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Abstract

This paper presents SimCSE, a simple con-
trastive learning framework that greatly ad-
vances the state-of-the-art sentence embed-
dings. We first describe an unsupervised ap-
proach, which takes an input sentence and
predicts itself in a contrastive objective, with
only standard dropout used as noise. This
simple method works surprisingly well, per-
forming on par with previous supervised coun-
terparts. We find that dropout acts as mini-
mal data augmentation and removing it leads
to a representation collapse. Then, we pro-
pose a supervised approach, which incorpo-
rates annotated pairs from natural language
inference datasets into our contrastive learn-
ing framework, by using “entailment” pairs
as positives and “contradiction” pairs as hard
negatives. We evaluate SimCSE on standard
semantic textual similarity (STS) tasks, and
our unsupervised and supervised models using
BERTbase achieve an average of 76.3% and
81.6% Spearman’s correlation respectively, a
4.2% and 2.2% improvement compared to
previous best results. We also show—both
theoretically and empirically—that contrastive
learning objective regularizes pre-trained em-
beddings’ anisotropic space to be more uni-
form, and it better aligns positive pairs when
supervised signals are available.1

1 Introduction

Learning universal sentence embeddings is a fun-
damental problem in natural language process-
ing and has been studied extensively in the litera-
ture (Kiros et al., 2015; Hill et al., 2016; Conneau
et al., 2017; Logeswaran and Lee, 2018; Cer et al.,
2018; Reimers and Gurevych, 2019, inter alia).
In this work, we advance state-of-the-art sentence

*The first two authors contributed equally (listed in alpha-
betical order). This work was done when Xingcheng visited
the Princeton NLP group remotely.

1Our code and pre-trained models are publicly available at
https://github.com/princeton-nlp/SimCSE.

embedding methods and demonstrate that a con-
trastive objective can be extremely effective when
coupled with pre-trained language models such as
BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019). We present SimCSE, a simple contrastive
sentence embedding framework, which can pro-
duce superior sentence embeddings, from either
unlabeled or labeled data.

Our unsupervised SimCSE simply predicts the
input sentence itself with only dropout (Srivastava
et al., 2014) used as noise (Figure 1(a)). In other
words, we pass the same sentence to the pre-trained
encoder twice: by applying the standard dropout
twice, we can obtain two different embeddings as
“positive pairs”. Then we take other sentences in the
same mini-batch as “negatives”, and the model pre-
dicts the positive one among negatives. Although it
may appear strikingly simple, this approach outper-
forms training objectives such as predicting next
sentences (Logeswaran and Lee, 2018) and discrete
data augmentation (e.g., word deletion and replace-
ment) by a large margin, and even matches previous
supervised methods. Through careful analysis, we
find that dropout acts as minimal “data augmenta-
tion” of hidden representations, while removing it
leads to a representation collapse.

Our supervised SimCSE builds upon the recent
success of using natural language inference (NLI)
datasets for sentence embeddings (Conneau et al.,
2017; Reimers and Gurevych, 2019) and incorpo-
rates annotated sentence pairs in contrastive learn-
ing (Figure 1(b)). Unlike previous work that casts
it as a 3-way classification task (entailment, neu-
tral and contradiction), we leverage the fact that
entailment pairs can be naturally used as positive
instances. We also find that adding correspond-
ing contradiction pairs as hard negatives further
improves performance. This simple use of NLI
datasets achieves a substantial improvement com-
pared to prior methods using the same datasets.
We also compare to other labeled sentence-pair

https://github.com/princeton-nlp/SimCSE
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Figure 1: (a) Unsupervised SimCSE predicts the input sentence itself from in-batch negatives, with different hidden
dropout masks applied. (b) Supervised SimCSE leverages the NLI datasets and takes the entailment (premise-
hypothesis) pairs as positives, and contradiction pairs as well as other in-batch instances as negatives.

datasets and find that NLI datasets are especially
effective for learning sentence embeddings.

To better understand the strong performance of
SimCSE, we borrow the analysis tool from Wang
and Isola (2020), which takes alignment between
semantically-related positive pairs and uniformity
of the whole representation space to measure the
quality of learned embeddings. Through empiri-
cal analysis, we find that our unsupervised Sim-
CSE essentially improves uniformity while avoid-
ing degenerated alignment via dropout noise, thus
improving the expressiveness of the representa-
tions. The same analysis shows that the NLI train-
ing signal can further improve alignment between
positive pairs and produce better sentence embed-
dings. We also draw a connection to the recent find-
ings that pre-trained word embeddings suffer from
anisotropy (Ethayarajh, 2019; Li et al., 2020) and
prove that—through a spectrum perspective—the
contrastive learning objective “flattens” the singu-
lar value distribution of the sentence embedding
space, hence improving uniformity.

We conduct a comprehensive evaluation of Sim-
CSE on seven standard semantic textual similarity
(STS) tasks (Agirre et al., 2012, 2013, 2014, 2015,
2016; Cer et al., 2017; Marelli et al., 2014) and
seven transfer tasks (Conneau and Kiela, 2018).
On the STS tasks, our unsupervised and supervised
models achieve a 76.3% and 81.6% averaged Spear-
man’s correlation respectively using BERTbase, a
4.2% and 2.2% improvement compared to previous
best results. We also achieve competitive perfor-
mance on the transfer tasks. Finally, we identify
an incoherent evaluation issue in the literature and
consolidate results of different settings for future
work in evaluation of sentence embeddings.

2 Background: Contrastive Learning

Contrastive learning aims to learn effective repre-
sentation by pulling semantically close neighbors
together and pushing apart non-neighbors (Hadsell
et al., 2006). It assumes a set of paired examples
D = {(xi, x+i )}mi=1, where xi and x+i are semanti-
cally related. We follow the contrastive framework
in Chen et al. (2020) and take a cross-entropy ob-
jective with in-batch negatives (Chen et al., 2017;
Henderson et al., 2017): let hi and h+

i denote the
representations of xi and x+i , the training objective
for (xi, x+i ) with a mini-batch of N pairs is:

`i = − log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,h

+
j )/τ

, (1)

where τ is a temperature hyperparameter and
sim(h1,h2) is the cosine similarity h>1 h2

‖h1‖·‖h2‖ . In
this work, we encode input sentences using a
pre-trained language model such as BERT (De-
vlin et al., 2019) or RoBERTa (Liu et al., 2019):
h = fθ(x), and then fine-tune all the parameters
using the contrastive learning objective (Eq. 1).

Positive instances. One critical question in con-
trastive learning is how to construct (xi, x+i ) pairs.
In visual representations, an effective solution is to
take two random transformations of the same image
(e.g., cropping, flipping, distortion and rotation) as
xi and x+i (Dosovitskiy et al., 2014). A similar
approach has been recently adopted in language
representations (Wu et al., 2020; Meng et al., 2021)
by applying augmentation techniques such as word
deletion, reordering, and substitution. However,
data augmentation in NLP is inherently difficult
because of its discrete nature. As we will see in §3,
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simply using standard dropout on intermediate rep-
resentations outperforms these discrete operators.

In NLP, a similar contrastive learning objective
has been explored in different contexts (Henderson
et al., 2017; Gillick et al., 2019; Karpukhin et al.,
2020). In these cases, (xi, x+i ) are collected from
supervised datasets such as question-passage pairs.
Because of the distinct nature of xi and x+i , these
approaches always use a dual-encoder framework,
i.e., using two independent encoders fθ1 and fθ2 for
xi and x+i . For sentence embeddings, Logeswaran
and Lee (2018) also use contrastive learning with
a dual-encoder approach, by forming current sen-
tence and next sentence as (xi, x+i ).

