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Abstract
Implicit sentiment analysis, aiming at detect-
ing the sentiment of a sentence without senti-
ment words, has become an attractive research
topic in recent years. In this paper, we focus on
event-centric implicit sentiment analysis that
utilizes the sentiment-aware event contained in
a sentence to infer its sentiment polarity. Most
existing methods in implicit sentiment analy-
sis simply view noun phrases or entities in text
as events or indirectly model events with so-
phisticated models. Since events often trigger
sentiments in sentences, we argue that this task
would benefit from explicit modeling of events
and event representation learning. To this end,
we represent an event as the combination of its
event type and the event triplet <subject, predi-
cate, object>. Based on such event representa-
tion, we further propose a novel model with
hierarchical tensor-based composition mech-
anism to detect sentiment in text. In addi-
tion, we present a dataset1 for event-centric
implicit sentiment analysis where each sen-
tence is labeled with the event representation
described above. Experimental results on our
constructed dataset and an existing benchmark
dataset show the effectiveness of the proposed
approach.

1 Introduction

Sentiment analysis aims at automatically detecting
the sentiment of given text. Explicit sentiment anal-
ysis methods detect the sentiment mainly based
on the occurrence of sentiment-related words and
have been extensively explored (Agarwal et al.,
2011; Tang et al., 2014, 2015a). However, senti-
ment could also be implicitly expressed. For exam-
ple, the sentence ‘I won the first place in the speech

contest’ does not contain any sentiment words, but
the event of ‘winning the first place’ reflects the
positive sentiment. Implicit sentiment analysis was

⇤Corresponding author.
1https://github.com/FloatingIsland2/

Implicit-Sentiment-Analysis

thus proposed to detect sentiment in the absence
of sentiment words (Liu, 2012). Compared with
explicit sentiment analysis, implicit sentiment anal-
ysis is more challenging as there is a lack of explicit
cues for inferring the sentiment polarity.

Research on implicit sentiment analysis can be
broadly classified into two categories: metaphor-
based and event-centric. Metaphor/rhetoric-based
implicit sentiment analysis methods typically de-
tect sentiment based on a metaphoric sentiment dic-
tionary and some manually designed rules (Zhang
and Liu, 2011), while event-centric approaches as-
sume sentiment is triggered by events described
in sentences. Examples include an early approach
which regarded noun phrases or entities in sen-
tences as events (Greene and Resnik, 2009), and
more recent approaches which indirectly model
events by capturing contextual information using
graph convolutional networks (Zuo et al., 2020)
or attention mechanism (Wei et al., 2020). We
argue that in the former, the event representation
is oversimplified and consequently event-related
knowledge would be largely lost; while in the lat-
ter, events are not directly modeled which makes it
less effective in detecting sentiments triggered by
events.

To overcome the limitations of existing event-
centric approaches, we propose to construct
a corpus in which event triplets in the form
of <subject, predicate, object> and
their corresponding types are annotated in sen-
tences. In addition, each sentence is also assigned
with a sentiment class label. An example sentence
and its annotation are shown below:
‘You abandon me for a week to go off on holiday

with daddy, come back and barely 2 days later you

go off out with him again.’
Event triplet: <you, abandon, me>
Event type: abandonment
Sentiment: negative
The event triplet and the event type are combined as
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the final representation of an event. Based on such
event-centered text representation, we further pro-
pose a method for implicit sentiment analysis built
on hierarchical tensor-based compositions, which
effectively employs Tensor Composition (Socher
et al., 2013; Weber et al., 2017) to encode the inter-
action between the subject, the predicate, the object
and the sentence. Moreover, we adopt a multi-task
learning framework to perform event type classifi-
cation and sentiment classification simultaneously.
Our experimental results show that event type clas-
sification benefits sentiment classification.

In summary, our contributions are as follows:

• We propose a novel model with hierarchical
tensor-based compositions to detect sentiment
based on event-centered text representations
to explicitly model events and capture the in-
teraction between the subject, the predicate,
the object and the sentence.

