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Abstract

Aspect Sentiment Triplet Extraction (ASTE)
aims to extract triplets from sentences, where
each triplet includes an entity, its associated
sentiment, and the opinion span explaining the
reason for the sentiment. Most existing re-
search addresses this problem in a multi-stage
pipeline manner, which neglects the mutual
information between such three elements and
has the problem of error propagation. In this
paper, we propose a Semantic and Syntactic
Enhanced aspect Sentiment triplet Extraction
model (S3E2) to fully exploit the syntactic and
semantic relationships between the triplet ele-
ments and jointly extract them. Specifically,
we design a Graph-Sequence duel representa-
tion and modeling paradigm for the task of
ASTE: we represent the semantic and syntac-
tic relationships between word pairs in a sen-
tence by graph and encode it by Graph Neu-
ral Networks (GNNs), as well as modeling the
original sentence by LSTM to preserve the se-
quential information. Under this setting, we
further apply a more efficient inference strat-
egy for the extraction of triplets. Extensive
evaluations on four benchmark datasets show
that S3E2 significantly outperforms existing
approaches, which proves our S3E2’s superi-
ority and flexibility in an end-to-end fashion.

1 Introduction

Aspect-based Sentiment Analysis (ABSA) usually
requires to extract comment targets in a review
and judge corresponding sentiment polarities (Liu,
2012; Pontiki et al., 2014). Such a research field
has received widespread attention (Zhang et al.,
2015; Li and Lu, 2017, 2019; Li et al., 2019a).
In this paper, we concentrate on a more relatively
fine-grained task - Aspect Sentiment Triplet Extrac-
tion (ASTE) (Peng et al., 2020), which aims to
extract triplets, including aspects (e.g., entities),
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the corresponding sentiment for each aspect, and
the opinion spans explaining the reason for the
sentiment. An example is shown in Fig. 1. It
contains two triplets, (Waiters, friendly,+) and
(fruit salad, so so, 0) where we use +, -, and 0
to represent positive, negative, and neutral senti-
ment. Unlike the ABSA task that extracts two
tuples, (Waiters,+) and (fruit salad, 0) in this
sentence, such triplets extracted by ASTE task can
better reflect multiple emotional factors (aspect,
opinion, sentiment) from the user reviews and are
more suitable for practical application scenarios.

The ASTE task is extremely challenging because
it requires extracting these three elements in one
shot. Straightforwardly, one naive solution is to
split the ASTE task into two stages in a pipeline
manner using a unified tagging schema 1 (Peng
et al., 2020). Such a pipeline approach lacks an
effective mechanism to capture the three elements’
relationship and suffers from error propagation.
Another solution for the ASTE task is to use an
end-to-end model to extract triplets (Xu et al., 2020;
Wu et al., 2020). Yet, these methods focus on de-
signing a new tagging schema to formalize ASTE
into a unified task and cannot effectively establish
the connection between words and ignore the se-
mantic and syntactic relationship between the three
elements.

Besides, a sentence may contain a one-to-many
case, that is, one aspect corresponds to multiple
opinions, or one opinion corresponds to multiple
aspects. For instance, in the sentence ”We love the
food, drinks, and atmosphere,” the opinion ”love”
is associated with three aspects “food”, “drinks”,
and “atmosphere”. This situation is quite com-
mon in reality, increasing the difficulty of match-

1It consists of {B, I, E, S}− {NEU,NEG,POS} and
tag O, which denote beginning, inside, end, single-word target
with neutral, negative and positive sentiment respectively and
outside of a target.
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Figure 1: An example of the ASTE task. The words in the solid and dashed boxes are aspects and opinions,
respectively. The blue arrows above represent the correspondence between them. The black arrows below represent
the dependencies between words.

ing aspects with opinions. Nevertheless, current
solutions either fail to capture these one-to-many
relationships (Xu et al., 2020) or ignore the seman-
tic relationship between word pairs in a triplet (Wu
et al., 2020).