Alignment and uniformity. Recently, Wang and
Isola (2020) identify two key properties related to
contrastive learning—alignment and uniformity—
and propose to use them to measure the quality of
representations. Given a distribution of positive
pairs ppos, alignment calculates expected distance
between embeddings of the paired instances (as-
suming representations are already normalized):

`align , E
(x,x+)∼ppos

‖f(x)− f(x+)‖2. (2)

On the other hand, uniformity measures how well
the embeddings are uniformly distributed:

`uniform , log E
x,y

i.i.d.∼ pdata

e−2‖f(x)−f(y)‖
2
, (3)

where pdata denotes the data distribution. These
two metrics are well aligned with the objective
of contrastive learning: positive instances should
stay close and embeddings for random instances
should scatter on the hypersphere. In the following
sections, we will also use the two metrics to justify
the inner workings of our approaches.

3 Unsupervised SimCSE

The idea of unsupervised SimCSE is extremely
simple: we take a collection of sentences {xi}mi=1

and use x+i = xi. The key ingredient to get this to
work with identical positive pairs is through the use
of independently sampled dropout masks for xi and
x+i . In standard training of Transformers (Vaswani
et al., 2017), there are dropout masks placed on
fully-connected layers as well as attention probabil-
ities (default p = 0.1). We denote hzi = fθ(xi, z)
where z is a random mask for dropout. We simply
feed the same input to the encoder twice and get

Data augmentation STS-B

None (unsup. SimCSE) 82.5

Crop 10% 20% 30%
77.8 71.4 63.6

Word deletion 10% 20% 30%
75.9 72.2 68.2

Delete one word 75.9
w/o dropout 74.2

Synonym replacement 77.4
MLM 15% 62.2

Table 1: Comparison of data augmentations on STS-B
development set (Spearman’s correlation). Crop k%:
keep 100-k% of the length; word deletion k%: delete
k% words; Synonym replacement: use nlpaug (Ma,
2019) to randomly replace one word with its synonym;
MLM k%: use BERTbase to replace k% of words.

Training objective fθ (fθ1 , fθ2)

Next sentence 67.1 68.9
Next 3 sentences 67.4 68.8
Delete one word 75.9 73.1
Unsupervised SimCSE 82.5 80.7

Table 2: Comparison of different unsupervised objec-
tives (STS-B development set, Spearman’s correlation).
The two columns denote whether we use one encoder
or two independent encoders. Next 3 sentences: ran-
domly sample one from the next 3 sentences. Delete
one word: delete one word randomly (see Table 1).

two embeddings with different dropout masks z, z′,
and the training objective of SimCSE becomes:

`i = − log
esim(h

zi
i ,h

z′i
i )/τ∑N

j=1 e
sim(h

zi
i ,h

z′
j
j )/τ

, (4)

for a mini-batch of N sentences. Note that z is just
the standard dropout mask in Transformers and we
do not add any additional dropout.

Dropout noise as data augmentation. We view
it as a minimal form of data augmentation: the
positive pair takes exactly the same sentence, and
their embeddings only differ in dropout masks.
We compare this approach to other training ob-
jectives on the STS-B development set (Cer et al.,
2017)2. Table 1 compares our approach to common
data augmentation techniques such as crop, word
deletion and replacement, which can be viewed as

2We randomly sample 106 sentences from English
Wikipedia and fine-tune BERTbase with learning rate = 3e-5,
N = 64. In all our experiments, no STS training sets are used.
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p 0.0 0.01 0.05 0.1
STS-B 71.1 72.6 81.1 82.5

p 0.15 0.2 0.5 Fixed 0.1
STS-B 81.4 80.5 71.0 43.6

Table 3: Effects of different dropout probabilities p
on the STS-B development set (Spearman’s correlation,
BERTbase). Fixed 0.1: default 0.1 dropout rate but ap-
ply the same dropout mask on both xi and x+i .

h = fθ(g(x), z) and g is a (random) discrete op-
erator on x. We note that even deleting one word
would hurt performance and none of the discrete
augmentations outperforms dropout noise.

We also compare this self-prediction training
objective to the next-sentence objective used in Lo-
geswaran and Lee (2018), taking either one encoder
or two independent encoders. As shown in Table 2,
we find that SimCSE performs much better than
the next-sentence objectives (82.5 vs 67.4 on STS-
B) and using one encoder instead of two makes a
significant difference in our approach.

Why does it work? To further understand the
role of dropout noise in unsupervised SimCSE, we
try out different dropout rates in Table 3 and ob-
serve that all the variants underperform the default
dropout probability p = 0.1 from Transformers.
We find two extreme cases particularly interesting:
“no dropout” (p = 0) and “fixed 0.1” (using default
dropout p = 0.1 but the same dropout masks for
the pair). In both cases, the resulting embeddings
for the pair are exactly the same, and it leads to
a dramatic performance degradation. We take the
checkpoints of these models every 10 steps during
training and visualize the alignment and uniformity
metrics3 in Figure 2, along with a simple data aug-
mentation model “delete one word”. As clearly
shown, starting from pre-trained checkpoints, all
models greatly improve uniformity. However, the
alignment of the two special variants also degrades
drastically, while our unsupervised SimCSE keeps
a steady alignment, thanks to the use of dropout
noise. It also demonstrates that starting from a pre-
trained checkpoint is crucial, for it provides good
initial alignment. At last, “delete one word” im-
proves the alignment yet achieves a smaller gain
on the uniformity metric, and eventually underper-
forms unsupervised SimCSE.

3We take STS-B pairs with a score higher than 4 as ppos
and all STS-B sentences as pdata.
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Figure 2: `align-`uniform plot for unsupervised SimCSE,
“no dropout”, “fixed 0.1”, and “delete one word”. We
visualize checkpoints every 10 training steps and the
arrows indicate the training direction. For both `align
and `uniform, lower numbers are better.

4 Supervised SimCSE

We have demonstrated that adding dropout noise
is able to keep a good alignment for positive pairs
(x, x+) ∼ ppos. In this section, we study whether
we can leverage supervised datasets to provide
better training signals for improving alignment of
our approach. Prior work (Conneau et al., 2017;
Reimers and Gurevych, 2019) has demonstrated
that supervised natural language inference (NLI)
datasets (Bowman et al., 2015; Williams et al.,
2018) are effective for learning sentence embed-
dings, by predicting whether the relationship be-
tween two sentences is entailment, neutral or con-
tradiction. In our contrastive learning framework,
we instead directly take (xi, x

+
i ) pairs from super-

vised datasets and use them to optimize Eq. 1.

Choices of labeled data. We first explore which
supervised datasets are especially suitable for con-
structing positive pairs (xi, x

+
i ). We experiment

with a number of datasets with sentence-pair ex-
amples, including 1) QQP4: Quora question pairs;
2) Flickr30k (Young et al., 2014): each image is
annotated with 5 human-written captions and we
consider any two captions of the same image as a
positive pair; 3) ParaNMT (Wieting and Gimpel,
2018): a large-scale back-translation paraphrase
dataset5; and finally 4) NLI datasets: SNLI (Bow-
man et al., 2015) and MNLI (Williams et al., 2018).

We train the contrastive learning model (Eq. 1)
with different datasets and compare the results in

4https://www.quora.com/q/quoradata/
5ParaNMT is automatically constructed by machine trans-

lation systems. Strictly speaking, we should not call it “super-
vised”. It underperforms our unsupervised SimCSE though.

https://www.quora.com/q/quoradata/
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Table 4. For a fair comparison, we also run exper-
iments with the same # of training pairs. Among
all the options, using entailment pairs from the
NLI (SNLI + MNLI) datasets performs the best.
We think this is reasonable, as the NLI datasets
consist of high-quality and crowd-sourced pairs.
Also, human annotators are expected to write the
hypotheses manually based on the premises and
two sentences tend to have less lexical overlap.
For instance, we find that the lexical overlap (F1
measured between two bags of words) for the en-
tailment pairs (SNLI + MNLI) is 39%, while they
are 60% and 55% for QQP and ParaNMT.

