attack scenario (we randomly
chose phonetic attacks) with perturbation levels
p from 0.1 to 0.9.

iii) We add combinations of attacks: these are per-
formed by first attacking the sentence with one
attack and then with another.

iv) In Random attack scenarios (rd:0.3,
[rd:0.3,rd:0.3], [rd:0.6,rd:0.6]), one or two
attack types from the benchmark are randomly
chosen for each sentence. These constitute
stronger attack situations and may be seen as
more challenging test cases.

Each of the 19 attack scenarios is applied to all
400 sentences individually to create 19 test cases
of attacked sentences.

Baselines and upper bounds. To evaluate how
well BERT-Defense restores sentences, we com-
pare its sentence restoration ability to two base-
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BERT-Defense, attack-agnostic

BERT-Defense, domain-specific

ScRNN Defense

Pyspellchecker

vi = visual, dv = disemvoweling,
tr = truncate, sg = segmentation, 
is = inner-shuffle,  fs = full-shuffle, 
in = intruders, kt = keyboard-typo,
nt = natural-typo, ph = phonetic,
rd = random
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Figure 5: Comparison between BERT-Defense, and the two baseline adversarial defense tools “pyspellchecker”
and “ScRNN defense”. The x-labels describe the attack and perturbation level the sentences were attacked with,
before applying on of the adversarial defense methods. For conditions with two attack types, the perturbations
were applied in order. For edit distance, lower is better. For the other metrics, higher is better. Exact values for the
results are included in the appendix in Table 6.

lines: (a) the Pyspellchecker (Barrus, 2020), a sim-
ple spellchecking algorithm that uses the Leven-
shtein distance and word frequency to correct er-
rors in text; (b) “ScRNN defense” from the Pruthi
et al. (2019) paper. This method uses an RNN
that has been trained to recognize and fix charac-
ter additions, swaps, deletions and keyboard typos.
Further, as we use Zeroé, a cognitively inspired
attack benchmark supposed to fool machines but
not humans, it is especially interesting to see how
BERT-Defense compares to human performance.
Thus, (c) we include human performance, obtained
from a crowd-sourcing experiment on Amazon Me-
chanical Turk (AMT). Note that humans are often
considered upper bounds in such settings.

Human experiment. Twenty-seven subjects
were recruited using AMT (21 male, mean age
38.37, std age 10.87) using PsiTurk (Gureckis et al.,
2016). Participants were paid $3 plus up to $1 score
based bonus (mean bonus 0.56, std bonus 0.40)
for restoring about 60 adversarially attacked sen-
tences. The task took on average 43.9 minutes with
a standard deviation of 20.1. Twenty of the sub-
jects where native English speakers, seven where
non-native speakers. The two groups did not signif-
icantly differ regarding their edit distances to the
true underlying sentences (unequal variance t-test,
p = .85).

We sampled 40 random sentences from nine of
our attack scenarios plus 40 random (non-attacked)
sentences from the original document. Each sen-
tence was restored by four different humans. The

whole set of 1600 sentences (10 scenarios times 40
sentences each times 4 repetitions) was then ran-
domly split into 27 sets of about 60 sentences. No
split contained the same sentence multiple times.
Each of the 27 participants got one of these sets
assigned. After a short instruction text, the partici-
pants where shown three examples of how to cor-
rectly restore a sentence (“3-shot learning”). Then
they were shown the sentences in their set sequen-
tially and entered their attempts at restoring the
sentences into a text-field.

5 Results and Discussion

Comparison with baselines. Figure 5 visual-
izes the results (full results are in the appendix).
BDagn (BERT-Defense, attack-agnostic) signifi-
cantly outperforms both baselines regarding Mover-
Score and PPR for all random attack scenarios (p
� 0.01, equal variance t-test). However, only
BDspec (BERT-Defense, domain-specific) achieves
a lower edit distance than the baselines. This dis-
crepancy between the measures is explained by the
fact that, by taking context into account, BERT-
Defense searches for the best restoration in the
space of sensible sentences, while Pyspellchecker
searches the best restoration for each word individ-
ually. Although ScRNN defense uses an RNN and
is able to take context into account, we found that
it also mainly seems to restore the words individ-
ually and rarely produces grammatically correct
sentences for strongly attacked inputs. Table 3,
which illustrates failure cases of all models, sup-
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No attack

