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Abstract

Timeline Summarization identifies major
events from a news collection and describes
them following temporal order, with key dates
tagged. Previous methods generally generate
summaries separately for each date after they
determine the key dates of events. These
methods overlook the events’ intra-structures
(arguments) and inter-structures (event-event
connections).  Following a different route,
we propose to represent the news articles
as an event-graph, thus the summarization
task becomes compressing the whole graph
to its salient sub-graph. The key hypothesis
is that the events connected through shared
arguments and temporal order depict the skele-
ton of a timeline, containing events that are
semantically related, structurally salient, and
temporally coherent in the global event graph.
A time-aware optimal transport distance is
then introduced for learning the compression
model in an unsupervised manner. We show
that our approach significantly improves the
state of the art on three real-world datasets,
including two public standard benchmarks
and our newly collected Timeline,oq dataset. !

1 Introduction

Timeline summarization (Chieu and Lee, 2004; Yan
et al., 2011a,b; Binh Tran et al., 2013; Tran et al.,
2013, 2015; Nguyen et al., 2014; Wang et al., 2016;
Martschat and Markert, 2018; Steen and Markert,
2019) aims at generating a sequence of major news
events with their key dates from a large collection
of related news from multiple perspectives (see
Figure 1 for an example). The timeline summariza-
tion task poses several challenges to existing Natu-
ral Language Processing (NLP) techniques: (1) In
contrast to multi-document summarization (MDS)
dealing with tens of documents (Fabbri et al., 2019),

!The programs, data and resources are publicly available
for research purpose in https://github.com/limanling/
event-graph-summarization.

it summarizes hundreds of long documents, which
requires the model to efficiently maintain a joint
representation of the entire news collection, so that
the summary has its coverage and coherence opti-
mized globally. (2) The summary is expected to
select key dates and capture the temporal interde-
pendency across key stories, which, compared to
standard MDS, poses additional challenges in re-
constructing temporal order. (3) Manual labeling
of timeline summaries is costly; thus the labeled
data for model training is very limited.

As a result, previous studies (Martschat and
Markert, 2018; Steen and Markert, 2019) usually
take an unsupervised approach. Specifically, these
methods first identify the key dates from the pub-
lication time distribution. Then for each key date
and its associated news articles, a summary is gen-
erated based on the salient sentences measured by
the inter-similarity of these articles. In these meth-
ods, the document representations are limited to
local text features, ignoring the global context of
the news collection. The applications of neural
models, especially advanced pre-trained language
models, such as BERT (Devlin et al., 2019a) and
GPT-2 (Budzianowski and Vuli¢, 2019), are re-
stricted in terms of both representation capacity
and memory efficiency when handling the global
context within such input document size.

We propose an event graph representation along
with compression to deal with the representation
difficulties in global graph contextualization, scal-
ability, and time-awareness. Our solution consists
of the following key ideas.

(1) Event graph construction for multi-doc
encoding: With state-of-the-art Information
Extraction (IE) systems (Lin et al., 2020),
we construct a single event graph from the
input documents, with co-referential entities
(e.g., house, mansion in Figure 1) and co-
referential events (e.g., die, collapsed) merged
across documents. Our comprehensive event
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Extractive Summarization

Figure 1: Timeline summarization based on event graph compression. The example is a partial timeline about the
investigation on Dr Conrad Murray for the death of Michael Jackson, describing that Michael Jackson is found
unconscious and Dr Murray traveled with him to hospital and started to be interviewed by police. We use green
triangles to denote events, and grey circles stand for entities. Italics represents the raw text mention extracted.
Black bold arrows represent the temporal order between events, and grey arrows are event-entity argument edges
and entity-entity relation edges. Coreferential events and entities are merged across documents. Faded nodes are
events being removed during summarization. In this example, we show the transport of node pairs (i, j) and (i, k)

to the node pair (i’, ') in the summary graph.

graph connects events through temporal order
(e.g., interview ——"%,raid), shared arguments (e.g.,

called_ toﬂ)paramedzcsMcall), and related
LOCATED-IN
hospital Los

arguments (e.g., rravel 1%
interview). The graph

AFFILIATION . PARTICIPANT
police

structure enables the model to capture global long-
distance inter-dependency between events across
documents.