• We further develop a multi-task learning
framework to improve sentiment analysis with
event type classification.

• We present a dataset, called EveSA, with
annotated event triplets, event types, and
sentence-level sentiment polarity labels for
implicit sentiment analysis.

• Our model outperforms several competitive
baselines on both EveSA and SemEval17-
Task4 Subtask A (Rosenthal et al., 2017).

2 Related Work

Implicit Sentiment Analysis Liu (2012) first
classifies sentiment analysis into explicit and im-
plicit sentiment analysis. Generally speaking, im-
plicit sentiment analysis can be further classified
into metaphor-based and event-centric approaches.
In metaphor-based approaches, sentences contain-
ing keywords found in a metaphor dictionary are
considered implicitly expressing positive or nega-
tive emotional tendencies (Zhang and Liu, 2011).
In event-centric approaches, events mentioned in
text may imply positive or negative sentiments. Bal-
ahur et al. (2011) presented an approach for detect-
ing event-triggered sentiment based on common-
sense knowledge, EmotiNet, a knowledge base of
concepts with associated affective value. Greene
and Resnik (2009) used grammatical structures to
mine language features related to implicit senti-
ments, and used similarity calculations to improve
the performance of sentiment classification. Zuo

et al. (2020) proposed a context-specific heteroge-
neous graph convolutional network to address the
problem of the absence of sentiment words.

Event-related Sentiment Analysis In recent
years, researchers also pay attention to the impor-
tance of event information in sentiment analysis.
Deng and Wiebe (2015) encoded a set of sentiment
inference rules in a probabilistic soft logic frame-
work for entity/event-level sentiment analysis tasks.
Hofmann et al. (2020) encoded properties of events
as latent variables following theories of cognitive
appraisal of events to improve emotion classifica-
tion performance. Gaonkar et al. (2020) tracked
label-label correlations through label embeddings
in sentiment classification tasks to maintain the
consistency of emotion caused by the same type of
event. Ding and Riloff (2016) first defined affec-
tive events as triples <subjective, verb, objective>,
and created a dataset containing affective events
with sentiment polarity labels. Ding and Riloff
(2018b) expanded affective events as <subjective,
predicate, objective, prepositional phrase>, and in-
troduced a weakly supervised method for affective
events classification. Ding and Riloff (2018a) cate-
gorized affective events into physiological, health,

leisure, social, financial, cognition, and freedom,
based upon human need related to people’s moti-
vations and desires. Yang et al. (2019) regarded
the topic distribution of a sentence as an implicit
event, and proposed an event-driven attention with
topics of sentences for emotion ranking. Zhuang
et al. (2020) presented a discourse-enhanced self-
training method that iteratively improved the clas-
sifier with unlabeled affective events.

3 Dataset: EveSA

Since the existing sentiment analysis datasets only
contain text and sentiment polarity labels, but no
event-related annotations, we construct an event-
centered dataset for implicit sentiment analysis. We
first identify event types from FrameNet (Baker
et al., 1998) and then crawl tweets which contain
the triggering words of the corresponding event
types.

3.1 Construction of an Event Type Library
FrameNet (Baker et al., 1998) is an English vocab-
ulary knowledge base that contains more than 1200
semantic frames (each frame can be regarded as an
event type) and lexical units (each lexical units can
be regarded as a predicate), and more than 200,000
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labeled sentences under all frames, which can be
used for learning models for NLP tasks such as
information extraction and event detection.

With the FrameNet knowledge base, we build
an event library consisting of event-related compo-
nents: event types, argument roles (subjects and
objects), and event triggers (predicate). Since not
all frames contained in FrameNet are suitable as
event types or have obvious sentiment inclinations,
we define the filtering rules as follows:

• Filter frames that do not contain the subject

and object argument roles;

• Remove frames that contain more than two
arguments to control the complexity of the
events;

• Artificially remove some frames that do not
have sentiments to ensure the selected event
types are balanced in the three sentiment cate-
gories (positive, negative and neutral).