Furthermore, various relationships exist among
triplets, such as syntactic dependence and semantic
word similarity, which have been neglected. For
example, as shown in Figure 1, there is a nom-
inal subject dependency (called nsubj) between
waiters and friendly, indicating that there exists
an aspect. Also, the two opinions, friendly and
so so in the sentence are associated with each other,
where there is a conjunct dependency (called conj),
implying they have similar attributes.

To fully utilize these implicit relationships, we
design a Semantic and Syntactic Enhanced As-
pect Sentiment Triplet Extraction model (S3E2).
S3E2 utilizes semantic and syntactic information
from words, which helps to distinguish words’ at-
tributes and identify the relationship between word
pairs. In order to better leverage these relation-
ships, we build a Graph Neural Network (GNN)
based model to capture the interactions between
words and triplet elements. For each sentence, we
transform it into a unique text graph representation,
where each node is a word, and the edges are estab-
lished based on attention to the words themselves,
adjacent relationships, and syntactic dependencies.
Such a concise and effective text graph can obtain
the precise meaning of each word and gain insight
into their relations.

Moreover, we further utilize LSTM (Hochreiter
and Schmidhuber, 1997) to learn the contextual
semantics of each word from a sequential perspec-
tive, forming a Graph-Sequence duel modeling of a
sentence. In this way, S3E2 has an excellent ability
to distinguish the categories of words and more ac-
curately recognize the relationship between word

pairs. With the semantic and syntactic enhanced
module, the correlation between word pairs is well
captured, yielding a more simple inference strat-
egy for triplet extraction. Since S3E2 can perceive
the semantics and syntax from words excellently,
we only need to infer once for all datasets to ob-
tain more accurate triplets and save time overhead.
Finally, we parse out the triplets from the final pre-
dictions.

We run extensive experiments on four bench-
mark datasets. The experimental results show
that S3E2 achieves significantly better performance
than existing state-of-the-art approaches by fully
exploiting the syntactic and semantic 18 relation-
ships between word pairs.

To summarize, our main contributions include
the following:
• We design a graph representation of a sentence

which integrates the syntactic dependency, se-
mantic relatedness, and positional relationship
between words, and encode it with Graph Neu-
ral Networks to fully exploit the various correla-
tions.
• We further model the sentence with LSTM to

incorporate its sequential information, form-
ing a Graph-Sequence duel modeling paradigm.
Moreover, we only need to infer once for all
datasets, demonstrating the superiority of S3E2.
• We make extensive experiments, and the results

show S3E2 outperforms all state-of-the-art ap-
proaches significantly for triplet extraction.

2 Our Approach

We design an effective framework to complete
triplet extraction in an end-to-end fashion. The
overall model architecture is shown in Figure 2. In
this section, we first define the ASTE task, describe
the Grid Tagging Schema and deconstruct triplets
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Figure 2: The overall architecture of our end-to-end
model S3E2. In our text graph, the type of dashed edges
is self-loop, the type of black solid edges is neighbor
edge, and the type of red solid edge is dependent edge.

from it in detail. We next present S3E2 model,
followed by our inference strategy.

2.1 Task Definition and Preliminaries

Definition: Triplet Extraction. Given an input
sentence x = {x1, x2, · · · , xn} with length n, each
word has two tag labels: the aspect tag label and
the opinion tag label, respectively. Their tagging
schema is Y = {B, I, O}, denoting the beginning,
inside, outside of one aspect term or opinion term.
Meanwhile, each aspect target is annotated with a
sentiment polarity label S = {NEU, POS, NEG},
denoting neutral, positive, and negative sentiment
expressed towards itself. Our goal is to extract a set
of triplets T = {(a, o, s)m}|T |m=1 from the sentence
x, where the notations a, o, and s stand for an
aspect, an opinion, and corresponding sentiment
polarity, respectively. The notation (a, o, s)m is a
triplet in x and |T | represents the total number of
triplets in this sentence.

