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Abstract

We propose to control paraphrase generation
with carefully chosen target syntactic struc-
tures to generate more proper and higher qual-
ity paraphrases. Our model, AESOP, lever-
ages a pretrained language model and pur-
posefully selected syntactical control via a
retrieval-based selection module to generate
fluent paraphrases. Experiments show that AE-
SOP achieves state-of-the-art performances on
semantic preservation and syntactic conforma-
tion on two benchmark datasets with ground-
truth syntactic control from human-annotated
exemplars. Moreover, with the retrieval-based
target syntax selection module, AESOP gener-
ates paraphrases with even better qualities than
the current best model using human-annotated
target syntactic parses according to human
evaluation. We further demonstrate the effec-
tiveness of AESOP to improve classification
models’ robustness to syntactic perturbation
by data augmentation on two GLUE tasks.

1 Introduction

Syntactically-controlled paraphrase generation,
which aims to generate paraphrases that conform
with given syntactic structures, has drawn increas-
ing attention in the community. On the one hand,
paraphrase generation has benefited a wide range
of NLP applications, such as neural machine trans-
lation (Yang et al., 2019), dialogue generation (Gao
et al., 2020), as well as improving model robust-
ness (Huang et al., 2021) and interpretability (Jiang
et al., 2019). On the other hand, syntactically-
controlled paraphrasing has been used for diverse
question generation (Yu and Jiang, 2021), diversi-
fying creative generation (Tian et al., 2021) and
improving model robustness (Iyyer et al., 2018;
Huang and Chang, 2021).

However, selecting suitable target syntactic struc-
tures to control paraphrase generation for diverse
and high-quality results is a lesser explored direc-
tion. Prior works usually use a fixed set of syntactic

AESOPWhat to say?
How to guide paraphrasing?
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Figure 1: Given a source sentence, AESOP selects tar-
get syntactic parses adaptively to guide paraphrase gen-
eration. Paraphrases here are all generated by AESOP,
which preserve the semantics from source sentences
and conform with the selected syntactic parses.

structures for all input sentences (Iyyer et al., 2018;
Huang and Chang, 2021). A challenge with this
method is that not all sentences can be paraphrased
into the same set of syntactic structures. For exam-
ple, it is impossible to turn a long sentence with
multiple clauses into a noun phrase. Thus, Chen
et al. (2019b) proposed to use crowd-sourcing to
collect exemplars that can provide compatible syn-
tax with the source sentence to guide generation.
Disadvantages with this method are that the crowd-
sourcing process is costly, and one exemplar sen-
tence can only provide a specific syntactic guid-
ance, while there are many syntactic parses that
can properly guide the paraphrase generation (as
shown in Figure 1).

In contrast, we propose to automatically se-
lect multiple syntactic parse structures to con-
trol paraphrase generation for more diverse and
higher quality generation. Our first contribution
is the proposal of AESOP (Adaptive Syntactically-
Controlled Paraphrasing), a model that integrates
pretrained Language Models (LMs) with a novel
retrieval-based target syntactic parse selection mod-
ule to control paraphrase generation. By lever-
aging the expressiveness of pretrained LMs and

mailto:jiaosun@usc.edu
mailto:xuezhema@usc.edu
mailto:violetpeng@cs.ucla.edu


5177

ROOT

S

NP VP .

DT

JJ

this is nice

VBZ ADJP

.

H=2

H=3

H=4

(ROOT (S (NP ) (VP ) (. )))

(ROOT (S (NP (DT )) (VP (VBZ ) (ADJP )) (. )))

(ROOT (S (NP (DT )) (VP (VBZ ) (ADJP (JJ ))) (. )))

H=2

H=3

H=4

Figure 2: Prune a constituency parse tree at heights H.

the adaptive selection module, AESOP is capa-
ble of generating fluent and syntactically-diverse
paraphrases. With ground-truth target syntactic
parses from human-annotated exemplars, AESOP
achieves the state-of-the-art performance on both
semantic preservation and syntactic conformation
metrics. By human evaluation, we show that AE-
SOP can generate paraphrases with even better
quality than the current best model using human an-
notated exemplars, which points out the importance
of studying the adaptive target parse selection for
future works on controlled paraphrase generation.

Our second contribution is the construction of
two datasets containing adversarial examples with
syntactic perturbation generated by AESOP that
are further validated and labeled by crowd work-
ers. Experiments show that the two datasets are
challenging to current classification models, and
using AESOP to augment the training data can ef-
fectively improve classification models’ robustness
to syntactic attacks.1

2 Task Formulation

We formulate the task of adaptive syntactically-
controlled paraphrase generation as: given an input
sentence X , find a set of proper syntactic controls
Y to generate paraphrases Z, such that Z’s syntax
conforms to Y while retaining the semantics of X .

We use the term target syntactic parses to refer
to the syntactic structure that guides the generation,
which could be from exemplar sentences, a set of
fixed templates, or our adaptive selection module.

1Data and code can be found at https://github.
com/PlusLabNLP/AESOP

Algorithm 1 Adaptive Target Parse Selection
Input: source parse at level H: TH

s ; all (source parse, target
parse) combinations in the training data {(TH

s1 , TH
t1 ), ..., (T

H
sn,

TH
tn)}; frequencies for each combination {F1, ..., Fn}.

Output: k target parse TH
t

1: for i ∈ {1, 2, ..., N} do
2: calculate the similarity score S of (TH

s , TH
i )

3: end for
4: m parses with highest S with TH

s : {T
′H
s1 , ..., T

′H
sm}

5: for T
′H
si ∈ {T

′H
s1 , ..., T

′H
sm} do

6: // freq. distribution of possible target parses for T
′H
si

7: sample k/m target parses for T
′H
si by distribution

8: end for

3 AESOP: Adaptive Syntactically-
Controlled Paraphrasing

AESOP has two components: i) a retrieval-based
module that adaptively selects a set of target syn-
tactic parses to guide the paraphrase generation;
ii) an encoder-decoder architecture that leverages
BART (Lewis et al., 2020) to generate paraphrases.