(2) Unsupervised event graph compression with
optimal transport (OT): We propose a new for-
mulation of timeline summarization, by selecting
event nodes from the input graph to form a smaller
summary graph. Under a certain summary size con-
straint, a summary graph with high coverage has a
small information loss, compared to the one with
low coverage (Filatova and Hatzivassiloglou, 2004).
We constrain the total number of event nodes to be
kept in the summary, and optimize the summary
graph to be close to the original graph using opti-

Angeles

mal transport. The training objective is to find the
optimal transport plan between input and summary
graph that has the minimal transport distance. Fig-
ure 1 shows an example of transporting node pairs
in the input graph to the node pair (die, interview)
in the summary graph. (die, interview) receives rel-
atively large mass during the graph transport since
it has small distance with multiple node pairs in
the input graph, such as (die, speak). To obtain the
minimal distance with only m events to be kept,
a global decision is learned to select salient but
also diverse events. The summary graphs are gen-
erated using a differentiable compression model
according to a hyperparameter of compression rate,
instead of using annotated timelines. Thus, our
objective allows model training in an end-to-end
unsupervised way.

(3) Time-aware Gromov-Wasserstein distance:
The distance between two graphs should capture
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the following criteria: i) Semantic relevance:
each node first has its initial /ocal context encoded
via a pre-trained BERT model and node type em-
beddings. For example, STARTPOSITION event is
not closely related to the TRANSPORT event in Fig-
ure 1 though they have temporal dependencies. ii)
Structural centrality: we employ a graph neural
network to maintain a global context embedding
by encoding the global structure topology, which
enables the events of high node centrality to gather
comprehensive information from neighbors. For
example, although both are MEET events, inter-
viewed (by police) is more structurally salient than
speak. It encodes the information not only from its
neighbor events such as raid, but also from long-
distance neighbors such as travel (to hospital) via
the aforementioned argument paths. iii) Tempo-
ral coherence: we define time-aware Gromov-
Wasserstein distance over the temporal edges, and
introduce a temporal regularizer to enlarge the dis-
tance between events that have wide time gap, such
as the BORN and INJURE events in Figure 1, so that
the temporal coherence can be captured. It enables
the model to select temporally salient events that
have temporal dependencies with multiple events
in the news collection. Also, timeline summariza-
tion is sensitive to temporal ordering, such that the
TRANSPORT (traveling in ambulance) before DIE
in Figure 1 is more important to the story than the
TRANSPORT (releasing body) after DIE. Hence,
we distinguish the before and after events in the
distance computation.

(4) New benchmark: Considering the current
timeline summarization benchmarks are limited to
certain topics, we collect a new dataset Timelinegg
with more testing samples and wider topic cover-
age. Experiments on three datasets show that our
approach is significantly better than the baselines.

2 Method

2.1 Overview

Our approach aims at finding the graph that has
minimal distance from the input graph (Filatova
and Hatzivassiloglou, 2004), so that when only a
limited number of nodes is selected, the summary
graph can have menial information loss. Optimal
transport is solving this exact problem by finding
the best transport plan that has a minimal distance
between two graphs. To apply optimal transport
to timeline summarization, the key is to design the
distance to evaluate the information loss, and thus

we propose time-aware optimal transport distance.

Figure 1 gives an overview of our approach. It
first extracts an event graph G from input docu-
ments. We then encode the graph and perform
graph compression to compress G to its summary
graph S. Our time-aware optimal transport is ap-
plied to train the graph encoder and compression
model, with the goal of keeping events that are
semantically related, structurally salient, and tem-
porally coherent.

2.2 Event Graph Construction

The event graph is a heterogeneous graph G,
where nodes are events {v;} and entities {e;},
and edges contain event-event temporal order-
ing edges {(v;, v;)}, event-entity argument edges
{(vi,a,e;)}, and entity-entity relation edges
{(ej,r, er)}. We list all the notations in Table 1.

Symbol |Meaning

G | An input event graph from input documents

n \The number of event nodes in G

S ‘A summary event graph (a subgraph)

m | The number of event nodes in S

10} \A mapping function from a node to its type

w ‘A mapping function from a node to its mentions
v | An event node in an event graph

e \An entity node in an event graph

(vi, 1) ‘A temporal ordering edge (v; happens after v;)

An argument edge (the entity e; plays argument
role a in event v;)

(vi, a, ;)

An entity relation edge between e; and ey, and

(e5,m ex) r is the relation type

Table 1: List of symbols.

We apply OnelE (Lin et al., 2020), a state-of-
the-art Information Extraction (IE) system, to ex-
tract entities, relations and events; then perform
cross-document entity and event coreference res-
olution (Pan et al., 2015, 2017; Lai et al., 2021)
over the document cluster of each timeline topic.
We apply (Ning et al., 2019) to extract temporal
relations for events in the same paragraph or having
shared arguments. For example, clashes happen
before wound given the sentence fifty wounded are
reported in the clashes. To obtain the date of each
event, We extract and normalize time expressions
using publication date (Manning et al., 2014), and
then apply (Wen et al., 2021) to extract the event
temporal attributes from the context. If the tem-
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poral attributes can not be decided according to
the context, we propagate the temporal attributes
from neighbor events based on their shared argu-
ments (?). After that, we use the document pub-
lication date to populate the remaining missing
dates. For example, in Figure 1, the date 2009-06-
25 of the collapse (DIE) event is extracted from
context last Thursday, and the date of the uncon-
scious (INJURE) event is propagated along with
their shared argument Michael Jackson.