Figure 6: Comparison between BERT-Defense and humans on Amazon Mechanical Turk.

ports this. In the failure case when BERT-Defense
fails to recognize the correct underlying sentence,
BERT-Defense outputs a mostly different sentence
that usually does make some sense, but has little in
common with the ground-truth sentence. This re-
sults in much higher edit distances than the failure
cases of the baselines which produce grammati-
cally wrong sentences, while restoring individual
words the best they can (this sometimes means not
trying at all). Interestingly, humans tend to produce
similar failure cases as BERT-Defense.

When comparing the performance on specific
attacks, we see a consistent margin of about 0.2
MoverScore and 15-35 percentage points PPR
between BDagn and the baselines across all at-
tacks. Exceptions include inner-shuffle, for which
ScRNN-Defense is on par with BDagn and segmen-
tation attacks, which hurt the performance of the
baselines far more than the performance of BERT-
Defense, which includes segmentation hypothesis
as an essential part of its restoration pipeline. For
BDspec, we see gains for attacks where we leverage
domain-specific knowledge. The biggest gains of
around 0.25 MoverScore are achieved against full-
shuffle, inner-shuffle and disemvoweling attacks.

In the No attack condition, we checked if the ad-
versarial defense methods introduce mistakes when
presented with clean sentences. Indeed, all models
introduce some errors: all three evaluation metrics
show that BERT-Defense introduces a few more
errors than Pyspellchecker but less than ScRNN
defense.

Comparison with humans. As stated before,
we evaluate human performance on 40 random sen-
tences for each of nine attacks and the no attack
condition (see appendix). For each of the sentences,
we obtain restorations from 4 crowd-workers. For
each attack scenario, we evaluate our metrics on all

restorations of these 40 sentences and averaged the
results. The results on the 40 attacked sentences are
shown in Figure 6. While BDagn performs slightly
worse than humans, BDspec matches human perfor-
mance with respect to all three evaluation metrics.
Regarding performance on specific attacks, humans
are still better than BERT-Defense when it comes
to defending phonetic attacks, while they have a
hard time defending full-shuffle attacks. The eval-
uations for the No attack setting reveal that the
crowd-workers in our experiment do make quite
a few copying mistakes. In fact, they introduce
slightly more mistakes than BERT-Defense.

No shielding No
Levenshtein

distance

No BERT No GPT BDagn BDspec

M
o
v
e
r 

S
co

re

Figure 7: Ablation study for BERT-Defense. The
MoverScore metric is shown for BERT-Defense with
exactly one single component left out, respectively, on
the rd:0.3,rd:0.3 attack. For comparison, we also show
the MoverScore without shielding and after shielding
with BDagn or BDspec using all components.

Ablation Study. We perform an ablation study
to asses the contribution of each individual com-
ponent of BERT-Defense. For the No Leven-
shtein distance condition, we created the context-
independent probability distribution by setting the
probability of known words (words in the dictio-
nary) in the attacked dataset to one and using a uni-
form random distribution for all unknown words.
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Attacked Sentence ScRNN BDagn

To lorge doog’s wronsing in sum grass. to lorge doog’s wronsing in sum grass. two large dogs rolling in the grass.
Two large dogs runningin some grass. two large dogs runningin some grass. two large dogs running in some grass.
Tw large dogs rnnng in some grss. throw large dogs running in some grss. two large dogs running in some grass.
Two larg dog runnin in some grass. two larg dog runnin in some grass. a large dog running in some grass.
Twolarge dogs running income graas. twolarge dogs running income graas. two large dogs running into grass.
To lrg doog’s rntng in sm gras .. to long dogs ring in sm gras. to the dogs running in the grass.

Table 2: Various illustrative attacks on the sentence “Two large dogs running in some grass.” and restorations
by ScRNN and BDagn. The attacked sentences are attacked with the following attacks (top to bottom): Phonetic-
0.7, Segmentation-0.3, Disemvowel-0.3, Truncate-0.3, Segmentation-0.5 & Keyboard-Typo-0.3, Random-0.3 &
Random-0.3 (the last two are double attacks).