3.1 Adaptive Target Syntactic Parse Selection

In AESOP, we propose a retrieval-based strategy
to select target syntactic parse adaptively (i.e., Al-
gorithm 1). For a given syntactic parse of source
sentence pruned at heightH (as shown in Figure 2),
denoted as TH

s , we aim to find k suitable target
syntactic parses to guide the generation. First, we
collect (source sentence X , paraphrase Z) pairs
from the training data. Then, we prune X and Z’s
constituency parse trees at heightH simultaneously
and get corresponding (TH

s , TH
t ) pairs. By count-

ing, we have the frequencies of all unique paired
combination of pruned source parses with target
syntactic parses from their paraphrases, as {(TH

s1 ,
TH
t1 ), ..., (T

H
sn, TH

tn )}.

Ranker. For a pruned source parse TH
s , we cal-

culate the similarity between TH
s and all other

unique parses at height H in the training data
{TH

1 , ..., T
H
i , ...T

H
N }, where N is the number of

unique parses pruned at level H . We linearize both
TH
s and TH

i as constituency parse strings and calcu-
late their similarity score S by calculating weighted
ROUGE scores (Lin, 2004) between parse strings:

S(TH
s , TH

i ) = a∗ROUGE1+b∗ROUGE2+c∗ROUGEL. 2

(1)

Retriever. We rank and get m parses that have
the highest similarity scores with TH

s , denoted as

2Empirically, we use 0.2, 0.3, 0.5 for a, b, c.

https://github.com/PlusLabNLP/AESOP
https://github.com/PlusLabNLP/AESOP
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by his side crouched a huge black wolfish dog

source sentence by his side crouched a huge black wolfish dog.

source full syntactic parse (ROOT (S (PP (IN by) (NP (PRP$ his) (NN side))) (VP (VBD crouched) (NP (DT a) (JJ huge) (JJ black) (JJ wolfish) (NN dog))) (. .)))

ROOT

S

PP VP .

NP NPIN VBD

.by

PRP$ NN DT JJ NNJJ JJ

a hugeblack doghis side couched wolfish

Target 
Parse 

Retriever

... ...

H=2 

(ROOT (S (PP ) (VP ) (. )))

source parse tree

encoder

<sep>source sentence

decoder

...

paraphrase

a huge black wolfish dog squatted down beside him.(ii) AESOP Model Architectureground-truth target syntactic parse
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target syntactic 
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(ROOT (S (S) (.))) there was a huge, wolf like 
dog lying next to him .

(ROOT (S (NP ) (VP ) (. 
)))

a large black wolf dog was 
lying next to him .

(ROOT (NP (NP ) (. ))) a large, black, wolf like 
dog lay beside him .

source full syntactic parse

target syntactic parse

target syntactic parse

Ranker

(i) Adaptive Target Syntactic 
Parse Selection Module

Figure 3: AESOP Framework. With a source sentence as input, AESOP has i) a retrieval-based selection module
that adaptively chooses a set of target syntactic parses as control signals, together with ii) an encoder-decoder
architecture to generate fluent paraphrases. With ground-truth target syntactic parses from exemplars, AESOP
leverages the syntactic information at different heights from exemplars to guide the generation.

{T ′H
s1 , ..., T

′H
sm}. Then, for each parse T

′H
si , we re-

trieve all possible target syntactic parses from pair-
wised parse combinations from the training data.
For each combination, we count how many time it
occurs in the training data. For one certain combi-
nation with its occurrence frequency #(T

′H
si , T

H
t ),

we divide its frequency over the sum of frequencies
for all possible target syntactic parses for T

′H
si and

get a list of frequency ratios. We use the ratio distri-
bution as probabilities to select k/m target syntac-
tic parses TH

t for each of m parse T
′H
si as shown in

Equation 2, which results in k (= m ∗ k/m) target
syntactic parses in total.

TH
t ∼ P (TH

t |T
′H
si ) =

#(T
′H
si , T

H
t )∑N

j=1#(T
′H
si , T

H
tj )

. (2)

In our later experiments, we use the ranker in
Equation 1 to retrieve top-tanked target syntactic
parses and their corresponding paraphrases. Using
the two-step strategy instead of ranking all syntac-
tic parses based on similarity, we aim to find di-
verse target syntactic parses suitable for the source
sentence. We use the weighted sampling strategy
rather than directly choose the most frequently oc-
curred combinations to take care of compatible
combinations that occur less in a specific dataset.

3.2 Architecture of AESOP

AESOP takes as inputs the source sentence X , its
full syntactic parse TS and target syntactic parse(s)
Y , and generates as outputs a paraphrase Z of X
together with a duplication of the target parse Y .
Specifically, given source sentences X , we tok-
enize and get their constituency-based parse trees3,
denoted as Ts (shown as source parse tree in Fig-
ure 3). Similar to previous works (Iyyer et al.,
2018; Chen et al., 2019a; Kumar et al., 2020), we
linearize the constituency parse tree to a sequence
(shown as source full syntactic parse in Figure 3).

To utilize the encoder-decoder BART (Lewis
et al., 2020) model for syntactic-controlled para-
phrase generation, we propose an effective design
of having source sentence<sep>source full syntac-
tic parse<sep>target syntactic parse as the input
sequence for the encoder. The output sequence
from the decoder is the sequence of target syntactic
parse<sep>paraphrase. We will showcase the effi-
ciency of our model design in Section 4 and provide
a visual interpretation that AESOP successfully dis-
entangles the semantic and syntactic information
in Section 5. During training, we get gold target
syntactic parses directly from parallel-annotated
paraphrases.