2.3 Time-Aware Optimal Transport (OT)

Optimal Transport. We aim to generate the sum-
mary graph S that has minimal OT distance with
the input graph G, such that

D(G,S) =ming T © C,

where © represents the Hadamard product. T' €
R’™ denotes the transport plan, learned to opti-
mize a soft node alignment between two graphs.
Namely, each node in GG can be transferred to mul-
tiple nodes in S with different weights. We use T;;/
to denote the amount of mass shifted from node
i in the input graph G to node 7’ in the summary
graph S, as shown in Figure 1. C' € R™*™ is the
cost matrix of event nodes between two graphs.
Time-Aware OT Distance. Considering that event
graphs are heterogeneous graphs, and timeline sum-
marization is sensitive to temporal dependencies
between events, we define the Gromov-Wasserstein
Distance (Xu et al., 2019) on temporal edges to cal-
culate distance between pairs of nodes within two
graphs, i.e., (i,7) in G and (i’, j') in S:

D(G,S) = min Z Z Ty Tyy|Cij — Curyr -

i,je€G i ,5'€S

Figure 1 shows an example of transporting edges
(i,7) in the input graph to (i, /) in the summary
graph. The cost |C;; — Cy ;| evaluates the intra-
graph structural similarity between two pairs of
nodes (i, ) in G and (i, j') in S. To capture the
direction of temporal ordering, we parameterize
different matrices to distinguish the before and after
nodes:

Cij = [Weivi — Waw;j [l2 —Q(ti, t5).

In this way, although travel in Figure 1 and release
are both TRANSPORT events connecting with the
DIE event, they are distinguished during distance
calculation. Here, v; and v; are the node represen-
tations and we want them to capture the semantic

relevance, structural salience and temporal coher-
ence. As aresult, we design an event graph encoder
later in §2.4 from these three aspects.

Temporal Regularizer. The OT distance between
events should also capture temporal coherence. For
example, in Figure 1, BORN event and INJURE
event have large time gap, so that there should be
a large distance between them, although they have
direct connections in the graph. As a result, we use
a regularizer §)(t;,t;) to penalize events that have
a large time difference ¢; — t;:

b
M = e

where 3 € (0, 1] is a hyper-parameter.

2.4 Event Graph Encoder

In order to calculate the time-aware optimal trans-
port distance, we encode both the input event graph
and the summary graph to obtain the node rep-
resentations, which capture text semantics, graph
structures and preserves the temporal information.
Semantics Encoding. To capture the local text se-
mantics of an entity e or an event v, we apply the
pre-trained BERT (Devlin et al., 2019b) to initial-
ize a contextualized embedding w using its text
mentions. We use the average representation for
nodes having multiple mentions, and concatenate
it with the node type embedding ¢, which is initial-
ized by BERT using the type name. The frequency
of events has been proven effective and critical to
timeline summarization (Martschat and Markert,
2018). As a result, we add the number of its text
mentions |w| to capture the event frequency in the
news collection:

v = [wv;qbv;‘wvuae: [we;¢e;|we”7 (D

where [; ] denotes concatenation operation.

Graph Encoding. After that, we employ an edge-
wise graph neural network to contextualize all the
nodes with their global graph contexts. We first
generate edge type representation a and r by en-
coding the edge type name using pre-trained BERT,
and temporal edge representation t is encoded us-
ing name “before”. The message passed through
an argument edge (v;, , e;) is:

m; j = ReLU [(W, [(v; — ej);al).

The messages of relation and temporal edges are
similar, by replacing a with r and . We aggregate
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the messages using edge-aware attention follow-
ing (Liao et al., 2019),

Oéi,j = O'(MLP(UZ' — Uj)),

where o denotes sigmoid function. We adopt a

two-layer MLP with ReLLU as activation funtion.
The event node representation v; is then updated

using the messages from its local neighbors N (v;):

v; <~ GRU <[’Uz’; Z N )ai,jmi,jD ;
J Vi

similar to entity node representations.

Date Distribution Encoding. To encode the date
distribution, for each event v; with date ¢;, we con-
catenate the above node representation v; with the
number of documents published on ¢;, the number
of events happening on ¢;, and the number of event
text mentions attached to ¢; in local context. It en-
ables the OT distance to capture the corpus-level
date salience.