Contradiction as hard negatives. Finally, we fur-
ther take the advantage of the NLI datasets by us-
ing its contradiction pairs as hard negatives6. In
NLI datasets, given one premise, annotators are re-
quired to manually write one sentence that is abso-
lutely true (entailment), one that might be true (neu-
tral), and one that is definitely false (contradiction).
Therefore, for each premise and its entailment hy-
pothesis, there is an accompanying contradiction
hypothesis7 (see Figure 1 for an example).

Formally, we extend (xi, x
+
i ) to (xi, x

+
i , x

−
i ),

where xi is the premise, x+i and x−i are entailment
and contradiction hypotheses. The training objec-
tive `i is then defined by (N is mini-batch size):

− log
esim(hi,h

+
i )/τ∑N

j=1

(
esim(hi,h

+
j )/τ + esim(hi,h

−
j )/τ

) .
(5)

As shown in Table 4, adding hard negatives can
further improve performance (84.9 → 86.2) and
this is our final supervised SimCSE. We also tried
to add the ANLI dataset (Nie et al., 2020) or com-
bine it with our unsupervised SimCSE approach,
but didn’t find a meaningful improvement. We also
considered a dual encoder framework in supervised
SimCSE and it hurt performance (86.2→ 84.2).

5 Connection to Anisotropy

Recent work identifies an anisotropy problem in
language representations (Ethayarajh, 2019; Li
et al., 2020), i.e., the learned embeddings occupy a
narrow cone in the vector space, which severely
limits their expressiveness. Gao et al. (2019)

6We also experimented with adding neutral hypotheses as
hard negatives. See Section 6.3 for more discussion.

7In fact, one premise can have multiple contradiction hy-
potheses. In our implementation, we only sample one as the
hard negative and we did not find a difference by using more.

Dataset sample full

Unsup. SimCSE (1m) - 82.5

QQP (134k) 81.8 81.8
Flickr30k (318k) 81.5 81.4
ParaNMT (5m) 79.7 78.7
SNLI+MNLI

entailment (314k) 84.1 84.9
neutral (314k)8 82.6 82.9
contradiction (314k) 77.5 77.6
all (942k) 81.7 81.9

SNLI+MNLI
entailment + hard neg. - 86.2
+ ANLI (52k) - 85.0

Table 4: Comparisons of different supervised datasets
as positive pairs. Results are Spearman’s correlations
on the STS-B development set using BERTbase (we
use the same hyperparameters as the final SimCSE
model). Numbers in brackets denote the # of pairs.
Sample: subsampling 134k positive pairs for a fair com-
parison among datasets; full: using the full dataset. In
the last block, we use entailment pairs as positives and
contradiction pairs as hard negatives (our final model).

demonstrate that language models trained with tied
input/output embeddings lead to anisotropic word
embeddings, and this is further observed by Etha-
yarajh (2019) in pre-trained contextual representa-
tions. Wang et al. (2020) show that singular values
of the word embedding matrix in a language model
decay drastically: except for a few dominating sin-
gular values, all others are close to zero.

A simple way to alleviate the problem is post-
processing, either to eliminate the dominant prin-
cipal components (Arora et al., 2017; Mu and
Viswanath, 2018), or to map embeddings to an
isotropic distribution (Li et al., 2020; Su et al.,
2021). Another common solution is to add reg-
ularization during training (Gao et al., 2019; Wang
et al., 2020). In this work, we show that—both
theoretically and empirically—the contrastive ob-
jective can also alleviate the anisotropy problem.

The anisotropy problem is naturally connected to
uniformity (Wang and Isola, 2020), both highlight-
ing that embeddings should be evenly distributed
in the space. Intuitively, optimizing the contrastive
learning objective can improve uniformity (or ease
the anisotropy problem), as the objective pushes
negative instances apart. Here, we take a singular
spectrum perspective—which is a common practice

8Though our final model only takes entailment pairs as
positive instances, here we also try taking neutral and contra-
diction pairs from the NLI datasets as positive pairs.
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in analyzing word embeddings (Mu and Viswanath,
2018; Gao et al., 2019; Wang et al., 2020), and
show that the contrastive objective can “flatten” the
singular value distribution of sentence embeddings
and make the representations more isotropic.

Following Wang and Isola (2020), the asymp-
totics of the contrastive learning objective (Eq. 1)
can be expressed by the following equation when
the number of negative instances approaches infin-
ity (assuming f(x) is normalized):

− 1

τ
E

(x,x+)∼ppos

[
f(x)>f(x+)

]
+ E
x∼pdata

[
log E

x−∼pdata

[
ef(x)

>f(x−)/τ
]]
,

(6)

where the first term keeps positive instances similar
and the second pushes negative pairs apart. When
pdata is uniform over finite samples {xi}mi=1, with
hi = f(xi), we can derive the following formula
from the second term with Jensen’s inequality:

E
x∼pdata

[
log E

x−∼pdata

[
ef(x)

>f(x−)/τ
]]

=
1

m

m∑
i=1

log

 1

m

m∑
j=1

eh
>
i hj/τ


≥ 1

τm2

m∑
i=1

m∑
j=1

h>i hj .

(7)

Let W be the sentence embedding matrix corre-
sponding to {xi}mi=1, i.e., the i-th row of W is
hi. Optimizing the second term in Eq. 6 essen-
tially minimizes an upper bound of the summation
of all elements in WW>, i.e., Sum(WW>) =∑m

i=1

∑m
j=1 h

>
i hj .

Since we normalize hi, all elements on the di-
agonal of WW> are 1 and then tr(WW>) (the
sum of all eigenvalues) is a constant. According
to Merikoski (1984), if all elements in WW> are
positive, which is the case in most times accord-
ing to Figure G.1, then Sum(WW>) is an upper
bound for the largest eigenvalue of WW>. When
minimizing the second term in Eq. 6, we reduce
the top eigenvalue of WW> and inherently “flat-
ten” the singular spectrum of the embedding space.
Therefore, contrastive learning is expected to alle-
viate the representation degeneration problem and
improve uniformity of sentence embeddings.

Compared to post-processing methods in Li et al.
(2020); Su et al. (2021), which only aim to encour-
age isotropic representations, contrastive learning

also optimizes for aligning positive pairs by the
first term in Eq. 6, which is the key to the success
of SimCSE. A quantitative analysis is given in §7.

6 Experiment

6.1 Evaluation Setup

We conduct our experiments on 7 semantic textual
similarity (STS) tasks. Note that all our STS exper-
iments are fully unsupervised and no STS training
sets are used. Even for supervised SimCSE, we
simply mean that we take extra labeled datasets
for training, following previous work (Conneau
et al., 2017). We also evaluate 7 transfer learning
tasks and provide detailed results in Appendix E.
We share a similar sentiment with Reimers and
Gurevych (2019) that the main goal of sentence
embeddings is to cluster semantically similar sen-
tences and hence take STS as the main result.

Semantic textual similarity tasks. We evalu-
ate on 7 STS tasks: STS 2012–2016 (Agirre
et al., 2012, 2013, 2014, 2015, 2016), STS
Benchmark (Cer et al., 2017) and SICK-
Relatedness (Marelli et al., 2014). When compar-
ing to previous work, we identify invalid compari-
son patterns in published papers in the evaluation
settings, including (a) whether to use an additional
regressor, (b) Spearman’s vs Pearson’s correlation,
and (c) how the results are aggregated (Table B.1).
We discuss the detailed differences in Appendix B
and choose to follow the setting of Reimers and
Gurevych (2019) in our evaluation (no additional
regressor, Spearman’s correlation, and “all” aggre-
gation). We also report our replicated study of
previous work as well as our results evaluated in
a different setting in Table B.2 and Table B.3. We
call for unifying the setting in evaluating sentence
embeddings for future research.

Training details. We start from pre-trained check-
points of BERT (Devlin et al., 2019) (uncased)
or RoBERTa (Liu et al., 2019) (cased) and take
the [CLS] representation as the sentence embed-
ding9 (see §6.3 for comparison between different
pooling methods). We train unsupervised SimCSE
on 106 randomly sampled sentences from English
Wikipedia, and train supervised SimCSE on the
combination of MNLI and SNLI datasets (314k).
More training details can be found in Appendix A.