3We used Stanford CoreNLP toolkit (Manning et al.,
2014).
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Model BLEU↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑ TED-R↓ TED-E↓

QQP
-Pos

source-as-output 17.2 51.9 26.3 52.9 31.1 16.2 16.7
exemplar-as-output 16.8 38.2 20.5 43.2 17.6 4.8 0.0

CGEN (Chen et al., 2019a) 34.9 62.6 42.7 65.4 37.4 6.7 6.0
SGCP-F (Kumar et al., 2020) 36.7 66.9 45.0 69.6 39.8 4.8 1.8

SGCP-R (Kumar et al., 2020) 38.0 67.6 45.3 70.0 24.8 6.6 5.7

AESOP-H2 36.8 67.1 43.8 69.0 42.2 8.0 8.6
AESOP-H3 43.4 71.3 50.9 73.1 46.5 6.7 7.0

� AESOP-H4 47.3 73.3 54.1 75.1 49.7 5.6 5.6
AESOP-F 40.5 69.6 49.3 72.0 43.8 4.8 1.9

Para
NMT
-small

source-as-output 18.8 50.6 23.2 47.7 28.8 12.0 13.1
exemplar-as-output 3.3 24.4 7.5 29.1 5.9 6.0 0.0

CGEN (Chen et al., 2019a) 13.6 44.8 21.0 48.3 24.8 6.7 3.3
SGCP-F (Kumar et al., 2020) 15.3 46.6 21.8 49.7 25.9 6.1 1.4

SGCP-R (Kumar et al., 2020) 16.4 49.4 22.9 50.3 28.8 8.7 7.0

AESOP-H2 20.7 51.4 27.1 53.1 30.6 8.7 9.5
AESOP-H3 21.3 53.0 28.3 55.2 31.9 7.5 7.2
� AESOP-H4 22.9 54.4 29.8 56.4 32.7 6.9 5.7
AESOP-F 20.4 52.0 27.8 55.3 30.0 6.1 1.9

Table 1: Performance comparison with ground-truth syntactic control. With coarse syntactic control from shal-
low height of pruning, AESOP started to outperform the current state-of-the-art model SGCP. �AESOP-H4
outperforms SGCP across all semantic preservation (BLUE, ROUGE Scores and METEOR) and syntactic con-
formation metrics (TED-R and TED-E). ↑ means higher is better, while ↓ means lower is better. With the full
syntactic parse (-F), AESOP achieves its best controllability, which is comparable to previous best performance.
source-as-input and exemplar-as-output are for quality check purpose and not for comparison.

In our setting, we train separate models using
pruned trees of target parses at different heights
H . During inference, the target syntactic parses are
either from exemplar sentences, fixed templates or
our adaptive selection module.

4 Paraphrase Generation with Syntactic
Control

We train and evaluate AESOP on ParaNMT-
small (Chen et al., 2019b) and QQP-Pos (Kumar
et al., 2020). Our train/dev/test split follows previ-
ous work (Kumar et al., 2020). During our experi-
ments, we aim to answer three research questions:

• Q1: Will AESOP conform with the syntactic
control while preserving the semantics, given
ground-truth target parses? (Section 4.1, Table 1)

• Q2: Can AESOP generate fluent paraphrases
with the adaptive target parse selection module
when ground-truth target parses are unavailable?
(Section 4.2, Table 2)

• Q3: Does the adaptive selection module produce
high-quality target parses? (Section 4.3, Table 3)

Baselines. For supervised models that utilize ex-
emplar sentences to get target parses, we compare
with CGEN (Chen et al., 2019a) and two versions

of SGCP (Kumar et al., 2020): SGCP-R and SGCP-
F. SGCP prunes constituency parse trees of exem-
plar sentences from height 3 up to 10. During the
evaluation, SGCP-R chooses the best paraphrase
out of many, and SGCP-F uses the full parse tree.
To the best of our knowledge, SGCP-R is the cur-
rent state-of-the-art model under this setting. For
models that utilize a fixed set of target syntactic
parses, we compare with SCPN (Iyyer et al., 2018)
that proposes 10 syntactic parses at height 2 to
guide the generation.

4.1 Ground-truth Syntactic Control

To answer Q1, we evaluate AESOP on both
datasets with ground-truth target syntactic parses
from exemplar sentences.

Experiment Setup. First, we get the con-
stituency parse trees of exemplar sentences. Then,
we remove all leaf nodes (i.e., tokens in the sen-
tences) from the constituency parse trees to pre-
vent any semantics propagating from exemplar sen-
tences into generation. We further prune the parse
trees of exemplars at different heights to get dif-
ferent levels of syntactic specifications. Techni-
cally, the deeper we prune the parse tree, the more
fine-grained syntactic information the model can
use. Practically, it is less likely to provide fine-
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Model BLEU↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑ TED-E@2↓ Valid@100↑ Votes↑

QQP
-Pos

SGCP-R 38.0 67.6 45.3 70.0 24.8 0.8 41.0 19.3

SCPN 14.9 45.9 20.9 48.1 25.4 0.7 32.0 15.3
AESOP-static 18.5 52.5 27.6 52.0 30.6 2.5 57.0 28.3
� AESOP 24.6 56.2 31.5 57.6 32.8 1.1 61.0 37.0

Para
NMT
-small

SGCP-R 16.4 49.4 22.9 50.3 28.8 0.7 30.0 12.0

SCPN 12.1 35.7 15.1 32.9 23.3 0.5 54.0 30.0
AESOP-static 14.4 46.0 20.5 46.5 25.5 2.9 62.0 22.0
� AESOP 15.0 47.0 21.3 47.3 26.1 2.6 68.0 36.0