Grid Tagging Schema. To tackle the ASTE
task, a Grid Tagging Schema (GTS) was proposed

Figure 3: A tagging example for GTS

by Wu et al. (2020), which adopts six tags G =
{A,O,NEG,NEU,POS,N} to represent the re-
lationship for any pair of two words (wi, wj) in
a sentence. The two tags, A and O, denote the
word-pair (wi, wj) is the same aspect or opinion,
respectively. The three tags NEG, NEU, POS de-
note negative, neutral, or positive emotions ex-
pressed for the triplet consisting of the pair of
words (wi, wj) that exactly contains an aspect
term and an opinion term. The tag N denotes
non above relations for word-pair (wi, wj). A
tagging example is shown in Figure 3. In detail,
the three coordinates in the grid (5, 5), (6, 6), and
(6, 5) respectively form word pairs (fruit, fruit),
(salad, salad), and (fruit, salad), which are la-
beled A because they all belong to the same as-
pect. The same logic applies to opinions. The
coordinate (2, 0) is labeled POS because it makes a
correct triplet (Waiters, friendly, POS), which
contains exactly the right aspect, opinion, and sen-
timent information. For simplicity, we use an upper
triangular grid.

Triplets Decoding. we explain how to decode
triplets based on the predicted grid tags. We take
the decoding algorithm designed by Wu et al.
(2020). First, both aspects and opinions were iden-
tified using the predictive tags of all word pairs
(wi, wj) on the main diagonal without considering
other word pairs’ constraints. The span consisting
of continuous A is regarded as a complete aspect,
and the span consisting of continuous O is detected
as a complete opinion. At this point, we have ex-
tracted the aspect a and opinion o. Then, we count
the predicted tags of all word pairs (wi, wj) when
wi ∈ a and wj ∈ o. The most predictive sentiment
label s ∈ S is regarded as sentiment polarity for
triplet (a, o, s). When there are multiple most pre-
dictive sentiment labels, then the label is decided
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by the order: positive > neutral > negative. If they
are all predicted to be label N, we consider that a
and o cannot constitute a triplet.

2.2 Semantic and Syntactic Enhanced ASTE
Model

Since this task requires extracting multiple ele-
ments from a sentence, it is important to design
a model that can effectively distinguish the proper-
ties of words and master the relationship between
them. S3E2 first uses LSTM to encode sentences
so that we can perceive contextual semantic. In
order to capture many-sided features, S3E2 next
applies graph neural network to model syntactic
dependency, semantic relatedness, and positional
relationship between words. Finally, an inference
strategy is proposed, which only makes one infer-
ence to further extract more accurate triplets for all
datasets.

2.2.1 Graph-Sequence Duel Representation
We first apply a bidirectional Long Short Term
Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997) to encode the input sentence x.
LSTM is capable of learning contextual semantic
representation since it can mark key semantics from
previous time steps. Hence, we learn contextual
features {h1,h2, · · · ,hn} for the input sequence.

We observe that different words in a sentence
often have various internal relationships. As elabo-
rated in Figure 1, there is a syntactic dependency
between waiters and friendly, since opinions
often modify aspects. Besides, words that are se-
mantically similar may also be related. The two
opinions, friendly and so so, although they are
far apart, there is still a dependency between them.
Therefore, it is of great help to model the relation-
ships and grasp semantic and syntactic information
from words. With this in mind, we build a unique
text graph for every input sentence using graph
neural network.

Formally, a text graph G = (V,E) is a struc-
ture used to represent words and their relations,
which consists of the set of nodes V and the set of
edges E. Each word in the sentence is regarded
as a node, while the relationships between words
are considered edges. We construct three types
of edges: self-loop edge, neighbor edge, and de-
pendency edge. If there is an edge connecting to
the node itself, then the edge is the self-loop edge.
The edge connecting a node and its neighbor is a
neighbor edge, while if there exists a dependency

relationship between two nodes, then there is a
dependency edge between them. Specifically, we
define the text graph as follows:

V = {vi | i ∈ [1, n]} (1)

E = {eij | j = [i− 1, i+ 1] ∪Di} (2)

where Di represents a set of nodes with which node
vi has a dependency. All edges are bidirectional
and the node feature for vi is taken from hi. We
adopt GraphSAGE (Hamilton et al., 2017) to gen-
erate representations

{
h̃1, h̃2, · · · , h̃n

}
for each

node. We chose LSTM aggregator from Graph-
SAGE because it has stronger expressive ability.