9There is an MLP layer over [CLS] in BERT’s original
implementation and we keep it with random initialization.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Unsupervised models

GloVe embeddings (avg.)♣ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase (first-last avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERTbase

♥ 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CT-BERTbase 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
∗ SimCSE-BERTbase 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

RoBERTabase (first-last avg.) 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTabase-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
DeCLUTR-RoBERTabase 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99
∗ SimCSE-RoBERTabase 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
∗ SimCSE-RoBERTalarge 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90

Supervised models

InferSent-GloVe♣ 52.86 66.75 62.15 72.77 66.87 68.03 65.65 65.01
Universal Sentence Encoder♣ 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
SBERTbase

♣ 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
SBERTbase-flow 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60
SBERTbase-whitening 69.65 77.57 74.66 82.27 78.39 79.52 76.91 77.00
CT-SBERTbase 74.84 83.20 78.07 83.84 77.93 81.46 76.42 79.39
∗ SimCSE-BERTbase 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57

SRoBERTabase♣ 71.54 72.49 70.80 78.74 73.69 77.77 74.46 74.21
SRoBERTabase-whitening 70.46 77.07 74.46 81.64 76.43 79.49 76.65 76.60
∗ SimCSE-RoBERTabase 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
∗ SimCSE-RoBERTalarge 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76

Table 5: Sentence embedding performance on STS tasks (Spearman’s correlation, “all” setting). We highlight the
highest numbers among models with the same pre-trained encoder. ♣: results from Reimers and Gurevych (2019);
♥: results from Zhang et al. (2020); all other results are reproduced or reevaluated by ourselves. For BERT-flow (Li
et al., 2020) and whitening (Su et al., 2021), we only report the “NLI” setting (see Table C.1).

6.2 Main Results

We compare unsupervised and supervised Sim-
CSE to previous state-of-the-art sentence embed-
ding methods on STS tasks. Unsupervised base-
lines include average GloVe embeddings (Pen-
nington et al., 2014), average BERT or RoBERTa
embeddings10, and post-processing methods such
as BERT-flow (Li et al., 2020) and BERT-
whitening (Su et al., 2021). We also compare to sev-
eral recent methods using a contrastive objective,
including 1) IS-BERT (Zhang et al., 2020), which
maximizes the agreement between global and lo-
cal features; 2) DeCLUTR (Giorgi et al., 2021),
which takes different spans from the same docu-
ment as positive pairs; 3) CT (Carlsson et al., 2021),
which aligns embeddings of the same sentence
from two different encoders.11 Other supervised

10Following Su et al. (2021), we take the average of the first
and the last layers, which is better than only taking the last.

11We do not compare to CLEAR (Wu et al., 2020), because
they use their own version of pre-trained models, and the
numbers appear to be much lower. Also note that CT is a
concurrent work to ours.

methods include InferSent (Conneau et al., 2017),
Universal Sentence Encoder (Cer et al., 2018), and
SBERT/SRoBERTa (Reimers and Gurevych, 2019)
with post-processing methods (BERT-flow, whiten-
ing, and CT). We provide more details of these
baselines in Appendix C.

Table 5 shows the evaluation results on 7 STS
tasks. SimCSE can substantially improve results
on all the datasets with or without extra NLI su-
pervision, greatly outperforming the previous state-
of-the-art models. Specifically, our unsupervised
SimCSE-BERTbase improves the previous best
averaged Spearman’s correlation from 72.05% to
76.25%, even comparable to supervised baselines.
When using NLI datasets, SimCSE-BERTbase fur-
ther pushes the state-of-the-art results to 81.57%.
The gains are more pronounced on RoBERTa
encoders, and our supervised SimCSE achieves
83.76% with RoBERTalarge.

In Appendix E, we show that SimCSE also
achieves on par or better transfer task performance
compared to existing work, and an auxiliary MLM
objective can further boost performance.
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Pooler Unsup. Sup.

[CLS]
w/ MLP 81.7 86.2
w/ MLP (train) 82.5 85.8
w/o MLP 80.9 86.2

First-last avg. 81.2 86.1

Table 6: Ablation studies of different pooling methods
in unsupervised and supervised SimCSE. [CLS] w/
MLP (train): using MLP on [CLS] during training but
removing it during testing. The results are based on the
development set of STS-B using BERTbase.

Hard neg N/A Contradiction
Contra.+
Neutral

α - 0.5 1.0 2.0 1.0

STS-B 84.9 86.1 86.2 86.2 85.3

Table 7: STS-B development results with different hard
negative policies. “N/A”: no hard negative.

6.3 Ablation Studies

We investigate the impact of different pooling meth-
ods and hard negatives. All reported results in this
section are based on the STS-B development set.
We provide more ablation studies (normalization,
temperature, and MLM objectives) in Appendix D.

Pooling methods. Reimers and Gurevych (2019);
Li et al. (2020) show that taking the average em-
beddings of pre-trained models (especially from
both the first and last layers) leads to better perfor-
mance than [CLS]. Table 6 shows the comparison
between different pooling methods in both unsuper-
vised and supervised SimCSE. For [CLS] repre-
sentation, the original BERT implementation takes
an extra MLP layer on top of it. Here, we consider
three different settings for [CLS]: 1) keeping the
MLP layer; 2) no MLP layer; 3) keeping MLP dur-
ing training but removing it at testing time. We find
that for unsupervised SimCSE, taking [CLS] rep-
resentation with MLP only during training works
the best; for supervised SimCSE, different pooling
methods do not matter much. By default, we take
[CLS]with MLP (train) for unsupervised SimCSE
and [CLS]with MLP for supervised SimCSE.

Hard negatives. Intuitively, it may be beneficial
to differentiate hard negatives (contradiction exam-
ples) from other in-batch negatives. Therefore, we
extend our training objective defined in Eq. 5 to

incorporate weighting of different negatives:

− log
esim(hi,h

+
i )/τ∑N

j=1

(
esim(hi,h

+
j )/τ + α1

j
i esim(hi,h

−
j )/τ

) , (8)

where 1ji ∈ {0, 1} is an indicator that equals 1 if
and only if i = j. We train SimCSE with different
values of α and evaluate the trained models on
the development set of STS-B. We also consider
taking neutral hypotheses as hard negatives. As
shown in Table 7, α = 1 performs the best, and
neutral hypotheses do not bring further gains.

7 Analysis

In this section, we conduct further analyses to un-
derstand the inner workings of SimCSE.

Uniformity and alignment. Figure 3 shows uni-
formity and alignment of different sentence embed-
ding models along with their averaged STS results.
In general, models which have both better align-
ment and uniformity achieve better performance,
confirming the findings in Wang and Isola (2020).
We also observe that (1) though pre-trained em-
beddings have good alignment, their uniformity is
poor (i.e., the embeddings are highly anisotropic);
(2) post-processing methods like BERT-flow and
BERT-whitening greatly improve uniformity but
also suffer a degeneration in alignment; (3) unsu-
pervised SimCSE effectively improves uniformity
of pre-trained embeddings whereas keeping a good
alignment; (4) incorporating supervised data in
SimCSE further amends alignment. In Appendix F,
we further show that SimCSE can effectively flat-
ten singular value distribution of pre-trained em-
beddings. In Appendix G, we demonstrate that
SimCSE provides more distinguishable cosine sim-
ilarities between different sentence pairs.

Qualitative comparison. We conduct a small-
scale retrieval experiment using SBERTbase and
SimCSE-BERTbase. We use 150k captions from
Flickr30k dataset and take any random sentence as
query to retrieve similar sentences (based on cosine
similarity). As several examples shown in Table 8,
the retrieved sentences by SimCSE have a higher
quality compared to those retrieved by SBERT.

8 Related Work

Early work in sentence embeddings builds upon the
distributional hypothesis by predicting surrounding
sentences of a given one (Kiros et al., 2015; Hill
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SBERTbase Supervised SimCSE-BERTbase

Query: A man riding a small boat in a harbor.