According to these rules, 18 frames are selected
out of a total of 1200 frames in FrameNet as our
identified event types, listed in Table 1. Finally, we
build a dictionary of trigger words for each event
type by only keeping the verb and other lexical
units with no ambiguous word senses as the predi-
cates of each event type.

Event Type Total Positive Neutral Negative

Abandonment 135 37 24 74
Affirm_or_deny 151 29 29 93
Certainty 163 51 21 91
Cause_harm 451 12 61 378
Endangering 100 1 22 77
Expectation 234 99 73 62
Experiencer_focused_emotion 100 63 9 28
Judgement 354 132 49 173
Stimulate_emotion 865 270 60 535
Work 118 80 25 13
Assistance 215 152 31 32
Attention(ignore) 104 8 20 76
Detaching 107 23 39 45
Killing 279 18 16 245
Leadership 160 56 56 48
Offering 112 80 18 14
Supply 158 82 33 43
Theft 175 12 38 125

Total 3981 1205 624 2152

Table 1: Annotated event types and their sentiment
class distributions in our constructed dataset � EveSA.

3.2 Data Collection and Cleaning
We employ tweet_scrapper2 to crawl tweets con-
taining at least one of the trigger words of the event
types identified in Section 3.1. To clean the data,
first, the Python package preprocessor3 is used to
remove the URLs, HashTags, and various emojis
in text. Next, HTTP tokens, other special tokens,
non-English characters, and consecutively repeated
characters are removed from text. Afterwards, each
tweet is processed using CoreNLP4 to obtain the
word segmentation results. Finally, tweets with
more than 40 words are filtered.

3.3 Annotation of Event Triplets and
Sentiment Polarity

Given the word segmentation result of each text
sen = {w1, ..., wi..., wn}, in which n is the sen-
tence length. Two annotators first verify the word
segmentation results. Next, the annotators assign
the event type etype, and mark the position of the
predicate or the event trigger words in the sen-
tence. Afterwards, the arguments are annotated
for each event. The jth argument role under the
event type etype has the following annotations:
argrolej = {wu, wu+1, ...wv}, 0 < j  m, where
m represents the number of argument roles un-
der this etype. Each sentence is also annotated
with event triplets, <subject, predicate,
object> and one of the sentiment categories,
positive, neutral or negative. The independently
annotated results are compared and any inconsis-
tent annotations are resolved through discussions.
The final dataset contains 18 event types and 3,981
sentences, each with an annotated event triplet. De-
tailed data set statistics are shown in Table 1.

4 Model Description

4.1 Problem Setting
Given (1) a sentence sen = {w1, w2, . . . wn} as-
sociated with a sentiment category; (2) its event
triplet < subject: subj =

�
w1, w2, . . . wnsubj

 
,

predicate pred =
�
w1, w2, . . . wnpred

 
, object

obj =
�
w1, w2, . . . wnobj

 
>; and (3) its corre-

sponding event type etype, the task of fact-based
implicit sentiment analysis model is to predict the
sentiment distribution over three sentiment polari-

2https://github.com/5hirish/tweet_
scrapper

3https://github.com/s/preprocessor
4https://stanfordnlp.github.io/

CoreNLP/



6887

ties. We propose an event-centered text representa-
tion model to solve this problem.

4.2 Overview
Traditional sentence-level sentiment analysis in-
fers the sentiment category of a sentence from text
directly. We instead propose to detect the senti-
ment category of a sentence based on its associ-
ated event, the triplet <subject, predicate,
object> and the event-related information apart
from the textual information of the sentence, as
depicted in Figure 1.

Sentence

Sentiment

Event 
Type

Sentiment

(a) (b)

Event

Sentence

Figure 1: (a) Traditional sentence-level sentiment anal-
ysis where sentiment is inferred from text directly. (b)
our event-centered approach in which sentiment is de-
tected based on the event triplet, the event type in addi-
tion to the textual information of the sentence. Z is the
noise introduced to increase sentence diversity.