2.5 Differentiable Graph Compression

To get a summary graph with m event nodes 2, we
apply an event graph compression matrix M &
R™ ™ following (Ma and Chen, 2021),

As=MTA-M,

where Ag € R™*™ is the temporal edge adjacency
matrix of event nodes in G, with Ag € R™*™
for S similarly. For timeline summarization task,
the parametrization of M has two requirements:
(1) M is differentiable to enable end-to-end train-
ing; (2) we want to guarantee that the nodes in
the summary graph are originally from the input
graph (due to our extractive summarization goal),
so we follow (Ma and Chen, 2021) to directly se-
lect nodes as summary nodes according to their
weights o € R™*1:

a=c(AVW,)

Here, A € R™ " is the normalized graph adja-
cency matrix defined in graph convolutional net-
works (Kipf and Welling, 2017), V' € R™*4 is the
node feature matrix, and W, € R is a parame-
ter vector. o is the sigmoid function.

We pick the top m values of a and list them in
the sorted order, denoted by ay € R™*!. Simi-
larly, A, € R™™ ig the column-sorted and picked

2We only compress the event nodes since that the key

for timeline summarization is salient event selection, while
arguments are used to capture the distance between events.

version of A. Then the compression matrix M can
be finally defined as

M = {;-row-normalize[ A, ® (1al)],
where 1 means a column vector of all ones.

2.6 Training Objective

The optimal T" that solves D (G, S) = ming TOC
can be approximated by a differentiable Sinkhorn-
Knopp algorithm (Sinkhorn, 1964; Cuturi, 2013)
following (Xu et al., 2019; Ma and Chen, 2021),

T = diag(p) exp(—C/v) diag(q),

where p € RTI and q € RT“. The solu-
tion 1" can be computationally obtained by using
Sinkhorn’s algorithm. Starting with any positive
vector g to perform the following iteration:

for + =0,1,2,...until convergence,
P =10 (Kq),
qi+1 =10 (KTpH—l),

where © denotes element-wise division. A com-
putational T can be obtained by iterating a finite
number k times,

T* .= diag(p®) K diag(q").

The parameterization of the graph compression
step and Sinkhorn-Knopp algorithm are differen-
tiable, so we can optimize our time-aware optimal
transport distance between two graphs in an end-
to-end manner.

The advantage of our approach is that the train-
ing process is unsupervised, since the summary
graph is generated automatically under the con-
straint of the hyperparameter m, i.e., the number
of event nodes in the summary graph. The model
parameters include those for the graph encoder
(capturing semantic relevance, structural centrality
and time salience), the transport distance matrix
(capturing temporal coherence), the compression
model (selecting top ranked nodes in a differen-
tiable manner), and the transport plan (making a
global decision to obtain minimum distance). They
are optimized jointly to minimize the distance be-
tween the generated graph and the input graph.

2.7 Extractive Summarization

During summarization, the event summary graph
is generated by selecting m events according to
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the event weights a, where m is a hyperparame-
ter decided by the expected compression rate. To
maintain the diversity of the temporal dimension
following (Martschat and Markert, 2018), we set a
maximum event constraint to select no more than k
events for each date. In detail, if the event number
of one date reaches the limitation, the remaining
events of that date will be ignored in the ranking
list o, and only events happening on other dates
can be selected to the summary graph. For each
date, k is decided by the date distribution (i.e., the
number of events happening on each date), as well
as the compression rate hyperparameter.

Finally, for each event v € Vg in the summary
graph, we extract an event summary sentence, i.e.,
the source sentence with the maximum event cov-
erage.’ The event summaries are ordered by dates
to form the timeline. The event summaries on the
same date are merged following the events’ tempo-
ral orders with topological sort (Manber, 1989).

3 Experiment

3.1 Experimental Settings

Datasets. The evaluation is conducted on three
datasets. Timeline;7 (Tran et al., 2013) and Cri-
sis (Tran et al., 2015) are two widely used timeline
summarization datasets. Timeline;; contains 17
topics, and each topic has 1-3 ground-truth time-
lines, resulting in 19 timelines in total. Crisis has
5 topics and each topic has 4-7 ground-truth time-
lines, with 22 timelines annotated in total. We use
all 19 and 22 timelines as references, and calculate
the average scores following previous work.