#1 A group of men traveling over the ocean in a small boat. A man on a moored blue and white boat.
#2 Two men sit on the bow of a colorful boat. A man is riding in a boat on the water.
#3 A man wearing a life jacket is in a small boat on a lake. A man in a blue boat on the water.

Query: A dog runs on the green grass near a wooden fence.

#1 A dog runs on the green grass near a grove of trees. The dog by the fence is running on the grass.
#2 A brown and white dog runs through the green grass. Dog running through grass in fenced area.
#3 The dogs run in the green field. A dog runs on the green grass near a grove of trees.

Table 8: Retrieved top-3 examples by SBERT and supervised SimCSE from Flickr30k (150k sentences).
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Figure 3: `align-`uniform plot of models based on
BERTbase. Color of points and numbers in brackets
represent average STS performance (Spearman’s corre-
lation). Next3Sent: “next 3 sentences” from Table 2.

et al., 2016; Logeswaran and Lee, 2018). Pagliar-
dini et al. (2018) show that simply augmenting
the idea of word2vec (Mikolov et al., 2013) with
n-gram embeddings leads to strong results. Sev-
eral recent (and concurrent) approaches adopt con-
trastive objectives (Zhang et al., 2020; Giorgi et al.,
2021; Wu et al., 2020; Meng et al., 2021; Carlsson
et al., 2021; Kim et al., 2021; Yan et al., 2021) by
taking different views—from data augmentation or
different copies of models—of the same sentence
or document. Compared to these work, SimCSE
uses the simplest idea by taking different outputs
of the same sentence from standard dropout, and
performs the best on STS tasks.

Supervised sentence embeddings are promised
to have stronger performance compared to unsu-
pervised counterparts. Conneau et al. (2017) pro-
pose to fine-tune a Siamese model on NLI datasets,
which is further extended to other encoders or
pre-trained models (Cer et al., 2018; Reimers and
Gurevych, 2019). Furthermore, Wieting and Gim-
pel (2018); Wieting et al. (2020) demonstrate that

bilingual and back-translation corpora provide use-
ful supervision for learning semantic similarity. An-
other line of work focuses on regularizing embed-
dings (Li et al., 2020; Su et al., 2021; Huang et al.,
2021) to alleviate the representation degeneration
problem (as discussed in §5), and yields substantial
improvement over pre-trained language models.

9 Conclusion

In this work, we propose SimCSE, a simple con-
trastive learning framework, which greatly im-
proves state-of-the-art sentence embeddings on se-
mantic textual similarity tasks. We present an un-
supervised approach which predicts input sentence
itself with dropout noise and a supervised approach
utilizing NLI datasets. We further justify the inner
workings of our approach by analyzing alignment
and uniformity of SimCSE along with other base-
line models. We believe that our contrastive objec-
tive, especially the unsupervised one, may have a
broader application in NLP. It provides a new per-
spective on data augmentation with text input, and
can be extended to other continuous representations
and integrated in language model pre-training.

Acknowledgements

We thank Tao Lei, Jason Lee, Zhengyan Zhang,
Jinhyuk Lee, Alexander Wettig, Zexuan Zhong,
and the members of the Princeton NLP group for
helpful discussion and valuable feedback. This
research is supported by a Graduate Fellowship at
Princeton University and a gift award from Apple.



6903

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-
tual similarity, English, Spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 252–263.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. SemEval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 81–91.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 497–511. Association
for Computational Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In *SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics – Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pages 385–
393.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Seman-
tics (*SEM), Volume 1: Proceedings of the Main
Conference and the Shared Task: Semantic Textual
Similarity, pages 32–43.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In International Conference on Learning
Representations (ICLR).

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Empirical Methods in Natural Language Process-
ing (EMNLP), pages 632–642.

Fredrik Carlsson, Amaru Cuba Gyllensten, Evan-
gelia Gogoulou, Erik Ylipää Hellqvist, and Magnus
Sahlgren. 2021. Semantic re-tuning with contrastive
tension. In International Conference on Learning
Representations (ICLR).

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017

task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 1–14.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Empirical Methods
in Natural Language Processing (EMNLP): System
Demonstrations, pages 169–174.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020. A simple framework
for contrastive learning of visual representations.
In International Conference on Machine Learning
(ICML), pages 1597–1607.

Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong.
2017. On sampling strategies for neural network-
based collaborative filtering. In ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, pages 767–776.

Alexis Conneau and Douwe Kiela. 2018. SentEval: An
evaluation toolkit for universal sentence representa-
tions. In International Conference on Language Re-
sources and Evaluation (LREC).

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Empirical
Methods in Natural Language Processing (EMNLP),
pages 670–680.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 4171–
4186.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Alexey Dosovitskiy, Jost Tobias Springenberg, Mar-
tin Riedmiller, and Thomas Brox. 2014. Discrim-
inative unsupervised feature learning with convolu-
tional neural networks. In Advances in Neural Infor-
mation Processing Systems (NIPS), volume 27.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Empirical Methods in Natural Language Processing
and International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang,
and Tieyan Liu. 2019. Representation degenera-
tion problem in training natural language generation

https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://www.aclweb.org/anthology/S12-1051
https://www.aclweb.org/anthology/S12-1051
https://www.aclweb.org/anthology/S13-1004
https://www.aclweb.org/anthology/S13-1004
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://openreview.net/forum?id=Ov_sMNau-PF
https://openreview.net/forum?id=Ov_sMNau-PF
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://dl.acm.org/doi/abs/10.1145/3097983.3098202
https://dl.acm.org/doi/abs/10.1145/3097983.3098202
https://www.aclweb.org/anthology/L18-1269
https://www.aclweb.org/anthology/L18-1269
https://www.aclweb.org/anthology/L18-1269
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
https://proceedings.neurips.cc/paper/2014/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://openreview.net/forum?id=SkEYojRqtm
https://openreview.net/forum?id=SkEYojRqtm


6904

models. In International Conference on Learning
Representations (ICLR).

Dan Gillick, Sayali Kulkarni, Larry Lansing, Alessan-
dro Presta, Jason Baldridge, Eugene Ie, and Diego
Garcia-Olano. 2019. Learning dense representa-
tions for entity retrieval. In Computational Natural
Language Learning (CoNLL), pages 528–537.

John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader.
2021. DeCLUTR: Deep contrastive learning for
unsupervised textual representations. In Associ-
ation for Computational Linguistics and Interna-
tional Joint Conference on Natural Language Pro-
cessing (ACL-IJCNLP), pages 879–895.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), volume 2,
pages 1735–1742. IEEE.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. arXiv preprint arXiv:1705.00652.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT), pages
1367–1377.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining.

Junjie Huang, Duyu Tang, Wanjun Zhong, Shuai Lu,
Linjun Shou, Ming Gong, Daxin Jiang, and Nan
Duan. 2021. Whiteningbert: An easy unsuper-
vised sentence embedding approach. arXiv preprint
arXiv:2104.01767.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval
for open-domain question answering. In Empirical
Methods in Natural Language Processing (EMNLP),
pages 6769–6781.

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021.
Self-guided contrastive learning for BERT sentence
representations. In Association for Computational
Linguistics and International Joint Conference on
Natural Language Processing (ACL-IJCNLP), pages
2528–2540.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urtasun,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in Neural Information Processing Systems
(NIPS), pages 3294–3302.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence
embeddings from pre-trained language models. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 9119–9130.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Lajanugen Logeswaran and Honglak Lee. 2018. An ef-
ficient framework for learning sentence representa-
tions. In International Conference on Learning Rep-
resentations (ICLR).

Edward Ma. 2019. Nlp augmentation.
https://github.com/makcedward/nlpaug.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A SICK cure for the evaluation of compo-
sitional distributional semantic models. In Interna-
tional Conference on Language Resources and Eval-
uation (LREC), pages 216–223.