Then, we concatenate the integrated represen-
tations of wi and wj to represent all word pairs

(wi, wj), i.e., rij =
[
h̃i; h̃j

]
, where [·; ] is a con-

catenation operation. All representations of word
pairs correspond to cells in our grid, which is then
fed to a linear layer to calculate initiatory probabil-
ity distribution zij ∈ R|G| through:

zij = Wsrij + bs (3)

where Ws and bs are trainable parameters.

2.2.2 Inference Strategy
The initial probability distribution zij between all
word pairs obtained above can further facilitate
more accurate extraction of triplets. For instance,
if (0, 0) and (2, 2) in grid tagging example are pre-
dicted to be A and O, respectively, then the position
at which they intersect (0, 2) is even less likely to
be predicted to be N, and vice versa. Also, since
many aspects or opinions are made up of multiple
words, if a certain coordinate is predicted as one of
S , then its adjacent locations are more likely to be
predicted to be the same sentiment label.

Therefore, we employ an inference strategy to
obtain more accurate triplets by observing the char-
acteristics of the initial probability distributions
through the below processes. Formally, new fea-
ture representation gij learning is as follows:

zi = maxpooling (zi,:)

zj = maxpooling (zj,:)

r̃ij = [rij ; zi; zj ; zij ]

gij = Wg r̃ij + bg

(4)
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where Wg and bg are trainable parameters. The
symbol [·; ] represents a concatenation operation.
Concretely, zi,: = (z1:i,i, zi,i:n) because of the up-
per triangular grid in GTS. zi/zj works by cap-
turing the associated features between wi/wj and
other words.

It is worth noting that inference strategy by Wu
et al. (2020) are unable to well capture the rela-
tionship between words, thus yielding indefinite
number of iterations for inference, which increases
the time complexity when the number of inferences
is large. In contrast, we only need to infer once for
all datasets with semantic and syntactic enhanced
module, which further proves the superiority of
S3E2.

Finally, we send gij to a linear layer with soft-
max activation function for classification.

pij = softmax (Wpgij + bp) (5)

where Wp and bp are trainable parameters.

2.3 Training Loss Function
The training goal for the ASTE task is to minimize
the cross-entropy error for all word pairs. The
unified loss function is defined as:

L = −
n∑

i=1

n∑
i=i

∑
k∈G

I (yij = k) log (pi,j) (6)

where yij denotes the one-hot vector of ground
truth for the word pair (wi, wj) and I(·) indicates
the k-th component being 1.

3 Experiments

3.1 DataSets
We conduct experiments on four datasets integrated
by Wu et al. (2020). Each dataset has been divided
into three parts: training set, validation set, and test
set. Table 1 lists the statistics for these datasets.
14res, 15res, and 16res belong to the restaurant
domain, while 14lap is of laptop domain. Each sen-
tence has been annotated with a sequence of aspect
tags and opinion tags and sentiment polarity of cor-
responding aspects. These datasets originally come
from SemEval Challenges (Pontiki et al., 2014,
2015, 2016).

Note that each sentence may have more than one
aspect and opinion. Besides, one aspect may be
associated with multiple opinions and vice versa.
For 14res, 14lap, 15res, and 16res, the propor-
tion of one-to-many data reaches 37.27%, 38.54%,

33.39%, and 33.13%, respectively. Various rela-
tionships usually exist between aspects and opin-
ions, using them is beneficial to triplet extraction.
We count the ratio of triplets with implicit relation-
ships. For these four datasets, they are 79.37%,
74.22%, 76.27%, and 80.57%, respectively.