Table 2: Performance of AESOP without ground-truth target parse. Valid@100 is the validity check for the best
paraphrases of first 100 test instances, and Votes is the percent of received votes for a paraphrase from one model
to be the best among 4 models. Human evaluation indicates AESOP generate even better-quality paraphrases than
the current best model SGCP that uses the human-annotated target syntactic parse from exemplars.

grained target syntactic parses. For example, it is
easy to provide a target syntactic parse at height
2 containing a verb phrase and a noun phrase as
(ROOT(S(NP)(VP)(.))), but it is hard to pro-
vide more fine-grained syntactic information even
for experts. In AESOP, we try to use the syntac-
tic information from exemplar sentences as shal-
low as possible. We train separate models by us-
ing target syntactic parses from pruning the con-
stituency parse tree of paraphrases at heights 2,
3 and 4.4 Correspondingly, we denote them as
AESOP(-H2/H3/H4). During evaluation, we only
use the target syntactic parse from the exemplar
sentences at that corresponding height.

Evaluation Metrics. We evaluate the quality of
paraphrases with: 1) alignment-based metrics to
examine the semantics preservation: including
BLEU (Papineni et al., 2002), ROUGE scores (Lin,
2004) and METEOR (Iyer et al., 2016) between
the generated paraphrase and gold paraphrase. 2)
syntactic conformation metrics: Tree-Edit Dis-
tances (TED) scores (Zhang and Shasha, 1989)
between the constituency parse trees of generated
paraphrases versus exemplar sentences (TED-E)
and parallel-annotated paraphrases (TED-R).

Quality Check. We use source sentences and
exemplar sentences to check the quality of the
datasets in Table 1. Using the source sentences as
paraphrases will lead to high semantic preservation
scores, but they have distinct syntactic structure
with paraphrases, so TED-R scores are poor. On
the other hand, exemplar sentences have distinct
semantics with both the source sentences and para-
phrases, which lead to poor semantic-preservation

4Implementation details are in Appendix A.1.

metrics. From TED-R scores, we can see that the
tree-edit-distance between parse trees of exemplar
sentences and paraphrases is low but not 0. It in-
dicates that the quality of such human-annotated
exemplar sentences are good yet imperfect.

Experiment Results. Table 1 shows the perfor-
mance comparison. Unsurprisingly, the deeper we
prune target syntactic parse from exemplars, AE-
SOP gets more syntactic information to achieve
better controllability. With full target syntactic
parse tree, AESOP achieves its best syntactic con-
trollability, which is comparable to previous best
performance. On the other hand, AESOP outper-
forms SGCP-R in semantic-preservation metrics
by only using coarse syntactic information from
height 2 (AESOP-H2) for ParaNMT-small and
height 3 (AESOP-H3) for QQP-Pos. With more
syntactic information, AESOP-H4 outperforms the
current state-of-the-art SGCP-R in both semantics
preservation and syntactic conformation metrics. It
showcases AESOP’s great ability of syntactically-
controlled paraphrase generation.

4.2 Adaptive Target Parse Selection

To answer Q2, we evaluate AESOP without anno-
tated exemplars. By having SGCP-R in our experi-
ments, we aim to evaluate if AESOP can generate
even better paraphrases compared to the current
best model with human-annotated exemplars.

Experiment Setup. How to select suitable target
syntactic parses to guide the generation is still an
open problem in the paraphrase generation commu-
nity. To fairly compare with SCPN which proposes
10 syntactic templates at height 2, we also adopt
AESOP trained at height 2 (shown as AESOP-H2
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top-1 top-3 top-5 top-7 top-10

QQP
-Pos

SCPN 32.2 (±7.8) 32.2 (±3.3) 33.4 (±1.3) 32.6 (±0.0) 33.0 (±0.0)
AESOP-static 58.6 (±4.5) 58.7 (±1.8) 57.5 (±2.1) 57.9 (±0.9) 58.0 (±0.0)
� AESOP 100.0 (±0.0) 94.7 (±0.0) 90.8 (±0.0) 84.3 (±0.0) 65.0 (±0.0)

Para
NMT
-small

SCPN 16.2 (±4.1) 16.9 (±1.5) 18.0 (±1.1) 17.2 (±0.9) 17.4 (±0.0)
AESOP-static 47.0 (±6.2) 48.9 (±2.0) 48.6 (±1.3) 48.6 (±1.3) 49.0 (±0.0)
� AESOP 90.0 (±0.0) 86.7 (±0.0) 84.4 (±0.0) 80.0 (±0.0) 70.6 (±0.0)

Table 3: Human validity check of top-k selected target syntactic parses. All numbers are 10-round mean with
standard deviation. In AESOP, we use the ranker in Equation 1 to sort and get top-k target parses, while others
use random selection. High validity rate of paraphrases indicate the high quality of our retrieved target syntactic
parses. The trend that higher-ranked syntactic parses have higher validity rates verifies the efficiency of our ranker.

in Table 1).5 Unlike previous work, AESOP uses
the adaptive selection module to decide a set of
target syntactic parses automatically. For a fair
comparison, we also feed the same 10 syntactic
target parses from SCPN to AESOP, denoted as
AESOP-static. It is hard to evaluate retrieved target
syntactic parses because paraphrases are intrinsi-
cally diverse, so that many target syntactic parses
could be reasonable. Therefore, we use the quality
of generated paraphrases, which is our end goal,
to reflect the quality of retrieved target syntactic
parses. For evaluation, we use automatic metrics
together with extensive human evaluations.6

Automatic Metrics. First, we generate 10 para-
phrases from each model. To establish a strong
baseline, we chose the best paraphrase with the
highest BLEU scores with source sentences across
all models. As shown in Table 2, the improve-
ment from AESOP-static to AESOP indicates the
effectiveness of our adaptive selection strategy.
SCPN performs better at TED-E@2 metrics on
both datasets. After qualitative checks, we share
the same finding with previous works (Kumar et al.,
2020; Chen et al., 2019a) that SCPN tends to
strictly adhere to syntactic parses at the cost of
semantics.7 On the other hand, AESOP leans to-
wards generating fluent paraphrases and can make
up for the case when the target syntactic parse is
less reasonable – AESOP achieves a better syntac-
tic conformation when the syntactic control signal
is more accurate, indicated by the decreases of
TED-E@2 scores in Table 2.