Yu Meng, Chenyan Xiong, Payal Bajaj, Saurabh Ti-
wary, Paul Bennett, Jiawei Han, and Xia Song.
2021. COCO-LM: Correcting and contrasting text
sequences for language model pretraining. arXiv
preprint arXiv:2102.08473.

Jorma Kaarlo Merikoski. 1984. On the trace and the
sum of elements of a matrix. Linear Algebra and its
Applications, 60:177–185.

Tomas Mikolov, Ilya Sutskever, Kai Chen, G. Corrado,
and J. Dean. 2013. Distributed representations of
words and phrases and their compositionality. In
Advances in Neural Information Processing Systems
(NIPS).

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-
top: Simple and effective postprocessing for word
representations. In International Conference on
Learning Representations (ICLR).

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2020. Ad-
versarial NLI: A new benchmark for natural lan-
guage understanding. In Association for Computa-
tional Linguistics (ACL), pages 4885–4901.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2018. Unsupervised learning of sentence embed-
dings using compositional n-gram features. In North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 528–540.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Association for
Computational Linguistics (ACL), pages 271–278.

https://openreview.net/forum?id=SkEYojRqtm
https://www.aclweb.org/anthology/K19-1049
https://www.aclweb.org/anthology/K19-1049
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://ieeexplore.ieee.org/abstract/document/1640964/
https://ieeexplore.ieee.org/abstract/document/1640964/
https://arxiv.org/pdf/1705.00652.pdf
https://arxiv.org/pdf/1705.00652.pdf
https://arxiv.org/pdf/1705.00652.pdf
https://doi.org/10.18653/v1/N16-1162
https://doi.org/10.18653/v1/N16-1162
https://www.cs.uic.edu/~liub/publications/kdd04-revSummary.pdf
https://www.cs.uic.edu/~liub/publications/kdd04-revSummary.pdf
https://arxiv.org/abs/2104.01767
https://arxiv.org/abs/2104.01767
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197
https://papers.nips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://www.aclweb.org/anthology/2020.emnlp-main.733
https://www.aclweb.org/anthology/2020.emnlp-main.733
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=rJvJXZb0W
https://openreview.net/forum?id=rJvJXZb0W
https://openreview.net/forum?id=rJvJXZb0W
https://github.com/makcedward/nlpaug
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://arxiv.org/abs/2102.08473
https://arxiv.org/abs/2102.08473
https://doi.org/https://doi.org/10.1016/0024-3795(84)90078-8
https://doi.org/https://doi.org/10.1016/0024-3795(84)90078-8
https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/N18-1049
https://doi.org/10.18653/v1/N18-1049
https://www.aclweb.org/anthology/P04-1035.pdf
https://www.aclweb.org/anthology/P04-1035.pdf
https://www.aclweb.org/anthology/P04-1035.pdf


6905

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Association for Com-
putational Linguistics (ACL), pages 115–124.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Nils Reimers, Philip Beyer, and Iryna Gurevych. 2016.
Task-oriented intrinsic evaluation of semantic tex-
tual similarity. In International Conference on Com-
putational Linguistics (COLING), pages 87–96.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Empirical Methods in Natural Lan-
guage Processing and International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3982–3992.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1631–1642.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research (JMLR), 15(1):1929–1958.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou.
2021. Whitening sentence representations for bet-
ter semantics and faster retrieval. arXiv preprint
arXiv:2103.15316.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 6000–6010.

Ellen M Voorhees and Dawn M Tice. 2000. Building
a question answering test collection. In the 23rd
annual international ACM SIGIR conference on Re-
search and development in information retrieval,
pages 200–207.

Lingxiao Wang, Jing Huang, Kevin Huang, Ziniu Hu,
Guangtao Wang, and Quanquan Gu. 2020. Improv-
ing neural language generation with spectrum con-
trol. In International Conference on Learning Rep-
resentations (ICLR).

Tongzhou Wang and Phillip Isola. 2020. Understand-
ing contrastive representation learning through align-
ment and uniformity on the hypersphere. In Inter-
national Conference on Machine Learning (ICML),
pages 9929–9939.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-
tion, 39(2-3):165–210.

John Wieting and Kevin Gimpel. 2018. ParaNMT-
50M: Pushing the limits of paraphrastic sentence
embeddings with millions of machine translations.
In Association for Computational Linguistics (ACL),
pages 451–462.

John Wieting, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2020. A bilingual generative trans-
former for semantic sentence embedding. In Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1581–1594.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 1112–1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Empirical Methods in Natural Language Pro-
cessing (EMNLP): System Demonstrations, pages
38–45.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian
Khabsa, Fei Sun, and Hao Ma. 2020. Clear: Con-
trastive learning for sentence representation. arXiv
preprint arXiv:2012.15466.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. ConSERT: A
contrastive framework for self-supervised sentence
representation transfer. In Association for Com-
putational Linguistics and International Joint Con-
ference on Natural Language Processing (ACL-
IJCNLP), pages 5065–5075.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. Transactions of the
Association for Computational Linguistics, 2:67–78.

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim,
and Lidong Bing. 2020. An unsupervised sentence
embedding method by mutual information maxi-
mization. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1601–1610.

https://www.aclweb.org/anthology/P05-1015.pdf
https://www.aclweb.org/anthology/P05-1015.pdf
https://www.aclweb.org/anthology/P05-1015.pdf
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/C16-1009
https://www.aclweb.org/anthology/C16-1009
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://www.aclweb.org/anthology/D13-1170.pdf
https://www.aclweb.org/anthology/D13-1170.pdf
https://www.aclweb.org/anthology/D13-1170.pdf
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://arxiv.org/pdf/2103.15316.pdf
https://arxiv.org/pdf/2103.15316.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://www.egr.msu.edu/~jchai/QAPapers/qa-testcollection.pdf
https://www.egr.msu.edu/~jchai/QAPapers/qa-testcollection.pdf
https://openreview.net/forum?id=ByxY8CNtvr
https://openreview.net/forum?id=ByxY8CNtvr
https://openreview.net/forum?id=ByxY8CNtvr
http://proceedings.mlr.press/v119/wang20k/wang20k.pdf
http://proceedings.mlr.press/v119/wang20k/wang20k.pdf
http://proceedings.mlr.press/v119/wang20k/wang20k.pdf
https://www.cs.cornell.edu/home/cardie/papers/lre05withappendix.pdf
https://www.cs.cornell.edu/home/cardie/papers/lre05withappendix.pdf
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/2020.emnlp-main.122
https://doi.org/10.18653/v1/2020.emnlp-main.122
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/2012.15466
https://arxiv.org/abs/2012.15466
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.18653/v1/2020.emnlp-main.124
https://doi.org/10.18653/v1/2020.emnlp-main.124
https://doi.org/10.18653/v1/2020.emnlp-main.124


6906

A Training Details

We implement SimCSE with transformers
package (Wolf et al., 2020). For supervised Sim-
CSE, we train our models for 3 epochs, evaluate the
model every 250 training steps on the development
set of STS-B and keep the best checkpoint for the
final evaluation on test sets. We do the same for
the unsupervised SimCSE, except that we train the
model for one epoch. We carry out grid-search of
batch size ∈ {64, 128, 256, 512} and learning rate
∈ {1e-5, 3e-5, 5e-5} on STS-B development set
and adopt the hyperparameter settings in Table A.1.
We find that SimCSE is not sensitive to batch sizes
as long as tuning the learning rates accordingly,
which contradicts the finding that contrastive learn-
ing requires large batch sizes (Chen et al., 2020).
It is probably due to that all SimCSE models start
from pre-trained checkpoints, which already pro-
vide us a good set of initial parameters.

Unsupervised Supervised
BERT RoBERTa

base large
base large base large

Batch size 64 64 512 512 512 512
Learning rate 3e-5 1e-5 1e-5 3e-5 5e-5 1e-5

Table A.1: Batch sizes and learning rates for SimCSE.