The overall architecture of our proposed method
is presented in Figure 2. It consists of three
parts. (1) To integrate the event triplet <subject,
predicate, object> with the sentence, hier-
archical tensor-based compositions are employed.
Both event triplet and the sentence are first fed
into a BERT encoder (Devlin et al., 2018). Then
the bottom-level tensor composition (Weber et al.,
2017) is used to obtain the event representation e,
which is further combined with the BERT-encoded
sentence representation by the top-level tensor com-
position to generate the output rfinal. (2) To model
the event type information, a multi-task learning
framework is used to perform event type classifica-
tion and sentiment classification simultaneously,
since in our preliminary experiments, accurate
classification of event types can benefit the sen-
timent classification task. (3) Since the same event
could be described in sentences with diverse sur-
face forms, we assume the BERT-encoded sentence
representation hsen follows a Gaussian distribution
with its mean determined by the event representa-
tion, e, i.e., hsen ⇠ N

�
e,�2

�
. Such a constraint

is added to the loss function to make the sentence
representation in the embedding space to be close
to the learned event representation.

4.3 Hierarchical Tensor-based Compositions
The event triplet input to the BERT encoder
is: [CLS] subject [SEP] predicate
[SEP] object [SEP]. The hidden states
of these three parts are Hsubj 2 RLsubj⇥d,
Hpred 2 RLpred⇥d and Hobj 2 RLobj⇥d, where Lsubj,
Lpred and Lobj are the maximum sequence length of
the subject, predicate and the object, respectively,
and d is the dimension of the BERT hidden states.
After averaging the constituent token embeddings
of each event element separately, the hidden states
of the three parts are hsubj 2 Rd, hpred 2 Rd and
hobj 2 Rd, which are then fed into Tensor-based
Compositions to model the relationship among the
subject, the predicate, and the object.

First, the interaction between the subject and the
predicate, rs_p 2 Rd, is computed as follows:

rs_p = f

✓
hT
subjT

[1:k]
1 hpred +W


hsubj

hpred

�
+ b

◆
(1)

where T [1:k]
1 2 Rd⇥d⇥k is a tensor, which consists

of a set of k matrices, each with d⇥ d dimensions.
The tensor product hTsubjT

[1:k]
1 hpred is a vector r 2

Rk, and each entry is computed by one slice of
tensor T1: ri = hTsubjT

[1:k]
1 hpred , (i = 1, · · · , k).

Other parameters are trainable in a standard feed-
forward neural network, where W 2 Rk⇥2d is
the weight matrix, b 2 Rk⇥k is the bias vector.
The calculation diagram of Tensor Composition is
shown in Figure 3:

Similarly, to compute the interaction between the
predicate and the object, rp_o 2 Rd is computed
by:

rp_o = f

✓
hT
predT

[1:k]
2 hobj +W


hpred

hobj

�
+ b

◆
(2)

Finally, the interaction between the subject and the
object is calculated by rs_p and rp_o of the second
layer in Tensor-based Compositions, with its output
regarded as the event representation e:

e = f

✓
rTs_pT

[1:k]
3 rp_o +W


rs_p
rp_o

�
+ b

◆
(3)

The sentence hsen 2 Rd is encoded with BERT.
To better fuse the event representation e with the
contextual information in the sentence, we model
their interaction in the same way, using Tensor-
based Composition, to derive the final representa-
tion rfinal:

rfinal = f

✓
eTT [1:k]

4 hsen +W


e
hsen

�
+ b

◆
(4)
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Figure 2: The event-centered text representation model with hierarchical tensor-based compositions.

b+subj

T pred W

+

subj

pred

Tensor Composition

Figure 3: Diagram of Tensor Composition.

4.4 Multi-task Learning with Event Type
Classification

Since each sentence in our dataset is annotated with
an event type and a sentiment polarity category, we
use a multi-task learning framework to make use of
event type information in sentiment classification.
Two tasks, event type classification and sentiment
classification, share the same encoder and hierar-
chical Tensor-based Compositions. The event type
classifier applies e to generate the event distribu-
tion, while the sentiment classifier uses the final
representation rfinal to compute the sentiment dis-
tribution.