Human Evaluation. We validate the chosen
paraphrases for the first 100 instances in the test
sets on Amazon Mturk, and report as Valid@100 in

5See experiments with AESOP-H3/H4 in Appendix A.2.
6Details of human annotations are in Appendix A.3.
7See an example in Appendix A.4.

Table 2. Besides, we show workers 4 paraphrases
from all models and ask them to vote for which one
is the best. Then we report the percentage of votes
that each model got as votes. In result, AESOP
generates more valid paraphrases than all baselines
and gets the most votes, even than SGCP-R that
utilizes human-annotated exemplars. Such find-
ing demonstrates the effectiveness of AESOP and
points out the importance of studying automatic
target parse selection in paraphrase generation.8

4.3 Quality of Retrieved Syntactic Parses

To answer Q3, we evaluate the quality of retrieved
top-k target syntactic parses by checking the valid-
ity of their corresponding paraphrases. We generate
10 paraphrases for each of the first 50 test instances
(500 in total) using SCPN, AESOP-static, and AE-
SOP and ask workers to validate. After annotation,
we use the similarity ranker in Equation 1 to rank
and get the top-k target syntactic parses and their
corresponding paraphrases for AESOP. For other
baselines, as they use a fixed set of target syntactic
parses and do not have any ranking mechanism,
we do random permutation to rank target parses
to get top-k paraphrases. We run the experiments
for 10 rounds and report the validity rate of para-
phrases for top-k target syntactic parses in Table 3.
Comparing to pre-designed syntactic parses, the
higher validity rates of paraphrases from AESOP
indicate the better quality of our retrieved target
syntactic parses. The trend that higher-ranked syn-
tactic parses have higher validity rates also verifies
the efficiency of our ranker.

5 Model Analysis and Interpretation

Ablation Studies. We take out each part of se-
quence in both encoder and decoder and conduct

8See a qualitative comparison in Appendix A.5.
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Model BLEU↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑METEOR↑ TED-R↓ TED-E↓

QQP
-Pos

1 AESOP 47.3 73.3 54.1 75.1 49.7 5.6 5.6
2 w/o tp in dec 39.9 (+7.4) 68.4 (+4.9) 49.0 (+5.1) 70.5 (+4.6) 44.5 (+5.2) 8.1 (+2.5) 8.1 (+2.5)
3 w/o fp in enc 42.3 (+5.0) 71.6 (+1.7) 50.9 (+3.2) 73.4 (+1.7) 45.3 (+4.4) 6.4 (+0.9) 6.2 (+0.6)
4 w/o fp, tp in enc, tp in dec 23.9 (+23.4) 56.2( +17.1) 32.2 (+21.9) 57.6 (+17.5) 34.0 (+15.7) 12.9 (+7.3) 13.4 (+7.8)
5 w/o fp in enc, tp in dec 38.2 (+9.1) 67.7 (+5.6) 47.5 (+6.6) 70.0 (5.1) 42.4 (+7.3) 8.0 (+2.4) 7.9 (+2.3)

Para
NMT
-small

1 AESOP 22.9 54.4 29.8 56.4 32.7 6.9 5.7
2 w/o tp in dec 19.2 (+3.7) 51.3 (+3.1) 27.3 (+2.5) 53.5 (+2.9) 30.8 (+1.9) 9.7 (+1.8) 8.8 (+2.9)
3 w/o fp in enc 24.0 (-1.1) 54.8 (-0.4) 30.5 (-0.7) 57.1 (-0.7) 33.4 (-0.7) 6.8 (-0.1) 5.7 (0.0)
4 w/o fp, tp in enc, tp in dec 16.7 (+6.2) 49.8 (+0.6) 25.2 (+4.6) 50.4 (+6.0) 29.1 (+3.6) 11.7 (+4.8) 12.8 (7.1)
5 w/o fp in enc, tp in dec 20.0 (+2.9) 53.7 (+0.7) 29.3 (+0.5) 55.7 (+0.7) 31.6 (+1.1) 8.7 (+1.8) 7.7 (+2.0)

Table 4: Ablation studies that justify our model design. + shows how much better AESOP is compared to the that
design, while - shows how much worse (dec, enc: decoder, encoder. tp: target parse, fp: source full parse).

several ablation studies on AESOP-H4 with exem-
plars. We show how each part of sequences would
influence AESOP’s performance in Table 4. Take-
aways from our ablation studies are: 1) AESOP’s
performance plummets without any syntactic spec-
ifications (row1&row4). 2) Taking out target parse
(tp) in the output sequence will lead to worse perfor-
mance in both semantic preservation and syntactic
controllability (row1&row2, row3&row4). We will
visually interpret the benefit of such design later in
this section. 3) Taking out each part in the input
sequence for the encoder will leads to a significant
performance drop of AESOP on QQP-Pos datset
for both criteria (i.e., semantic preservation and
syntactic controllability). The trend is the same for
ParaNMT-small dataset, except only taking out the
full parse (fp) will leads to around 1% improvement
on semantic preservation metrics, while the syntac-
tic controllability stays almost the same. Consider-
ing the much larger performance drop on criteria,
we decided the current design of AESOP.