For both unsupervised and supervised SimCSE,
we take the [CLS] representation with an MLP
layer on top of it as the sentence representation.
Specially, for unsupervised SimCSE, we discard
the MLP layer and only use the [CLS] output
during test, since we find that it leads to better
performance (ablation study in §6.3).

Finally, we introduce one more optional variant
which adds a masked language modeling (MLM)
objective (Devlin et al., 2019) as an auxiliary loss
to Eq. 1: ` + λ · `mlm (λ is a hyperparameter).
This helps SimCSE avoid catastrophic forgetting
of token-level knowledge. As we will show in Ta-
ble D.2, we find that adding this term can help
improve performance on transfer tasks (not on
sentence-level STS tasks).

B Different Settings for STS Evaluation

We elaborate the differences in STS evaluation set-
tings in previous work in terms of (a) whether to
use additional regressors; (b) reported metrics; (c)
different ways to aggregate results.

Additional regressors. The default SentEval
implementation applies a linear regressor on top of

Paper Reg. Metric Aggr.

Hill et al. (2016) Both all
Conneau et al. (2017) X Pearson mean
Conneau and Kiela (2018) X Pearson mean
Reimers and Gurevych (2019) Spearman all
Zhang et al. (2020) Spearman all
Li et al. (2020) Spearman wmean
Su et al. (2021) Spearman wmean
Wieting et al. (2020) Pearson mean
Giorgi et al. (2021) Spearman mean
Ours Spearman all

Table B.1: STS evaluation protocols used in different
papers. “Reg.”: whether an additional regressor is used;
“aggr.”: methods to aggregate different subset results.

frozen sentence embeddings for STS-B and SICK-
R, and train the regressor on the training sets of
the two tasks, while most sentence representation
papers take the raw embeddings and evaluate in an
unsupervised way. In our experiments, we do not
apply any additional regressors and directly take
cosine similarities for all STS tasks.

Metrics. Both Pearson’s and Spearman’s cor-
relation coefficients are used in the literature.
Reimers et al. (2016) argue that Spearman corre-
lation, which measures the rankings instead of the
actual scores, better suits the need of evaluating
sentence embeddings. For all of our experiments,
we report Spearman’s rank correlation.

Aggregation methods. Given that each year’s
STS challenge contains several subsets, there are
different choices to gather results from them: one
way is to concatenate all the topics and report the
overall Spearman’s correlation (denoted as “all”),
and the other is to calculate results for differ-
ent subsets separately and average them (denoted
as “mean” if it is simple average or “wmean” if
weighted by the subset sizes). However, most pa-
pers do not claim the method they take, making it
challenging for a fair comparison. We take some
of the most recent work: SBERT (Reimers and
Gurevych, 2019), BERT-flow (Li et al., 2020) and
BERT-whitening (Su et al., 2021)12 as an example:
In Table B.2, we compare our reproduced results
to reported results of SBERT and BERT-whitening,
and find that Reimers and Gurevych (2019) take the
“all” setting but Li et al. (2020); Su et al. (2021) take
the “wmean” setting, even though Li et al. (2020)
claim that they take the same setting as Reimers

12Li et al. (2020) and Su et al. (2021) have consistent results,
so we assume that they take the same evaluation and just take
BERT-whitening in experiments here.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SBERT (all) 70.97 76.53 73.19 79.09 74.30 76.98 72.91 74.85
SBERT (wmean) 66.35 73.76 73.88 77.33 73.62 76.98 72.91 73.55
SBERT♣ 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89

BERT-whitening (NLI, all) 57.83 66.90 60.89 75.08 71.30 68.23 63.73 66.28
BERT-whitening (NLI, wmean) 61.43 65.90 65.96 74.80 73.10 68.23 63.73 67.59
BERT-whitening (NLI)♠ 61.69 65.70 66.02 75.11 73.11 68.19 63.60 67.63
BERT-whitening (target, all) 42.88 77.77 66.27 63.60 67.58 71.34 60.40 64.26
BERT-whitening (target, wmean) 63.38 73.01 69.13 74.48 72.56 71.34 60.40 69.19
BERT-whitening (target)♠ 63.62 73.02 69.23 74.52 72.15 71.34 60.60 69.21

Table B.2: Comparisons of our reproduced results using different evaluation protocols and the original numbers.
♣: results from Reimers and Gurevych (2019);♠: results from Su et al. (2021); Other results are reproduced by us.
From the table we see that SBERT takes the “all” evaluation and BERT-whitening takes the “wmean” evaluation.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

BERTbase (first-last avg.)♠ 57.86 61.97 62.49 70.96 69.76 59.04 63.75 63.69
+ flow (NLI)♠ 59.54 64.69 64.66 72.92 71.84 58.56 65.44 65.38
+ flow (target)♠ 63.48 72.14 68.42 73.77 75.37 70.72 63.11 69.57
+ whitening (NLI)♠ 61.69 65.70 66.02 75.11 73.11 68.19 63.60 67.63
+ whitening (target)♠ 63.62 73.02 69.23 74.52 72.15 71.34 60.60 69.21
∗ Unsup. SimCSE-BERTbase 70.14 79.56 75.91 81.46 79.07 76.85 72.23 76.46

SBERTbase (first-last avg.)♠ 68.70 74.37 74.73 79.65 75.21 77.63 74.84 75.02
+ flow (NLI)♠ 67.75 76.73 75.53 80.63 77.58 79.10 78.03 76.48
+ flow (target)♠ 68.95 78.48 77.62 81.95 78.94 81.03 74.97 77.42
+ whitening (NLI)♠ 69.11 75.79 75.76 82.31 79.61 78.66 76.33 76.80
+ whitening (target)♠ 69.01 78.10 77.04 80.83 77.93 80.50 72.54 76.56
∗ Sup. SimCSE-BERTbase 70.90 81.49 80.19 83.79 81.89 84.25 80.39 80.41

Table B.3: STS results with “wmean” setting (Spearman). ♠: from Li et al. (2020); Su et al. (2021).

and Gurevych (2019). Since the “all” setting fuses
data from different topics together, it makes the
evaluation closer to real-world scenarios, and un-
less specified, we take the “all” setting.

We list evaluation settings for a number of pre-
vious work in Table B.1. Some of the settings are
reported by the paper and some of them are inferred
by comparing the results and checking their code.
As we can see, the evaluation protocols are very
incoherent across different papers. We call for uni-
fying the setting in evaluating sentence embeddings
for future research. We will also release our evalua-
tion code for better reproducibility. Since previous
work uses different evaluation protocols from ours,
we further evaluate our models in these settings to
make a direct comparison to the published num-
bers. We evaluate SimCSE with “wmean” and
Spearman’s correlation to directly compare to Li
et al. (2020) and Su et al. (2021) in Table B.3.

C Baseline Models

We elaborate on how we obtain different baselines
for comparison in our experiments:

• For average GloVe embedding (Pennington
et al., 2014), InferSent (Conneau et al., 2017)
and Universal Sentence Encoder (Cer et al.,
2018), we directly report the results from
Reimers and Gurevych (2019), since our eval-
uation setting is the same as theirs.

• For BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019), we download the pre-
trained model weights from HuggingFace’s
Transformers13, and evaluate the models
with our own scripts.

• For SBERT and SRoBERTa (Reimers and
Gurevych, 2019), we reuse the results from
the original paper. For results not reported
by Reimers and Gurevych (2019), such as the
performance of SRoBERTa on transfer tasks,
we download the model weights from Sen-
tenceTransformers14 and evaluate them.

13https://github.com/huggingface/
transformers

14https://www.sbert.net/

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://www.sbert.net/
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

BERT-flow (NLI) 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT-flow (target) 53.15 78.38 66.02 62.09 70.84 71.70 61.97 66.31
BERT-whitening (NLI) 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
BERT-whitening (target) 42.88 77.77 66.28 63.60 67.58 71.34 60.40 64.26

SBERT-flow (NLI) 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60
SBERT-flow (target) 66.18 82.69 76.22 73.72 75.71 79.99 73.82 75.48
SBERT-whitening (NLI) 69.65 77.57 74.66 82.27 78.39 79.52 76.91 77.00
SBERT-whitening (target) 52.91 81.91 75.44 72.24 72.93 80.50 72.54 72.64

Table C.1: Comparison of using NLI or target data for postprocessing methods (“all”, Spearman’s correlation).