The event type classification loss Le is defined
as:

Le = � 1
N

NX

i=1

EX

e=1

ye
i log p (ce | xi) (5)

where N and E denote the total number of training
examples and event types respectively, p (ce | xi)
is the predicted probability of the i-th example xi
belonging to class ce, and yei is the ground truth
label.

The sentiment classification loss Ls is defined
in a similar way except that K denotes the total
number of sentiment categories, which is 3 in our

dataset:

Ls = � 1
N

NX

i=1

KX

s=1

ys
i log p (cs | xi) (6)

The multi-task framework is trained by minimiz-
ing the cross entropy loss of event classification Le

and sentiment classification Ls.

4.5 Constraint of Sentence-Event Similarity
Since the same event can be described in sentences
with different surface forms, we assume that the
sentence representation follows a Gaussian distri-
bution with its mean determined by the event rep-
resentation: hsen ⇠ N

�
e,�2

�
, where the variance

� can be computed based on the output of hierar-
chical Tensor-based Compositions.

� = MLP (rfinal) (7)

We design a loss function to encourage the sen-
tence representation to be cloase to the event repre-
sentation, based on the probability density function
of the Gaussian distribution:

Lsim =
1
T

X

t

1
2�2

t

khsen � ek2 + 1
2
log �2

t (8)

where log �2
t is a variance regularization term that

prevents the module from predicting too large vari-
ance �.

Finally, the combined loss function is defined as
follows:

L = �eLe + �sLs + �simLsim (9)

where �e, �s, and �sim are hyperparameters con-
trolling the relative contribution of the respective
loss term.
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5 Experiments

5.1 Datasets and Evaluations
To evaluate our proposed approach, we conducted
experiments on the following two corpora: EveSA,
the dataset we presented in Section 3 for Event-
driven Sentiment Analysis, and SemEval17 Task4
(Rosenthal et al., 2017). The SemEval-2017 Task
4 Subtask A aims to identify the overall sentiment
of a tweet. The data was first cleaned by removing
the hashtags, user mentions, irregular phrases and
abbreviations. The original dataset does not have
the annotations of event triplets. Existing event
extraction models are mainly trained on the ACE
2005 dataset (Grishman et al., 2005), where trig-
gers and arguments of news events are quite differ-
ent from that of personal social events mentioned in
the dataset. Therefore, we used a Semantic Role La-
beling model (He et al., 2017) to extract a predicate
from each sentence and mark its subject and object
manually. We manually checked more than 20,000
tweets in this dataset, and retained 7,117 tweets
which contain the full event triplets <subject,
predicate, object>.

Category Dataset

EveSA SemEval17 Task4

Positive 1205 3247
Neutral 624 2001
Negative 2152 1869

Total 3981 7117

Table 2: Statistics of the datasets.

The statistics of the two corpora used in our
experiments are shown in Table 2. It should be
noted that since we use the SRL model instead of
event extraction model to annotate the SemEval 17
Task 4 dataset, there are no event types annotated.
Thus the multi-task learning module is skipped in
the experiments on this dataset.

For both EveSA and SemEval17 Task4, we em-
ploy accuracy and weighted-F1 as evaluation met-
rics. The weighted-F1 is computed by:

F1weighted =

PN
i=1 weighti ⇥ F1i

N
(10)

where N is the total number of class categories,
and weighti represents the weight of the i-th class
category, which is the distribution of the i-th class
in the training set.

5.2 Implementation Details
We implement the models in Pytorch 1.4.0. The
BERT encoder is fine-tuned in the training process.
The dimension of the hidden states is 768 and the
batch size is 32. Number of matrices in tensor com-
positions are set to 100. The number of epochs is
5. Le, Ls and Lsim are set to 5, 1, and 1, respec-
tively. The loss function is minimized using Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 1e � 5 and a dropout rate of 0.1. All the
parameters are chosen based on a validation set
which is 20% of their respective training set.