To explore the robustness of our event graph
compression for different scenarios, we also collect
a new larger dataset Timeline;gp containing 100
timelines from news websites including VoA* and
Reuters’. The timelines are written by journalists
and are manually curated. The dataset covers
various topics related to the economy, military, edu-
cation, etc. The input documents for each timeline
are selected using BM25 (Robertson et al., 1995).
For each dataset, we construct input event graphs

3We select the events with highest temporal attribute ac-
curacy if there is a tie. The events with temporal attributes
extracted directly from the context are of highest priority, fol-
lowed by events having temporal attributes propagated from
neighbor events in §2.2, and then the ones using document
publication date.

*https://wwconw.voanews . com

Shttps://www.reuters.com

following §2.2. © We use the ACE event ontology’,
with 7 entity types, 6 relation types, 33 event types,
and 22 argument roles. For the (unsupervised) train-
ing of our event graph compression model, we use
event graphs constructed from VoA news between
2011 and 2017 (Li et al., 2020a). The statistics are
shown in Table 2.

Dataset Split #Doc #Event #Entity #Rel
Timeline,, . mput 4,650 74,320 115,585 136,509
7 Timeline 19 974 1,936 1,134
Crisis Input 20,463 325,695 551,228 610,410
Timeline 22 736 1,184 1,309
Timeline,,  1mPut  10.379 178,581 301,132 306,975
10 Timeline 100 3,206 8,901 23,732
Unlabeled Input 72,576 913,679 381,735 1,046,066
(for OT)  Timeline - - - -

Table 2: Data statistics, including the number of docu-
ments, events, entities, and temporal relations.

Evaluation Metrics. We use the conventional met-
rics for timeline summarization (Martschat and
Markert, 2018) to evaluate the key date selection
using Date F; and the content generation using
ROUGE scores, including (1) concat F; to com-
pute ROUGE by concatenating the summaries of
all selected dates; (2) agree F; to compute ROUGE
only between the summaries which have the same
dates; (3) align F; to first align summaries in the
output with those in the reference based on sim-
ilarity and the distance between their dates, then
compute the ROUGE score between aligned sum-
maries. Distant alignments are punished.

Baselines. We compare with: (1) (Chieu and Lee,
2004), a typical extractive model based on sentence
similarity; and (2) (Martschat and Markert, 2018),
the state-of-the-art extractive timeline sumarization
model based on submodular functions. (3) Pac-
Sum (Zheng and Lapata, 2019), the state-of-the-art
unsupervised graph-based ranking summarization
baseline, which utilizes BERT to encode sentences
for sentence centrality ranking in a sentence graph.
We use the publication date of the selected sentence
as key dates. (4) SummPip (Zhao et al., 2020), the
state-of-the-art unsupervised multi-document sum-
marization baseline, which constructs a sentence
graph and performs spectral clustering. After that,
a summary is generated for each sentence cluster

®The preprocessed event graphs are released together with
the dataset.

"https://www.ldc.upenn.edu/collaborations/
past-projects/ace
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Concat F; Agree Fy Align Fq Date

Dataset Model R-1 R-2 R-1 R-2 R-1 R2 | F
Chieu and Lee (2004) 0.223  0.049 | 0.024 0.008 | 0.046 0.012 | 0.195
Martschat and Markert (2018) | 0.364  0.087 | 0.092 0.021 | 0.103 0.024 | 0.543
Timeline Zheng and Lapata (2019) 0.231 0.054 | 0.029 0.012 | 0.035 0.013 | 0.173
7| Zhao et al. (2020) 0.242 0.057 | 0.028 0.009 | 0.030 0.007 | 0.158
Optimal Transport 0.370  0.089 | 0.092 0.020 | 0.103 0.024 | 0.550
w/o temporal regularizer 0.369 0.087 | 0.091 0.018 | 0.101  0.025 | 0.545
Chieu and Lee (2004) 0.348 0.065 | 0.026 0.006 | 0.047 0.010 | 0.146
Martschat and Markert (2018) | 0.333  0.071 | 0.056 0.012 | 0.076  0.015 | 0.288
Crisis Zheng and Lapata (2019) 0.144 0.017 | 0.004 0.001 | 0.008 0.001 | 0.077
o Zhao et al. (2020) 0.124  0.016 | 0.004 0.001 | 0.007 0.001 | 0.069
Optimal Transport 0.348 0.074 | 0.058 0.012 | 0.079 0.015 | 0.291
w/o temporal regularizer 0.348 0.073 | 0.056 0.011 | 0.076 0.014 | 0.290
Chieu and Lee (2004) 0.127 0.028 | 0.011 0.003 | 0.017 0.004 | 0.138
Martschat and Markert (2018) | 0.257  0.060 | 0.016 0.005 | 0.021 0.007 | 0.290
Timeline Zheng and Lapata (2019) 0.219 0.045 | 0.011 0.002 | 0.016 0.005 | 0.151
1% 1 Zhao et al. (2020) 0.196  0.034 | 0.011 0.02 | 0.017 0.004 | 0.158
Optimal Transport 0.278 0.067 | 0.017 0.005 | 0.023 0.008 | 0.295
w/o temporal regularizer 0.279  0.067 | 0.015 0.004 | 0.021 0.007 | 0.292