τ N/A 0.001 0.01 0.05 0.1 1

STS-B 85.9 84.9 85.4 86.2 82.0 64.0

Table D.1: STS-B development results (Spearman’s
correlation) with different temperatures. “N/A”: Dot
product instead of cosine similarity.

• For DeCLUTR (Giorgi et al., 2021) and con-
trastive tension (Carlsson et al., 2021), we
reevaluate their checkpoints in our setting.

• For BERT-flow (Li et al., 2020), since their
original numbers take a different setting, we
retrain their models using their code15, and
evaluate the models using our own script.

• For BERT-whitening (Su et al., 2021), we im-
plemented our own version of whitening script
following the same pooling method in Su et al.
(2021), i.e. first-last average pooling. Our im-
plementation can reproduce the results from
the original paper (see Table B.2).

For both BERT-flow and BERT-whitening, they
have two variants of postprocessing: one takes the
NLI data (“NLI”) and one directly learns the em-
bedding distribution on the target sets (“target”).
We find that in our evaluation setting, “target” is
generally worse than “NLI” (Table C.1), so we only
report the NLI variant in the main results.

D Ablation Studies

Normalization and temperature. We train Sim-
CSE using both dot product and cosine similarity
with different temperatures and evaluate them on
the STS-B development set. As shown in Table D.1,
with a carefully tuned temperature τ = 0.05, co-
sine similarity is better than dot product.

15https://github.com/bohanli/BERT-flow

Model STS-B Avg. transfer

w/o MLM 86.2 85.8
w/ MLM
λ = 0.01 85.7 86.1
λ = 0.1 85.7 86.2
λ = 1 85.1 85.8

Table D.2: Ablation studies of the MLM objective
based on the development sets using BERTbase.

MLM auxiliary task. Finally, we study the im-
pact of the MLM auxiliary objective with different
λ. As shown in Table D.2, the token-level MLM
objective improves the averaged performance on
transfer tasks modestly, yet it brings a consistent
drop in semantic textual similarity tasks.

E Transfer Tasks

We evaluate our models on the following trans-
fer tasks: MR (Pang and Lee, 2005), CR (Hu
and Liu, 2004), SUBJ (Pang and Lee, 2004),
MPQA (Wiebe et al., 2005), SST-2 (Socher et al.,
2013), TREC (Voorhees and Tice, 2000) and
MRPC (Dolan and Brockett, 2005). A logistic re-
gression classifier is trained on top of (frozen) sen-
tence embeddings produced by different methods.
We follow default configurations from SentEval16.

Table E.1 shows the evaluation results on trans-
fer tasks. We find that supervised SimCSE per-
forms on par or better than previous approaches,
although the trend of unsupervised models remains
unclear. We find that adding this MLM term con-
sistently improves performance on transfer tasks,
confirming our intuition that sentence-level objec-
tive may not directly benefit transfer tasks. We also
experiment with post-processing methods (BERT-

16https://github.com/facebookresearch/
SentEval

https://github.com/bohanli/BERT-flow
https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval
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Model MR CR SUBJ MPQA SST TREC MRPC Avg.

Unsupervised models

GloVe embeddings (avg.)♣ 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Skip-thought♥ 76.50 80.10 93.60 87.10 82.00 92.20 73.00 83.50

Avg. BERT embeddings♣ 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
BERT-[CLS]embedding♣ 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
IS-BERTbase

♥ 81.09 87.18 94.96 88.75 85.96 88.64 74.24 85.83
∗ SimCSE-BERTbase 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81

w/ MLM 82.92 87.23 95.71 88.73 86.81 87.01 78.07 86.64

∗ SimCSE-RoBERTabase 81.04 87.74 93.28 86.94 86.60 84.60 73.68 84.84
w/ MLM 83.37 87.76 95.05 87.16 89.02 90.80 75.13 86.90
∗ SimCSE-RoBERTalarge 82.74 87.87 93.66 88.22 88.58 92.00 69.68 86.11
w/ MLM 84.66 88.56 95.43 87.50 89.46 95.00 72.41 87.57

Supervised models

InferSent-GloVe♣ 81.57 86.54 92.50 90.38 84.18 88.20 75.77 85.59
Universal Sentence Encoder♣ 80.09 85.19 93.98 86.70 86.38 93.20 70.14 85.10

SBERTbase
♣ 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41

∗ SimCSE-BERTbase 82.69 89.25 94.81 89.59 87.31 88.40 73.51 86.51
w/ MLM 82.68 88.88 94.52 89.82 88.41 87.60 76.12 86.86

SRoBERTabase 84.91 90.83 92.56 88.75 90.50 88.60 78.14 87.76
∗ SimCSE-RoBERTabase 84.92 92.00 94.11 89.82 91.27 88.80 75.65 88.08

w/ MLM 85.08 91.76 94.02 89.72 92.31 91.20 76.52 88.66
∗ SimCSE-RoBERTalarge 88.12 92.37 95.11 90.49 92.75 91.80 76.64 89.61
w/ MLM 88.45 92.53 95.19 90.58 93.30 93.80 77.74 90.23

Table E.1: Transfer task results of different sentence embedding models (measured as accuracy). ♣: results from
Reimers and Gurevych (2019); ♥: results from Zhang et al. (2020). We highlight the highest numbers among
models with the same pre-trained encoder. MLM: adding MLM as an auxiliary task with λ = 0.1.

flow/whitening) and find that they both hurt per-
formance compared to their base models, showing
that good uniformity of representations does not
lead to better embeddings for transfer learning. As
we argued earlier, we think that transfer tasks are
not a major goal for sentence embeddings, and thus
we take the STS results for main comparison.

F Distribution of Singular Values

Figure F.1 shows the singular value distribution of
SimCSE together with other baselines. For both
unsupervised and supervised cases, singular value
drops the fastest for vanilla BERT or SBERT em-
beddings, while SimCSE helps flatten the spectrum
distribution. Postprocessing-based methods such
as BERT-flow or BERT-whitening flatten the curve
even more since they directly aim for the goal of
mapping embeddings to an isotropic distribution.

G Cosine-similarity Distribution

To directly show the strengths of our approaches
on STS tasks, we illustrate the cosine similarity dis-
tributions of STS-B pairs with different groups of
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Figure F.1: Singular value distributions of sentence em-
bedding matrix from sentences in STS-B. We normal-
ize the singular values so that the largest one is 1.

human ratings in Figure G.1. Compared to all the
baseline models, both unsupervised and supervised
SimCSE better distinguish sentence pairs with dif-
ferent levels of similarities, thus leading to a better
performance on STS tasks. In addition, we observe
that SimCSE generally shows a more scattered dis-
tribution than BERT or SBERT, but also preserves
a lower variance on semantically similar sentence
pairs compared to whitened distribution. This ob-
servation further validates that SimCSE can achieve
a better alignment-uniformity balance.



6910

0-1

1-2

2-3

3-4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

4-5

Avg. BERTbase

0-1

1-2

2-3

3-4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

4-5

BERTbase-whitening

0-1

1-2

2-3

3-4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

4-5

Unsupervised SimCSE-BERTbase

0-1

1-2

2-3

3-4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

4-5

SBERTbase

0-1

1-2

2-3

3-4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

4-5

SBERTbase-whitening

0-1

1-2

2-3

3-4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

4-5

Supervised SimCSE-BERTbase

Figure G.1: Density plots of cosine similarities between sentence pairs in STS-B. Pairs are divided into 5 groups
based on ground truth ratings (higher means more similar) along the y-axis, and x-axis is the cosine similarity.