Ground-truth china gives us regulators access
to audit records

Attacked
(rd:0.6,rd:0.6)

hainc gcive us regulafors essacf
to tufai rsxrdeo

Bert-Defense
(attack-agnostic)

haine gave us regulators space
to turn us over

Human hain gives us regulators escape
to dubai suborder

ScRNN Defense hainc give us regulafors essacf
to tufai rsxrdeo

Pyspellchecker hain give us regulators essay to
tufa rsxrdeo

Table 3: Failure cases for BERT-Defense, humans and
the baseline methods. Note that in the failure case,
BERT-Defense and Humans restore sentences that are
grammatically correct, but are mostly different from
the ground-truth. On the other hand, Pyspellchecker
and ScRNN Defense (Pruthi et al., 2019) either refuse
to try at all for strongly attacked words or create gram-
matically nonsensical sentences.

When using BERT-Defense without BERT, we di-
rectly select the best hypothesis from the context-
independent probability distribution using GPT. To
run BERT-Defense without GPT, we select the
hypothesis with the highest probability according
to the results from the modified Levenshtein dis-
tance and improve it using context-dependent prob-
abilities obtained with BERT. We evaluate on the
rd:0.3,rd:0.3 attack scenario, because we think that
it is the most challenging attack.

The results are shown in Figure 7. They indi-
cate that the most important component of BERT-
Defense is the Levenshtein distance, as BERT of-
ten does not have enough context to meaningfully
restore the sentences, given the difficult attacks
from Zeroé that typically modify many words in
each sentence. Removing BERT also considerably

decreases the performance of the defense model.
Finally, BERT-Defense without GPT performs on
par with BDagn in these experiments, suggesting
that BERT-Defense can also be used without GPT
for hypothesis selection.

More illustrating examples. To give an impres-
sion of the dataset and how the models cope with
the adversarial attacks, we show more illustrating
examples in Tables 2 and 5 (appendix). These indi-
cate the superiority of our approach in that it typi-
cally generates semantically adequate sentences.

6 Conclusion

We introduced BERT-Defense, a model that prob-
abilistically combines context-independent word
level information obtained from edit distance
with context-dependent information from BERT’s
masked language modeling to combat low-level
orthographic attacks. Our model does not train
on possible error types but still substantially out-
performs a spell-checker as well as the model of
Pruthi et al. (2019), which has been trained to
shield against edit distance like attacks, on a com-
prehensive benchmark of cognitively inspired at-
tack scenarios. We further show that our model
rivals human crowd-workers supervised in a 3-shot
manner. The generality of our approach allows it
to be applied to a variety of different “normaliza-
tion” problems, such as spelling normalization or
OCR post-correction (Eger et al., 2016) besides the
adversarial attack scenario considered in this work,
which we will explore in future work.

We release our code and data at https://

github.com/yannikkellerde/BERT-Defense.

Acknowledgments

We thank the anonymous reviewers for their helpful
comments.

https://github.com/yannikkellerde/BERT-Defense
https://github.com/yannikkellerde/BERT-Defense


1625

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890–2896, Brussels, Belgium. Association
for Computational Linguistics.

Tyler Barrus. 2020. pyspellchecker.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018a.
On adversarial examples for character-level neural
machine translation. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics, pages 653–663, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018b. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
31–36, Melbourne, Australia. Association for Com-
putational Linguistics.

Steffen Eger. 2015. Do we need bigram alignment
models? On the effect of alignment quality on trans-
duction accuracy in G2P. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1175–1185.

Steffen Eger and Yannik Benz. 2020. From Hero to
Zéroe: A Benchmark of Low-Level Adversarial At-
tacks. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing, pages
786–803, Suzhou, China. Association for Computa-
tional Linguistics.

Steffen Eger, Tim vor der Brück, and Alexander
Mehler. 2016. A comparison of four character-
level string-to-string translation models for (OCR)
spelling error correction. The Prague Bulletin of
Mathematical Linguistics, 105(1):77.
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A Appendices

A.1 Modified Wagner-Fischer algorithm
The modified Wagner-Fischer algorithm gets the
source word S of length n and the target word T
of length m as inputs and performs the following
operations in a run-time O(mn).