5.3 Compared Methods
Since our model takes both event and sentence
as input, we compare the proposed model with
baselines taking three kinds of inputs:

Sentence as input Models in this category take
a tweet (i.e., a sentence) as input:
BiLTSM (Schuster and Paliwal, 1997): A bidirec-
tional LSTM neural network with GloVe embed-
dings (Pennington et al., 2014) for word sequence.
BERT (Devlin et al., 2018): The state-of-the-art
model for sentiment classification. We limit the
sentence length to the last 40 tokens to allow a
larger batch size. We use BERT-base due to the
memory limit of our GPU.
BiLSTM+ orthogonalAtt (Wei et al., 2020): A re-
cently proposed implicit sentiment analysis model
with bidirectional LSTM neural network with
BERT encoder and orthogonal attention.

Event triplet as input Models in the category
take the event triplet in the form of <subject,
predicate, object> as input:
The first two baselines, BiLSTM and BERT, take
the concatenated words in subject, predicate and
object as an input sequence.
NTN (Weber et al., 2017): A neural network with
tensor-based compositions with subject, predicate
and object in event triplet as inputs. We use GloVe
embeddings(Pennington et al., 2014) for the word
sequence.
BERTNTN: An NTN model with BERT as an en-
coder, using fine-tuned BERT to get hidden states
of the word sequence.

Sentence and event triplet as input Models in
this category consider both the input sentence and
the extracted event triplet:
BERTNTN + Att (Vaswani et al., 2017): Built
upon BERTNTN, the sentence is also encoded
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Input Model
EveSA SemEval17 Task4

acc P R F1 acc P R F1

Sentence
BiLSTM 0.5670 0.4463 0.5670 0.4915 0.5864 0.5697 0.5864 0.5704
BERT 0.7297 0.7260 0.7297 0.7239 0.7584 0.7530 0.7584 0.7528
BiLSTM + orthogonalAtt 0.7459 0.7372 0.7459 0.7361 0.7563 0.7605 0.7563 0.7580

Event

BiLSTM 0.5645 0.4557 0.5645 0.4790 0.5414 0.5288 0.5414 0.4914
NTN 0.6047 0.5622 0.6047 0.5570 0.5400 0.5504 0.5440 0.5035
BERT 0.6438 0.6272 0.6438 0.6297 0.6163 0.6197 0.6163 0.6128
BERTNTN 0.6754 0.6546 0.6754 0.6438 0.6233 0.6175 0.6233 0.6164

Sentence + Event

BERTNTN + Att 0.7419 0.7321 0.7419 0.7316 0.7547 0.7522 0.7547 0.7531
BERTNTN � sentence 0.7519 0.7569 0.7519 0.7307 0.7590 0.7578 0.7590 0.7582
BERTNTN � sentence +Att 0.7293 0.7260 0.7293 0.7180 0.7583 0.7549 0.7583 0.7555
BERTNTN + Event Embedding 0.7218 0.7059 0.7218 0.7047 - - - -

Ours (Sentence + event)
HTC + Sen-Event 0.7569 0.7486 0.7569 0.7494 0.7716 0.7700 0.7716 0.7690
HTC + MTL+ Sen-Event 0.7657 0.7596 0.7657 0.7605 - - - -

Table 3: Overall accuracy and weighted-F1 results.

with BERT. The results of NTN serves as queries,
and hidden states of the sentence are keys and val-
ues to get the final attention output.
BERTNTN � sentence: The event triplet and the
sentence are fed into a BERT encoder. Then the
BERT-encoded hidden state of the subject, predi-
cate and object is concatenated with the sentence
separately. The three concatenations are then fed
into NTN.
BERTNTN � sentence + Att: On the basis of
BERTNTN � sentence, the final attention output
is obtained similar to BERTNTN + Att.
BERTNTN + Event Embedding (Tang et al.,
2015b): Similar to BERTNTN + Att, each event
type has its randomly initialized event embedding,
similar to deriving user embeddings.

Due to the lack of event type labels in Se-
mEval17 Task4, we are unable to conduct experi-
ments using models making use of event types.