Table 3: Performance on timeline summarization. R-1 and R-2 represents ROUGE-1 and ROUGE-2, respectively.

by multi-sentence compression, and we use the
most frequent publication date of the sentences in
the cluster as key dates. (5) “w/o temporal regular-
izer”, an ablation study by removing the temporal
regularizer in the OT distance. ®

Training Details. The dimension of contextual em-
bedding, type embedding, and edge embedding are
768. 5 s 0.5. v is 1. The ratio of event nodes kept
after compression m is determined based on the
ratio of input graph size and summary graph size
of the dataset. We use 0.05 for Timeline;; dataset,
0.005 for Crisis dataset, and 0.05 for Timeline; g
dataset °. Due to the large size of input graphs,
we first compress the subgraph extracted from
each publication date following the hard cutoff
of (Martschat and Markert, 2018), and then com-
press the graph of the entire corpus. The graph
compression model is trained on one Tesla V100
GPU with 16GB DRAM.

3.2 Quantitative Performance

As shown in Table 3, our method outperforms
baselines on all three datasets. Event graph con-
nects events through entities and temporal relations,
which enables capturing the correspondence be-
tween events, and excludes unrelated events. Gen-

8For fair comparison, our baselines focus on unsupervised
methods that can produce key dates, which excludes text word
graph based models and pretrained langauage model based
generation models due to lack of temporal dimensions.

“We choose m based on three times of reference compres-
sion rates to allow comprehensive information being kept.

eral multi-document summarization and text graph
based summarization cannot capture the temporal
dimension, so the performance is especially low
on date F, agree F; and align F;. All Concat F,
scores are significantly different from baselines
with p value less than 0.05.

Removing the temporal regularizer results in a
consistent performance drop on date F1, showing
that our time-aware OT helps select events that are
temporally coherent.

We achieve larger gains compared to baselines
on Crisis dataset, which has larger input graph
size and compression rate according to Table 2. It
proves the effectiveness of our event graph on en-
coding a large number of documents and perform
effective summarization. Compared to Timeline;7,
the performance gain on Timeline;gg is larger,
which cover more scenarios. It demonstrates the
robustness of our event graph compression method.

3.3 Qualitative Analysis

Figure 1 shows an example of generated timeline
comparing with the reference timeline and the best
performing baseline (Martschat and Markert, 2018).
The number of dates selected by the baseline is
larger compared to our approach, which demon-
strates that our approach can better detect salience
of dates. We think this is because we take ad-
vantage of event graphs to capture the events that
are temporally salient. For example, our approach
avoids the dates that do not have associated salient
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events, such as 2009-06-26. Also, our temporal at-
tributes are more comprehensive and accurate due
to the attribute propagation through shared argu-
ments. For example, the dates of unconscious and
travel in Figure 1 are propagated from the die event
via the shared argument Michael Jackson.

Compared to the baselines, our approach keeps
more events in the summary (highlighted in green
in Figure 1), while the baseline may produce a sum-
mary without events included, e.g., the summary
of 2009-06-29.

Compared to the reference timeline, our model
is shown to successfully detect the salient events
in the graph compression process. Although the re-
lease event has connections to multiple events, it is
not semantically relevant to other events, and thus it
will not receive a large mass during the transporta-
tion. The speak event is not strongly connected
to other nodes, and it is semantically close to in-
terview, which will not be selected in the global
decision of the optimal transport plan. Similarly,
the born event is omitted due to its large time gap
with other events, and the hire event is excluded
since it is not semantically related to other events.
More examples are included in the Appendix.

3.4 Human Evaluation

We follow previous work (Steen and Markert, 2019)
to do a scoring-based evaluation. We instruct the
human annotators to read 15 randomly sampled
reference timelines, and rate summaries generated
by our system and baselines on a 1-5 point scale
(1 is the worst and 5 is the best). We provide refer-
ence timelines as the gold standard to annotators,
instead of providing the input news collection. It
is because that each timeline contains hundreds of
long documents as input, making it hard to judge
coverage and control scoring standards of multiple
annotators. As the evaluation is scoring-based, we
only ask one annotator to score all timelines of each
topic to guarantee the same scoring standard. The
order of annotating timelines is random, and the
annotators have no knowledge about the order of
the systems. Each timeline annotation takes around
thirty minutes.