Interpretation. In Figure 4, we visualize cross
attentions between encoder and decoder for two
designs, i.e., AESOP with (right) and without (left)
target syntactic parse in the decoder on the test set
of ParaNMT-small. Technically, we search for the
final output with beam = 4 and take the average
of cross attention scores of 12 attention heads from
the last layer of the decoder. Finally, we add the
attention of all tokens within each component (ss,
fp and tp). To manifest the difference, we denote
the highest attention scores as 100, and calculate
the relative cross attention to the highest.

Compared to the design without target syntac-
tic parse in the decoder, cross attention between
paraphrases and source sentences stays the highest
in AESOP. However, the ratio of cross attention

scores of (paraphrases, target parses) and (para-
phrases, full source parses) decreases. Such de-
creases indicate that having target parses in the
decoder helps to disentangle semantic and syntac-
tic information from the input sequence. Instead,
AESOP learns the syntactic information from tar-
get syntactic parses through self-attention in the
decoder. As a result, it leads to a performance
boost in Table 4. At the same time, target parses
influence paraphrase generation directly during de-
coding through the decoder’s self-attention, which
leads to better controllability of AESOP. Take the
example in Figure 4, without target parse in the
decoder, the model outputs a large black dog sits
in the corner beside him. as the paraphrase to by
his side crouched a huge black wolfish dog .. After
adding the target parse in the decoder, the model
no longer generates prepositional phrase in the cor-
ner and outputs a large black dog sits beside him.,
which matches better with the input target parse.

6 Improve Robustness

Recent works show that powerful LMs (e.g.,
BERT (Devlin et al., 2019)) are capturing the su-
perficial lexical features McCoy et al. (2019) and
are vulnerable to simple perturbations (Jin et al.,
2020). Motivated by this, we first test if BERT is
robust to syntactic perturbations by paraphrasing.

We fine-tune BERT models on two
GLUE (Wang et al., 2018) tasks (SST-2 and
RTE). Then, we generate 10 paraphrases using
AESOP-H2 for each test instance in the dev set
and choose top-5 to get 2 larger dev sets.9 We run
trained BERT models on new dev sets again.

Human Annotation. We collect the paraphrases
where models fail but succeeded at their original

9As we do not have the label for test sets on GLUE.
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a large black dog sits in the corner beside him. (ROOT (S (NP (DT ) (JJ ) (J ) 
(NN )) (VP (VBZ ) (PP (IN ) 
(NP ))) (. )))

AESOP 
w/o tp in decoder

by his side crouched a huge black 
wolfish dog .

(ROOT (S (PP (IN by) (NP (PRP$ his) (NN side))) (VP (VBD 
crouched) (NP (DT a) (JJ huge) (JJ black) (JJ wolfish) (NN dog))) 

(ROOT (S (NP (DT ) (JJ ) (J ) (NN )) (VP 
(VBZ ) (PP (IN ) (NP ))) (. )))

paraphrase
a large black dog sits in the corner beside him.

paraphrase

source sentence (ss) source full syntactic parse (fp) target syntactic parse (tp)

100 40.0 30.8 100 20.3 25.0

AESOP 
with tp in decoder

Figure 4: Cross Attention without and with tp (target parse) in the decoder. Line thickness is proportional to relative
cross attention scores. By duplicating tp in the decoder, relative cross attention scores for both (paraphrases, full
source parse) and (paraphrases, target parse) decrease. It indicates that duplicating target syntactic parses in the
decoder lets AESOP disentangle the semantics and syntactic information from the input sequence.

Original Dev Collected Combined

Dataset Model Before After ParaGAP Before After ParaGAP Before After ParaGAP

SST-2 SCPN (Iyyer et al., 2018)

91.9

89.7 -2.2

18.6

46.5 +27.9

68.0

76.1 +8.1
SynPG (Huang and Chang, 2021) 85.3 -6.6 47.0 +28.7 73.3 +5.3
AESOP-tp 88.9 -3.0 49.5 +30.9 76.4 +8.4
�AESOP 91.1 -0.8 48.5 +29.9 77.6 +9.6

RTE SCPN (Iyyer et al., 2018)

62.8

68.6 +5.8

46.9

49.6 +2.7

56.0

58.1 +2.1
SynPG (Huang and Chang, 2021) 61.7 -1.1 49.0 +2.1 56.6 +0.6
AESOP-tp 60.3 -2.5 55.7 +8.8 57.8 +1.8
�AESOP 62.5 -0.3 58.4 +11.5 61.0 +5.0

Table 5: ParaGAP is the accuracy difference between BERT models after and before using paraphrases augment
the training data. Among 4 models, AESOP improves BERT’s robustness to syntactic perturbations the most.

sentence as adversarial examples. We then put all
these examples on MTurk and ask workers to re-
annotate.10 For SST-2, we ask workers to assign
sentiment labels as positive, negative or undecided
(mixed sentiments). For RTE, one test instance
has sentence1 and sentence2 with a label if sen-
tence1 entails sentence2. We generate paraphrases
for sentence2 and ask workers to binary-decide if
sentence1 entails generated paraphrases. We show
the statistics of collected adversarial set and orig-
inal dev set in Table 6. Researchers can test their
models’ robustness to syntactic perturbations on
our collected datasets.

Augmentation. We augment each training in-
stance with 5 best paraphrases from AESOP-H2.
For SynPG and SCPN, as the pre-designed tem-
plates for SynPG is a subset of SCPN’s. We gen-
erate 5 paraphrases using selected templates in
SynPG. Then, we retrain BERT models with aug-
mented training data from each model. Then, we re-

10See more annotation details in Appendix A.6.