Experimental results on two corpora are shown
in Table 3. It can be observed that: (1) The pro-
posed model performs remarkably better than other
baselines across all input categories and on all
evaluation metrics, including a recently proposed
implicit sentiment analysis model, which verifies
the effectiveness of our model in capturing events
that evoke sentiments in sentences. (2) Event rep-
resentation in the form of event triplet leads to
improved performance in sentiment classification,
as evidenced by the lower performance of BERT
(using sentence as the only input) compared to
that of BERTNTN + Att and BERTNTN � sen-

tence (encoding both sentence and event triplet). It
should be noted that models using event triplets as
the only input, such as BERT (using event triplet
concatenation as input) and NTN give inferior re-
sults because the sentence contextual information
is not modeled. (3) Event type, the extra anno-
tated information in our dataset EveSA, plays a
vital role in joint sentiment and event type predic-
tion, since HTC + MTL+ Sen-Event outperforms
HTC + Sen-Event.

5.4 Ablation Study
To validate the effectiveness of components in our
approach, we performed ablation experiments on
two corpora, and showed the ablation results in
Table 4 and Table 5, respectively.

BERT only takes the sentence input, while
BERTNTN only uses the event triplets as input.
Event � sentence concatenates the outputs of
BERT and BERTNTN for classification. HTC,
MTL and Sen_Event refer to hierarchical tensor-
based compositions, multi-task learning with event
type classification and the constraint of sentence-
event similarity component, respectively. The full
model are HTC + MTL + Sen_Event for EveSA,
and HTC + Sen_Event for SemEval17 Task4.

It can be observed that using event triplets as
input only (BERTNTN) gives the worst results.
BERT trained on tweets directly improves upon
BERTNTN quite substantially. Simply combin-
ing outputs from BERT and BERTNTN performs
worse than BERT. Using the hierarchical tensor
compositions (HTC) is more effective in encod-
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EYHQW < VXbMHcW, SUHdLcaWH, RbMHcW > EYHQW T\SH SHQWHQcH BERT ĺ OXUV 

< TKH ZaWHUIURQW, RIIHUV, XQSaUaOOHd 
YLHZV RI WKH KaUbRU aQd HRQJ KRQJ 
IVOaQd > 

OIIHULQJ [S1] TKH ZaWHUIURQW KHUH RIIHUV XQSaUaOOHd YLHZV RI WKH KaUbRU aQd HRQJ 
KRQJ IVOaQd. 

QHX ĺ SRV 

< LW, abaQdRQHd, b\ LWV RULJLQaWRUV > AbaQdRQPHQW [S2] TKHUH ZHUH, XOWLPaWHO\, VRPH ILQdLQJV WKaW ZHUH dLVWLQcWO\ 
LQcRPSaWLbOH ZLWK WKH WKHRU\ aQd LW ZaV abaQdRQHd b\ LWV RULJLQaWRUV. 

QHX ĺ QHJ 

< MRVW RI ZKaW WKH JRYHUQPHQW dRHV, 
VHUYLQJ, WKH SXbOLc 'V ZLOO > 

AVVLVWaQcH 
[S3] IW LVQ'W aV HaV\ WR VXPPaUL]H IHdHUaO UHJXOaWLRQ aV LW LV WR VXPPaUL]H 
IHdHUaO VSHQdLQJ , bXW WKH baVLc SRLQW LV VLPLOaU: MRVW RI ZKaW WKH 
JRYHUQPHQW dRHV LV acWXaOO\ VHUYLQJ , QRW RSSRVLQJ , WKH SXbOLc 'V ZLOO . 

QHX ĺ SRV 

< US DHSaUWPHQW RI EQHUJ\ UHSRUW, 
SUHdLcWHd, RXWSXW > 

E[SHcWaWLRQ [S4] A US DHSaUWPHQW RI EQHUJ\ UHSRUW KaV SUHdLcWHd RXWSXW WR ULVH IURP 
890 PLOOLRQ WRQQHV WR 1,240 PLOOLRQ WRQQHV LQ WKH QH[W 20 \HaUV. 