The timelines are evaluated in the following di-
mensions: (1) general score: the general quality
of the timeline; (2) coverage score: the events that
are covered by the timeline; (3) coherence score:
the coherence of the story; (4) temporal preserving
score: the selection of key dates. Table 4 shows

that our approach gets better results on all four
measures, proving that our model is reasonable to
find semantically relevant, structurally salient and
temporally coherent events.

Concat ROUGE_1 ~— Compression Rate of Ground Truth Timeline
- Ours

0.37 06 _ Baseline
0.370 0.369

0.36
0.362 0.45

0/360
0.34 03
0.33

0.329
0.32

0.15

|

0.31

0.03 0.04 0.05 0.06 0.07

mj_bbc

h1n1_reuters

finan_washingtonpost

bpoil_washingtonpost

g;uardian
hin1_bbc
bpoil_bbc
haiti_bbc

bpoil_reuters

libyawar_cnn
iraqwar_guardian
bpoil_guardian
bpoil_foxnews

egyptianprotest_cnn

The performance on Concat ROUGE_1
using different compression rates
( m = compression_rate * input_event_num)

libyawar_reuters
hint

syriancrisis_reuters
syriancrisis_bbc

Figure 2: Analysis about compression rates.

3.5 Discussions

Generation Length. Previous work on timeline
summarization (Chieu and Lee, 2004; Martschat
and Markert, 2018) relies on the reference time-
line to decide the compression parameters, such as
the overall length or the number of days. In our
model, the number of nodes to be kept is decided by
the hyperparameter m. Following previous work,
we choose m based on the reference compression
rate, i.e., the ratio of the event nodes in reference
summary to the input event nodes, as detailed in
§3.1. Figure 2 shows the relevance between the
performance and compression rate.

Compression Rate. The summarization perfor-
mance is affected by the compression rate of the
reference summary. Figure 2 shows that our model
achieves larger gains compared to baselines on the
timeline with higher reference compression rates,
demonstrating that our model is able to effectively
select salient events for a large input corpus.

Timeline Topics. Figure 2 shows that the compres-
sion rates do not have correlations with timeline
topics, and our performance gains compared to
baselines are not closely related to timeline topics,
proving the robustness of our method.

Input Graph Size. When generating timelines for
the same complex event BP Oil Spill, as shown in
Table 5, the performance gain is generally increas-
ing with respect to the input graph size. It proves
the effectiveness of our model on selecting salient
information from large graphs.
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Model

\ General \ Coverage Coherence Temporal Preserving

Chieu and Lee (2004) 2.4
Martschat and Markert (2018) 3.2
Optimal Transport 39

1.4 2.5 1.4
2.7 34 2.6
29 3.7 2.8

Table 4: Human evaluation on a scale of 1-5 (1 is the worst and 5 is the best).

.. R Graph| Concat ROUGE_1
Topic: BP Oil Spill Size | Ours Baseline A
bpoil_washingtonpost | 2582 [0.232 0.223  +0.009
bpoil_guardian 2744 10.566 0.536 +0.029
bpoil_bbc 2972 |0.464 0459 +0.004
bpoil_foxnews 3032 |0.341 0.328 +0.014
bpoil_reuters 3488 |0.326 0.279 +0.047

Table 5: Analysis on the size of input event graph.

4 Related Work

Multi-Document Summarization. Graph-based
MDS methods (Barzilay et al., 1999; Erkan and
Radev, 2004; Haghighi and Vanderwende, 2009;
Ganesan et al., 2010; Banerjee et al., 2015; Ya-
sunaga et al., 2017; Fabbri et al., 2019; Liu and La-
pata, 2019; Wang et al., 2020; Huang et al., 2020)
are closely related to timeline summarization but
cannot be directly applied, due to the lack of tem-
poral dimensions.

Timeline Summarization. Due to the lack of
training data, timeline summarization focuses on
extractive methods with heuristics (Chieu and Lee,
2004; Yan et al., 2011a,b; Binh Tran et al., 2013;
Tran et al., 2013, 2015; Nguyen et al., 2014; Wang
et al., 2016; Martschat and Markert, 2018), with a
few abstractive methods (Steen and Markert, 2019;
Chen et al., 2019; Ansah et al., 2019) that require
a few gold summaries to work. They both fail to
capture the rich event structures and ignore the
temporal orders between events. We are the first
to use optimal transport on summarization task to
select semantic relevant, structurally salient and
temporally coherent events.