1. Initialize distance matrix D of size (m+1)×
(n+ 1) with zeros

2. For i ∈ [1,m+ 1] do: Di,1 ← i− 1

3. Initialize a set-valued start matrix M of the
same size as D with empty sets.

4. For j ∈ [1, n+ 1] do: M1,j ← Set{j − 1}

5. For i ∈ [1,m+ 1] and j ∈ [1, n+ 1] do:

• Use previous entries of D to calculate
total cost of getting to (i, j) with the edit
distance operations:

– Insertion: Di−1,j + 1

– Substitution: Di−1,j−1 + 1

– Deletion: Di,j−1 + 1

– Swap: Di−2,j−2 + 1

– If Ti = Sj then no operation cost:
Di−1,j−1

• Enter the lowest cost from the edit dis-
tance operations into Di,j

• Update Mi,j by merging the set with the
set-valued entries of M that led to (i, j)
with lowest cost

6. Initialize empty list L

7. Store lowest entry of Dm+1 as c and for j ∈
[1, n+ 1] do

• If Dm+1,j = c do: For m ∈ Mm+1,j

do: Add a 2-tuple (m, j) into L.

8. Return c,L

A.2 Visual and Phonetic attacks
Visual attacks. In the BERT-Defense full-
distance pipeline, we exploit visual similarity (see
appendix A.3). The visual attacks implemented in
(Eger and Benz, 2020) are also based on visual sim-
ilarity. To avoid attacking with the same method
that we defend with, we decided to use VIPER-
DCES (Eger et al., 2019) instead. VIPER-DCES
exchanges characters based on similarity of the de-
scriptions from the Unicode 11.0.0 final names list
(e.g. LATIN SMALL LETTER A for the character
‘a’).

Figure 8: Different orientations/scales used for the let-
ter h. The version that matches a Unicode character the
best is used to calculate their similarity.

Phonetic attacks. The phonetic embeddings im-
plemented in Eger and Benz (2020) do not consis-
tently produce phonetic attacks of sufficient quality.
Thus, we used a many-to-many aligner (Jiampo-
jamarn et al., 2007; Eger, 2015) together with the
CMU Pronouncing Dictionary (cmudict) (Univer-
sity, 2014) and a word frequency list to calculate
statistics for the correspondence between letters
and phonemes. To attack a word, we convert the
word to phonemes using cmudict and then con-
vert it back to letters by sampling from the statis-
tics. The perturbation probability p for this attack
controls the sampling temperature which describes
how likely it is to sample letters that less frequently
correspond to the phoneme in question. Using this
method, we generate high-quality phonetically at-
tacked sentences such as the one in Table 1.

A.3 Visual similarity
We calculate the visual similarity of 30000 Uni-
code characters to 26 letters and 10 numbers. Each
glyph is drawn with Python’s pillow library (Lundh
and Clark, 2020) in 20pt using a fitting font from
the google-Noto font collection. The bitmap is
then cropped to contain only the glyph. Then the
image is resized and padded on the right and bot-
tom to be of size 30px × 30px. When compar-
ing the bitmap of a unicode glyph image and a
letter/number glyph, multiple versions of the let-
ter/number bitmap are created. For letters, the low-
ercase as well as the uppercase versions of each
letter are taken. The bitmap gets downsized to 5 dif-
ferent sizes between 30px×30px and 15px×15px,
rotated and flipped in all 8 unique ways and then
padded to 30px× 30px again, such that the glyph
is either placed at the top-left or the bottom left.
See Figure 8 for an example. The percentage of
matching black pixels between bitmaps are calcu-
lated and the highest matching percentage of all
version becomes the similarity score S. The sub-
stitution cost between two characters will then be
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calculated based on the similarity with the equa-
tion cost = max (0,min (1, (0.8− S) ∗ 3)). The
parameters of this equation have been tuned, so
that highly similar characters have a in very low
substitution costs while weakly similar characters
have next to no reduced in substitution cost.