3.2 Baselines
We compare the performance of S3E2 with the fol-
lowing approaches, where most triplet extraction
models currently are done in a pipeline manner,
and few state-of-the-art models are in an end-to-
end way.
• Peng-unified-R+PD. Peng et al. (2020) pro-

posed a pipeline approach in two stages. The first
stage model (Peng-unified-R) jointly extracts as-
pects with sentiment using the unified tagging
schema and opinion location in the BIEOS tag-
ging schema. It leverages mutual information
between aspects and opinions. In the second
stage, all candidate triplets are generated, and
a MLP-based classifier (PD) is applied to deter-
mine whether each triplet is valid or not.
• Li-unified-R+PD. A pipeline approach com-

bined by Peng et al. (2020). In the first stage,
the model (Li et al., 2019a) is modified to co-
extract aspects with sentiment as well as extract-
ing opinion. In the second stage, it applies the
same classifier (PD) mentioned above to obtain
all the valid triplets.
• Peng-unified-R+IOG. A pipeline approach

combined by Wu et al. (2020). It first employs
the model Peng-unified-R of Peng et al. (2020)
for extracting aspects with sentiment, then uses
IOG (Fan et al., 2019) to produce final triplets.
The IOG encodes the information from a given
asepct to extract its opinion words.
• IMN+IOG. Another pipeline approach com-

bined by Wu et al. (2020). It first employs the
IMN (He et al., 2019) for extracting aspects with
sentiment, then uses the IOG (Fan et al., 2019)
to produce final triplets.
• Grid. A state-of-the-art approach model pro-

posed by Wu et al. (2020), which designs a grid
tagging schema to address triplet extraction in
an end-to-end way. It employs an inference strat-
egy to utilize the mutual indications between
different opinion factors. For a fair compari-
son, we choose their model Grid-CNN and Grid-
BiLSTM, which use CNN encoder and BiLSTM
encoder respectively.



1479

Table 1: Statistics of datasets (#S, #T, #-, #0, and #+ denote number of sentences, triplets, negative triplets, neutral
triplets, and positive triplets respectively.)

Dataset
14res 14lap 15res 16res

#S #T #- #0 #+ #S #T #- #0 #+ #S #T #- #0 #+ #S #T #- #0 #+
train 1259 2356 491 172 1693 899 1452 533 111 808 603 1038 210 29 799 863 1421 330 55 1036
val 315 580 107 46 427 225 383 136 48 199 151 239 49 9 181 216 348 77 8 263
test 493 1008 156 68 784 332 547 116 67 364 325 493 144 25 324 328 525 79 30 416

Table 2: Experimental results of triplet extraction. Best results are in bold. The mark ”*” means that S3E2

significantly outperforms all baselines. The mark ”-” means that the original code of the IMN method does not
contain the resources required to run on the dataset 16res.

Model
14res 14lap 15res 16res

P R F P R F P R F P R F
Li-unified-R+PD 41.44 68.79 51.68 42.25 42.78 42.47 43.34 50.73 46.69 38.19 53.47 44.51

Peng-unified-R+PD 44.18 62.99 51.89 40.40 47.24 43.50 40.97 54.68 46.79 46.76 62.97 53.62
Peng-unified-R+IOG 58.89 60.41 59.64 48.62 45.52 47.02 51.70 46.04 48.71 59.25 58.09 58.67

IMN+IOG 59.57 63.88 61.65 49.21 46.23 47.68 55.24 52.33 53.75 − − −
Grid-CNN 70.79 61.71 65.94 55.93 47.52 51.38 60.09 53.57 56.64 62.63 66.98 64.73

Grid-BiLSTM 67.28 61.91 64.49 59.42 45.13 51.30 63.26 50.71 56.29 66.07 65.05 65.56
S3E2 69.08 64.55 66.74∗ 59.43 46.23 52.01 61.06 56.44 58.66∗ 71.08 63.13 66.87∗

3.3 Implementation Details

Following the previous work (Wu et al., 2020),
we combine a 300-dimension domain-general em-
bedding from GloVe (Pennington et al., 2014) and
pre-trained with 840 billion tokens and a 100- di-
mension domain-specific embedding trained with
fastText (Bojanowski et al., 2017) to initialize dou-
ble word embeddings for S3E2. The learning rate
is 0.001, and the dropout rate is 0.5. We use
Adam (Kingma and Ba, 2015) as S3E2 optimizer.
The number of layer for LSTM is 1 and the cell is
set to 50. The aggregator type from GraphSAGE
we chose is LSTM. We use Stanza (Qi et al., 2020)
to parse the dependencies in the sentence. The
batch size is set to 32 for all datasets and the valid
set is used for early stopping. We select the best
model according to the best F1 score on the valid
set and run the test set with it for evaluation.