Original Collected Combined

SST-2 872 404 1276

RTE 277 341 618

Table 6: Dataset statistics. Combined is the combina-
tion of the original dev set and collected data.

train BERT models after augmentation and get their
test accuracies. We define ParaGAP as the accu-
racy difference for after- and before-augmentation
using paraphrase generation models. ParaGAP indi-
cates how efficient the augmentation is to improve
the model robustness to syntactic perturbations.

Experiment Result. As shown in Table 5, BERT
models perform poorly in our collected datasets
before augmentation, which indicate that our col-
lected adversarial datasets are challenging, and
BERT is vulnerable to syntactic perturbations. Af-
ter using 4 different paraphrasing models to aug-
ment the training data, models’ robustness to such
perturbations all get improved. Among all models,
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AESOP yields the best ParaGAP on the combined
dataset of original dev sets and collected datasets,
which shows that using AESOP improves the clas-
sification model’s robustness to syntactic perturba-
tions more effectively.11

7 Related Work

Recent advances have been using neural models
for syntactically controlled paraphrase generation.
From the modeling perspective, there are roughly
two categories: unsupervised and supervised meth-
ods. Unsupervised models do not use parallel
paraphrases during training. Wieting and Gimpel
(2018); Wieting et al. (2017) use back-translation
to generate paraphrases. Huang and Chang (2021)
propose a transformer-based model SynPG for para-
phrase generation. AESOP is a supervised para-
phrase generation model, which means that we
require parallel paraphrases during training. Previ-
ous supervised paraphrase models are mostly RNN-
based models, including SCPN (Iyyer et al., 2018),
CGEN (Chen et al., 2019a) and SGCP (Kumar
et al., 2020). Such models suffer from generat-
ing long sentences and do not utilize the power
of recent pretrained language models. Goyal and
Durrett (2020a) is a concurrent work with ours that
also builds on BART to generate paraphrases but
has a different model design. For syntactic con-
trol, Goyal and Durrett (2020b) use target syntac-
tic parses to reorder source sentences to guide the
generation, while other works, including AESOP,
directly use target syntactic parses to guide the gen-
eration. CGEN (Chen et al., 2019a) and SGCP
(Kumar et al., 2020) use target syntactic parses
from crowd-sourced exemplars, SCPN (Iyyer et al.,
2018) and SynPG (Huang and Chang, 2021) use
pre-designed templates, while AESOP retrieves tar-
get syntactic parses automatically.

8 Conclusion and Future Works

In this work, we propose AESOP for paraphrase
generation with adaptive syntactic control. One
interesting and surprising finding of this paper is
that using automatically retrieved parses to control
paraphrase generation can result in better qualities
than the current best model using human-annotated
exemplars. Such finding manifests the benefits
of adaptive target parse selection for controlled
paraphrase generation – it does not only generate

11We show that AESOP helps to improve models’ decision
boundaries in Appendix A.7.

diverse paraphrases, but also higher quality para-
phrases. This suggests future works on syntacti-
cally controlled paraphrase generation to pay more
attention to target parse selection, and we hope AE-
SOP can serve as a strong baseline for this direction.
In our work, we use generated paraphrases to re-
flect the quality of automatically-selected target
parses; future works can design specific metrics to
evaluate the quality of retrieved syntactic parses.
In addition, we find that having the control signal
in the decoder can lead to better controllability of
AESOP. Future works can test the generalizability
of this modeling strategy in other controlled gen-
eration tasks. In addition, we show that AESOP
can effectively attack classification models and con-
tribute two datasets to test models’ robustness to
syntactic perturbation. We find that using AESOP
to augment training data can effectively improve
classification models’ robustness to syntactic per-
turbations.
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Ethical Consideration

Our proposed model AESOP utilizes a pretrained
language model to generate paraphrases. Trained
on massive online texts, it is well-known that such
pretrained language models could capture the bias
reflecting the training data. Therefore, AESOP
could potentially generate offensive or biased con-
tent. We suggest interested parties carefully check
the generated content before deploying AESOP
in any real-world applications. Note that AESOP
might be used for malicious purposes because it
does not have a filtering mechanism that checks the
toxicity, bias, or offensiveness of source sentences
from the input. Therefore, AESOP can generate
paraphrases for harmful content that may offend
certain groups or individuals.

Our collected datasets are based on the devel-
opment sets of two public classification tasks on
GLUE, including SST-2 for sentiment analysis and
RTE for textual entailment. These do not contain
any explicit detail that leaks information about a
user’s name, health, racial or ethnic origin, reli-
gious or philosophical affiliation or beliefs.
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A Appendix

A.1 Implementation Details

Parameters. We use a learning rate 3 × e−5 to
train AESOP. We use 6 layers of encoder and 6
layers of decoder with model dimension of 768 and
12 heads. For the input sequence, we set the max
length to 128 and max output sequence length as 62.
We train 25 epochs for each model. It takes about
one days to finish training for ParaNMT-small and
about half a day for QQP-Pos on one NVIDIA
GeForce RTX 2080.

Optimization. We use Adam (β1 = 0.9, β2 =
0.999) with a linear learning rate decay schedule
for optimization. All experiments are done using
Huggingface library (Wolf et al., 2020).12

A.2 Diverse Syntax with Deeper Pruning

Table 7 is a supplementary to Table 2. Using
AESOP-H2 yields a better performance in terms
of the semantic preservation metrics. We share
the same finding from Section 4.1 that the syntac-
tic controllability will get better when we use the
deeper heights of syntactic parse trees. However,
the semantic preservation metrics get worse with
more fine-grained syntactic control, we hypothe-
size this is because deeper-level of control signals
can be misleading, but such signals restrict models
to generate paraphrases that conform to the pro-
vided misleading syntactic signals, which impairs
the ability of pretrained language models to gener-
ate fluent texts.