Graph Representation of Documents. In general
NLP research, people have built various text graphs
by augmenting original text sequences with differ-
ent hidden structural information, such as entity-
centric graphs for efficient joint-encoding of large
corpora (Wu et al., 2021; De Cao et al., 2019; Ding
et al., 2019; Asai et al., 2020; Min et al., 2019;
Das et al., 2019). Event graphs from a single
document have been built for event schema induc-
tion (Li et al., 2018, 2020b), event coreference
resolution (Phung et al., 2021; Zeng et al., 2021),

etc. However, they ignore relations between event
arguments, or only use hierarchical or temporal
relations to connect events. Also, cross-document
entity coreference and event coreference resolution
are critical for large corpora understanding, while
previous work focuses on a single document. Our
approach is unique in building event-centric graphs
across documents, with rich argument and temporal
information.

5 Conclusions and Future Work

We propose a novel event graph compression frame-
work for timeline summarization and achieve state-
of-the-art on multiple real-world datasets. Our us-
age of event graphs allows for efficient joint en-
coding of a large number of documents; and our
proposed time-aware optimal transport allows un-
supervised training of the entire framework. Future
work includes extending our approach to abstrac-
tive summarization, and adding subevent relation
to hierarchically generate the timeline.
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A Example Output

Method | Example Output

Reference 2011-02-18

Libyan state television shows images of men chanting pro-Gadhafi slogans , waving
flags and singing around the Libyan leader ’s limousine as it creeps through Tripoli .
In Benghazi , human rights groups and protesters claim they ’re under attack by pro-
government security forces . Among the tens of thousands of protesters who take to the
streets , at least 20 people are killed and 200 are wounded , according to medical sources .
2011-02-19

Protests continue to turn violent , however the death and injury toll is unclear .

In Benghazi , witnesses report bloody clashes with soldiers firing tear gas and bullets .
Witnesses say protests have erupted in cities across the country .

Human Rights Watch reports that 84 people have been killed in Libyan demonstrations
since February 15 .

2011-02-20

Violence surges in Benghazi where a witness says protesters have taken control of the
city and much of Tripoli . Gadhafi ’s son Saif al-Islam Gadhafi appears on state television
to warn demonstrators that the country could fall into civil war if their protests do not
subside .

2011-02-21

The Libyan newspaper Quryna reports that the country ’s justice minister has resigned to
protest what he calls a ““ bloody situation and use of excessive force ” by security forces
against protesters.

Chieu and Lee (2004) 2011-02-21

By the CNN Wire Staff Libya protests spread to Tripoli State Department has ordered
the evacuation of all non-essential personnel The Obama administration is stressing the
need to avoid violence against protesters Gadhafi ’s son has warned of a possible civil
war if protesters do not back down Washington ( CNN ) — The United States on Monday
condemned the violence in Libya and called for a halt to the ”” unacceptable bloodshed ”
in response to civil unrest , Secretary of State Hillary Clinton said in a statement .

Martschat and Markert (2018) | 2011-02-15

Protests began February 15 in the eastern city of Benghazi , Libya ’s second largest .
Witness says square in Benghazi is full of protesters , but there is little sign of police or
military Tanks surrounded demonstrators in Benghazi , a protester says 50 reportedly
killed since Tuesday , 20 of them Friday U.S. president condemns the government
crackdowns in Libya , Bahrain and Yemen ( CNN ) — At least 20 people were killed and
200 more were injured Friday in the northern Mediterranean city of Benghazi , Libya s
second-largest , said a medical source in Benghazi who was not identified for security
reasons .

2011-02-21

Among other things , Washington was taking a close look at a speech early Monday by
Saif al-Islam Gadhafi — the Libyan leader ’s son — which included warnings of a civil war
if demonstrations in the North African country do n’t stop . The United States on Monday
condemned the violence in Libya and called for a halt to the ”” unacceptable bloodshed ”
in response to civil unrest , Secretary of State Hillary Clinton said in a statement .

Ours 2011-02-16

Source : Several people arrested after police confronted protesters in Benghazi , Libya .
2011-02-18

An Iranian opposition member warns that street protests could lead to civil war ““ Nastaran
” warns that protests are strengthening Iran ’ s Revolutionary Guard and pro - government
militia.

2011-02-19

A Libyan woman supportive of the protesters , who was not identified to protect her
safety , told CNN that army soldiers on Saturday initially claimed solidarity with the
demonstrators , only to reverse their tack and open fire on the crowd .

Three of those injured are in critical condition , the sources said .

While Human Rights Watch , citing interviews with hospital staff and witnesses , reported
84 deaths since Tuesday , the total number is unknown and could n ’ t be independently
confirmed by CNN .

2011-02-20

Protests continue to turn violent , however the death and injury toll is unclear .

Table 6: Example Output. The event triggers are highlighted in red. The date seletion and event node coverage
of our method are much higher compared to baselines.
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