Following previous work, we report experimen-
tal results based on precision (P), recall (R), and F1
scores. Note that the F1 score measures the perfor-
mance of mating triplets, which means a triplet is
correct only when the aspect span, its correspond-
ing sentiment, and opinion span are all proper.

3.4 Main Results For Triplet Extraction

Table 2 presents the main results of the final triplet
extraction. S3E2 surpasses all baselines signifi-
cantly on all datasets. Compared with the best
results of existing baselines, S3E2 still achieves
an apparent absolute F1 scores increase of 2.02%

and 1.31% on 15res and 16res, respectively, and
achieved an impressive increase of 0.80% and
0.63% on 14res and 14lap, respectively. Except
for Grid-CNN and Grid-BiLSTM, the other mod-
els are all pipeline methods.

The experimental results show that S3E2 is far
beyond these methods, which also strongly proves
the advantages of the semantic and syntactic en-
hanced model. When we compare S3E2 with com-
petitive baselines, Grid-CNN and Grid-BiLSTM
in detail, we find that the reason why we perform
better on 14res and 15res is because we extract a
more complete set of triplets in these two datasets,
resulting a more significant recall. The reason why
we perform better on 14lap and 16res is because
we extract more accurate triplets, resulting a more
significant precision. Such comprehensive results
demonstrate the strength of S3E2, which has the
ability to learn multi-faceted semantics and and is
good at extracting triplets.

4 Experiment Analysis

4.1 Ablation Study

To investigate the effectiveness of different mod-
ules in S3E2, we conduct ablation study for the
ASTE task. As shown in Table 3, S3E2 repre-
sents our full model that equipped with all mod-
ules. Next, we will carefully observe the role of
each module by introducing four model variants,
namely Dep, Infer, Graph, and BiLSTM.

Infer means removing the inference strategy
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Table 3: Results of ablation study for the ASTE task

Models
14res 14lap 15res 16res

F F F F
S3E2 66.23 52.01 58.66 66.87
Infer 64.20 48.68 56.90 63.27
Dep 66.74 50.43 57.43 64.98

Graph 62.12 46.37 53.77 63.63
BiLSTM 62.48 44.78 54.38 61.54

Table 4: Results of triplet extraction on different aggre-
gators and number of graph network layers

Aggregator Layers
14res 14lap 15res 16res

F F F F

LSTM
2 64.83 47.32 55.84 62.96
3 66.23 52.01 58.66 66.87

Mean
2 64.28 47.00 55.15 62.73
3 64.43 50.26 54.10 63.70

from S3E2. We can see that F1 scores drop sharply,
which shows that the inference strategy can grasp
the relationship between the three elements in the
triplets from the previous round of predictions to
promote the ASTE task. Dep means that when con-
structing a text graph for a sentence, we do not add
the third edge type mentioned above. We can see
that F1 scores drop except for res14, showing that
overall the dependent edges can help the model bet-
ter master relationships. The training set of 14res
is larger than other datasets. When training the full
model, we may overfit due to the setting of param-
eters (e.g., epoch, batch size), resulting in slightly
lower performance, compared with Dep.

Graph means removing the graph-based GNN
modules. After removing the entire graph, the per-
formance of the model is greatly reduced. Obvi-
ously, the graph neural networks can well perceive
the relational semantics and distinguish the char-
acteristics of the words. The F1 scores also de-
cline sharply when we remove the BiLSTM, which
shows that contextual semantic information is help-
ful. Comparing Graph and BiLSTM, we find that
the former has higher results on 14lap and 16res.
It may be that these two datasets are more depen-
dent on contextual semantic features. In general,
each module of S3E2 contributes to the extraction
of triplets.