A.4 Parameters, runtime and computing
infrastructure

All experiments where run on a single machine us-
ing an Intel(R) Core(TM) i7-4790K processor and
a Nvidia GeForce GTX 1070 Ti graphics card. The
restoration of a single sentence in the experiments
took on average 0.1 seconds using ScRNN Defense,
1.34 seconds for Pyspellchecker and 8 seconds for
BERT-defense. In total, BDagn includes 5 free pa-
rameters, most of them controlling the temperature
of the used softmax operation to ensure good rela-
tive weighting of the probability distributions. The
parameter values are shown in Table 4. All addi-
tional parameters for BDspec have been described
in §3.1.

Parameter Value
Softmax temperature for
context-independent hypothesis

10

Softmax temperature for
context-independent word-probabilities

1

Softmax temperature for BERT 0.25
Softmax temperature for GPT 0.005
Max number of hypothesis 10

Table 4: Parameters for BERT-Defense.

Attacked theensuing battls abd airstrikes
killed at peast 10 militqnts.

Ground-truth the ensuing battle and airstrikes
killed at least 10 militants.

BDagn the ensuing battle and air
strikes killed at least 10 mili-
tants.

BDspec the ensuing battle and air
strikes killed at least 10 mili-
tants.

ScRNN Defense tunney battls and airstrikes
killed at past 10 militqnts.

Pyspellchecker theensuing battle abd airstrips
killed at past 10 militants

Attacked
Ground-truth No, you don’t need to have

taken classes or earned a de-
gree in your area.

BDagn no, you do ,’ nee ,’ not besides
of never a degree, you are.

BDspec no, you do no’ need to have
taken classes or have a degree
in your area.

ScRNN Defense , yu so to nerve to era knaet
access of need a degree ı̈n your
areă.

Pyspellchecker
Attacked A man ix riding ;n s voat.
Ground-truth A man is riding on a boat.

BDagn a man is riding in a boat.
BDspec a man is riding in a boat.
ScRNN Defense a man imax riding on s voat.
Pyspellchecker a man ix riding in s vote

Table 5: Additional adversarial shielding examples on
the rd:0.3,rd:0.3 dataset.
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Dataset BDagn BDspec Pyspellchecker ScRNN Defense
Metric Mover Editdist Mover Editdist Mover Editdist Mover Editdist
vi:0.3 0.696 5.04 0.830 2.267 0.387 8.54 0.257 12.54
tr:0.3 0.778 2.91 0.767 3.14 0.605 3.34 0.386 7.25
dv:0.3 0.574 9.27 0.794 2.995 0.335 9.53 0.379 9.48
sg:0.3 0.820 2.02 0.808 2.22 0.459 4.52 0.4 6.19
is:0.3 0.539 9.91 0.842 2.767 0.44 9.26 0.520 7.04
fs:0.3 0.399 14.78 0.688 3.227 0.310 14.41 0.277 16.12
in:0.3 0.845 1.9 0.861 1.597 0.588 3.14 0.445 4.92
kt:0.3 0.832 1.96 0.562 2.36 0.596 2.8 0.416 5.89
nt:0.3 0.764 3.38 0.512 3.322 0.504 4.91 0.423 7.59
ph:0.1 0.776 3.21 0.779 3.082 0.632 3.35 0.535 5.50
ph:0.3 0.569 8.77 0.587 7.55 0.397 8.29 0.302 11.26
ph:0.5 0.437 13.25 0.469 12.062 0.275 11.78 0.208 15.19
ph:0.7 0.350 16.37 0.395 14.735 0.218 14.33 0.167 17.34
ph:0.9 0.314 18.45 0.341 16.967 0.194 15.81 0.152 18.63
sg:0.5,kt:0.3 0.701 4.29 0.537 4.47 0.23 7.07 0.158 10.25
vi:0.3,in:0.3 0.627 6.48 0.679 2.467 0.172 13.73 0.14 15.75
rd:0.3 0.676 6.48 0.650 3.485 0.44 7.25 0.375 8.91
rd:0.3,rd:0.3 0.501 11.49 0.451 6.657 0.269 12.0425 0.232 13.92
rd:0.6,rd:0.6 0.257 22.30 0.441 14.0 0.12 20.46 0.104 21.90

Table 6: Exact scores for the results shown in Figure 5.