QHX ĺ SRV 

< HH, aIILUPHd, KLV VXSSRUW IRU WKH QHZ 
IRXUWK cOaXVH RI WKH cRURQaWLRQ RaWK > 

AIILUP_RU_dHQ\ [S5] HH LV VaLd WR KaYH aIILUPHd KLV VXSSRUW IRU WKH QHZ IRXUWK cOaXVH RI 
WKH cRURQaWLRQ RaWK aW WKLV WLPH. 

QHJ ĺ SRV 

< KH, UHYHUHd, b\ WKH SXUUHaOLVWV > JXdJPHQW [S6] IQ WKH TZHQWLHV , KH ZaV aQ LQVSLUaWLRQ WR WKH \RXQJ PXUaOLVWV DLHJR 
RLYHUa aQd JRVH COHPHQWH OUR]cR aQd ZaV UHYHUHd b\ WKH SXUUHaOLVWV . 

QHJ ĺ SRV 

Figure 4: Case study of example classification outputs by BERT and our model. The event information including
event triplet and event type is also shown. Instances incorrectly predicted by BERT but correctly predicted by our
approach are selected. The last column, “BERT ! Ours", shows the prediction of BERT vs. the prediction of our
approach.

Model acc P R F1

BERT 0.7297 0.7260 0.7297 0.7239

BERTNTN 0.6754 0.6546 0.6754 0.6438

Event � sentence 0.7206 0.7174 0.7206 0.7125

HTC 0.7494 0.7459 0.7494 0.7425

HTC + MTL 0.7594 0.7530 0.7594 0.7509

HTC + Sen_Event 0.7569 0.7486 0.7569 0.7494

HTC + MTL + Sen_Event 0.7657 0.7596 0.7657 0.7605

Table 4: Ablation results of EveSA.

Model acc P R F1

BERT 0.7584 0.7530 0.7584 0.7528
BERTNTN 0.6233 0.6175 0.6233 0.6164
Event � sentence 0.7456 0.7416 0.7456 0.7370
HTC 0.7639 0.7641 0.7639 0.7638
HTC + Sen_Event 0.7716 0.7700 0.7716 0.7690

Table 5: Ablation results of SemEval 2017.

ing both sentence contextual information and event
triplets, outperforming BERT. Multi-task learning
further improves the performance of HTC. Finally,
the combination of all three components (or the
two components without MTL for SemEval 2017)
described Section 4 achieves the best results on the
datasets.

5.5 Case Study
To further analyze whether the event information
is the key factor to evoke sentiment, and to provide
interpretable results for the prediction of our event-

centered text representation model, we compare
the classification results of our proposed method
with the results of BERT through a case study. The
former employs both event and sentence as fea-
tures, while the latter achieves state-of-the-art in
sentence-level text classification without consider-
ing events which trigger sentiments expressed in
text. Concrete descriptions of cases are shown in
Figure 4 in which we show the instances that BERT
fails to predict while ours gives correct results.

It can be seen from the examples [S1] to [S4]
that in the absence of sentiment words, BERT tends
to classify sentences as neutral. On the contrary, by
utilizing event representations and jointly perform-
ing event type classification and sentiment analysis,
our model benefits from emotional semantics con-
tained in event triplets such as <Most of what the

government does, serving, the public’s will > and
the event type Assistance, and achieves better re-
sults in such sentences with implicitly expressed
emotions. [S5] and [S6] are examples misjudged
by BERT as negative but are correctly classified
by our method. It can be observed that the event
information is indeed helpful in implicit sentiment
analysis.

6 Conclusion

In this paper, we propose a novel approach for fact-
based implicit sentiment analysis, mainly for the
situation where a sentence contains no sentiment
words but only event descriptions. Our model em-
ploys event information, including the event triplets
and event types as features, and detects sentiment
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based on event representations learned with hierar-
chical tensor-based compositions. Moreover, we
present a dataset with event annotations for implicit
sentiment analysis. Experimental analysis demon-
strates that both event triplets and event type ben-
efit implicit sentiment classification. Our current
approach assumes that events have already been
extracted from text. Future research will explore
automated event extraction in order to perform end-
to-end implicit sentiment analysis.
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