4.2 Effects of Aggregator Types

In order to study the impact of aggregator types
on performance, we report the results of different

aggregator types for the ASTE task on these four
datasets in Table 4. There are two types of aggre-
gators, LSTM and Mean, adopted from (Hamilton
et al., 2017). The former is based on the LSTM
structure (Hochreiter and Schmidhuber, 1997) and
is applied to the random arrangement of the node’s
neighbors. The latter is just based on the mean
operation. As shown in Table 4, when the network
layers of the two aggregators are equal, no matter
how many layers, the effect of the LSTM aggrega-
tor is better than that of the Mean aggregator. This
phenomenon indicates that the LSTM aggregator
has stronger expressive ability and is more suitable
for the ASTE task.

4.3 Effects of Graph Network Layers

To examine the effects of the number of graph net-
work layer, we also present the results of different
layers on these four datasets to extract triplets. It
can be observed that the experimental performance
increases as the number of layers increases from 2
to 3 for the same type of aggregator. This proves
that the ability of graph neural networks to gather
features is related to the number of network layers.
We notice that when the number of layers is set to
2, the LSTM aggregator has higher performance
than the Mean aggregator by 0.55%, 0.32%, 0.69%,
and 0.23% on the four datasets, respectively. Nev-
ertheless, when the number of layers is 3, their
performance differs by 1.80%, 1.75%, 4.56%, and
3.17%. As the number of layers increases, the per-
formance gap between the LSTM aggregator and
the Mean aggregator widens significantly, which
further illustrates the advantage of the LSTM ag-
gregator.

4.4 Case Study

Five typical cases are presented in Table 5. The first
example is a simple case without complicated word
order and all models can predict accurately. The
second example comes from the restaurant field,
which expresses a negative attitude tactfully. Both
Grid-BiLSTM and Grid-CNN incorrectly predict
sentiment for ”staff”, and Grid-CNN mistakenly
predicts ”should be” as an aspect.

The third example directly expresses negative
sentiment, which is picked from the laptop field.
We can observe that Grid-LSTM and Grid-CNN
mistakenly regard ”maintain” as an aspect, and also
make a false prediction for sentiment. For these two
examples, S3E2 makes accurate judgments, which
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Table 5: Case analysis. The first column is five representative examples, the second column is golden truth, and
the other columns are the output results of different models.

Example Golden Triplets Grid-BiLSTM Grid-CNN Our

The bread is top notch as well (bread,top notch,POS) (bread,top notch,POS) (bread,top notch,POS) (bread,top notch,POS)
The staff should be

(staff,friendly,NEG)
(staff,more friendly,POS)

(staff,more friendly,POS) (staff,friendly,NEG)
a bit more friendly (staff,should be,POS)

Made interneting difficult to maintain (interneting,difficult,NEG) (maintain,difficult,POS) (maintain,difficult,POS) (interneting,difficult,NEG)
It has so much more speed (speed,much more,POS)

(screen,sharp,POS) (screen,sharp,POS)
(screen,sharp,POS)

and the screen is very sharp (screen,sharp,POS) (speed,more,POS)
The food was (food,tasty,POS) (food,tasty,POS) (food,tasty,POS) (food,tasty,POS)

extremely tasty , (food,creatively presented,POS) (food,creatively presented,POS) (food,creatively presented,POS) (food,creatively presented,POS)
creatively presented and (wine,excellent,POS) (wine,excellent,POS) (wine,excellent,POS) (wine,excellent,POS)

the wine excellent (food,excellent,POS)

shows that S3E2 can better understand the context
and distinguish the characteristics of words.

There are 2 triplets in the fourth example. All
methods extract the triplet containing ”screen”. Un-
like other models, S3E2 successfully identifies the
second aspect ”speed” and its sentiment. Though
lacking of an opinion word ”much”, S3E2 has
stronger recognition ability.

The last one is a more complicated example with
3 triplets, where an aspect corresponds to multiple
opinions. We see that Grid-BiLSTM mistakenly
matches ”food” and ”excellent” as a triplet. Both
Grid-CNN and S3E2 make correct predictions. In
general, the above analysis further proves that S3E2

can better understand the semantics and recognize
the relationship more accurately.

5 Related Work

ASTE originates from another highly concerned
research topic called Aspect Based Sentiment Anal-
ysis (ABSA) (Pontiki et al., 2014, 2015, 2016).
The research process of ABSA can be divided into
three stages.

Separate Extraction. Traditional studies have
divided ABSA into three subtasks, namely, aspect
extraction (AE), opinion extraction (OE), and as-
pect sentiment classification (ASC). The AE task
(Yin et al., 2016; Li et al., 2018b; Xu et al., 2018;
Ma et al., 2019) requires the extraction of aspects,
while the OE task’s goal (Fan et al., 2019) is to iden-
tify opinions expressed on them. The ASC task has
attracted much more attention, which refers to clas-
sifying sentiment polarity for a given aspect target
(Yang et al., 2017; Chen et al., 2017; Ma et al.,
2018; Li et al., 2018a; Xue and Li, 2018; Wang
et al., 2018; Li et al., 2019b) because the sentiment
element carries crucial semantic information for a
text. Zhang et al. (2019) develops aspect-specific
Graph Convolutional Networks (ASGCN) that in-

tegrates with LSTM for the ASC task. Compared
with ASGCN, S3E2 has richer edge types and fewer
training parameters. Since its aspect-specific struc-
ture must depend on the given aspect, ASGCN
lacks scalability and cannot be extended to triplet
extraction in an end-to-end fashion. Besides, solv-
ing these three subtasks individually lacks practical
application value and ignores the internal relation
between them.

Pair Extraction. Recently, many studies have
proposed effective models to jointly extract as-
pects and their sentiments (Zhang et al., 2015; Li
and Lu, 2017, 2019; Li et al., 2019b,a). Hu et al.
(2019) design a Span-Based method but conclude
the pipeline model is better than the unified model.
There is also a practice to co-extract aspects and
opinions (Wang et al., 2017; Dai and Song, 2019).
These pair extraction models still cannot fully un-
derstand a complete picture regarding sentiment
and dig deeper into the interconnections between
subtasks.

Triplet Extraction. The ASTE task is more chal-
lenging and application value. Peng et al. (2020)
first propose a two-stage model for ASTE, which
in the first stage co-extracts aspects with the asso-
ciated sentiment and finishes opinion extraction in
the form of a standard sequence labeling task. The
second stage employs a binary classifier to match
aspects and opinions to obtain final triplets. Fol-
lowing this work, Xu et al. (2020) employ a model
with a position-aware tagging scheme to extract
a triplet jointly, but it cannot apply to the one-to-
many phenomenon. Wu et al. (2020) design a novel
grid tagging schema to address triplet extraction,
but their end-to-end model ignores the dependen-
cies among words. Besides, the inference rounds
of their inference strategy are not unified for each
dataset, which may cause instability and high time
complexity if the rounds rise.
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6 Conclusion

Aspect Sentiment Triplet Extraction (ASTE) re-
quires extracting aspects, corresponding opinions,
and sentiment from user reviews. Different from
previous work, we take advantage of multiple se-
mantic relationships between word pairs and effec-
tively capture the inner connection between such
three elements. In this paper, we construct a novel
model with a relational structure by creating a
unique text graph for each sentence using Graph
Neural Network (GNN). We also combine LSTM
to obtain contextual semantics. Through the above
mentioned rich structure, S3E2 can understand the
context well and effectively recognize the identify
between words. Besides, the inference strategy be-
comes more efficient because it only needs to be
inferred once for all datasets, reducing the time
complexity. Our end-to-end model achieves state-
of-the-art performance on all datasets for triplet
extraction. Experimental results show that S3E2

remarkably captures the connection between word
pairs and recognizes their relationship.
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Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel,
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