A.3 Validity Check on Paraphrases

In Section A.3.1, we will give more details of the
human validity check in Table 2 and more details
of human evaluation of Table 3 in Section A.3.2.

A.3.1 Validity@100 and Votes
We choose the best paraphrases among 10 gener-
ated paraphrases from SCPN, AESOP-static and
AESOP for the first 100 test instances in the both
datasets. For SGCP, we take its output paraphrases
that uses the exemplar sentences. Then, we perform
the human validity check of these 400 paraphrases
on Amazon Mturk platform. For each source sen-
tence, we provide all 4 paraphrases from these four
models to three workers. In our instruction, we
ask them to annotate three-level of validity: in-
valid paraphrase, imperfect paraphrase that does

12https://huggingface.co/.

not lose key information, and perfect paraphrases.
We binarize worker’s labels with both imperfect
and perfect paraphrases as a valid instance, other-
wise invalid. Then, we the majority vote of labels
among three workers as the final label. We calcu-
late the ratio of valid instances over 100 and report
the ratio as Validity@100 in Table 2. As a supple-
mentary, Table 8 shows the breakdown annotation
of three-level validity check. In addition, we ask
workers to vote for the best paraphrase among the
four paraphrases, and report the ratio of total votes
the model gets over all 300 votes as Votes in Table 2
to reduce the influence of personal preference. We
use fleiss’s kappa scores (McHugh, 2012) to mea-
sure the Inter Annotator Agreement (IAA). The
IAA for validity@100 is 0.63, which indicates a
substantial agreement among workers.

Mturk Setup Details. We set the qualification
as the location needs to be in the US, completed
HITs no less than 5000, and approval rate no lower
than 98%. Our one HIT contains 10 instances. For
one HIT, we have three respondents (workers) to
work on it. For payment, we pay workers $0.8 per
HIT with a potential bonus of $1 if they participate
over 5 HITs published by us.

A.3.2 Validity@500

The annotators of the human evaluation in Sec-
tion 4.3 are three graduate students from our in-
stitute. None of them are involved in this project.
We have two of them work on validity checks for
ParaNMT-small and QQP-Pos, and there was one
student who worked on both. We check their un-
derstandings about paraphrases before the study
and instruct them to only label a paraphrase as
valid when the paraphrase is natural, fluent, and
preserves the semantics of the source sentence. To
understand the Inter Annotator Agreement (IAA),
we randomly selected 50 samples of (source sen-
tence, paraphrase) pairs and asked them to annotate
if they are valid paraphrases independently. After
the annotation, we count it as an agreement if they
agree on the same label (either valid paraphrase or
invalid). The average IAA is 0.9 between the three
of them, which indicates a good agreement. Then,
we have these three works to annotate all instances
sampled on Table 2. After annotation, we count a
paraphrase as a valid paraphrase only if both of 2
annotators think it is valid.

https://huggingface.co/
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Model BLUE ROUGE-1 ROUGE-2 ROUGE-L METEOR TED-E

ParaNMT
-small

AESOP-H2 15.0 47.0 21.3 47.3 26.1 2.6
AESOP-H3 12.1 41.5 16.7 42.6 22.8 2.3
AESOP-H4 8.4 33.2 10.9 35.3 18.3 1.5

QQP-Pos
AESOP-H2 24.6 56.2 31.5 57.6 32.8 0.7
AESOP-H3 22.5 54.8 29.7 56.1 31.5 0.8
AESOP-H4 19.9 51.4 25.9 52.0 30.6 1.1

Table 7: A supplementary to Table 2. When we use the deeper levels of syntactic parse trees, the syntactic
controllability of AESOP will get better. However, the semantic preservation metrics get worse, because such
signals can be misleading and it restricts models to generate paraphrases that conform to the control signal.

Dataset Model Invalid Imperfect Perfect

QQP
-Pos

SGCP 59 19 22
SCPN 68 12 20
AESOP-static 43 23 34
AESOP 39 24 37

Para
-NMT
-small

SGCP 70 21 9
SCPN 46 24 30
AESOP-static 38 20 42
AESOP 32 27 41

Table 8: Three-level validity annotation breakdowns
for Validity@100.

A.4 Case Study with Invalid Target Syntax

Strict conformation to inappropriate target syntac-
tic parse sometimes leads to semantics lost and
abrupt termination of sentences, which hurts the
goal of generating fluent and natural paraphrases
as indicated in Section 4.2. For example, given the
input sentence i had a dream yesterday and it was
about you and a target syntactic parse with height
2 (ROOT(S(ADVP)(NP)(VP)(.))), SCPN generates
maybe it was about you . that has the same syn-
tactic parse with the target parse, while AESOP
generates you were in my dream last night . whose
syntax parse at height 2 is (ROOT(S(NP)(VP)(.))).

A.5 Qualitative Comparison

We provide a qualitative comparison between AE-
SOP and other competitive paraphrase generation
models under both settings with or without ex-
emplar sentences in Table 9. We show that with
ground-truth syntactic control (Setting I), AESOP
can generate paraphrases that are closer to ground-
truth paraphrases. Without ground truth, AESOP
can generate diverse paraphrases that are more nat-
ural and better preserve the semantics than SCPN.

A.6 Adversarial Set Collection

We contribute two datasets constructed from AE-
SOP in Section 6 by crowd-sourcing. We collect
all adversarial examples that successfully attacked

the models, as shown in the all column of Table 5
and put them on Amazon MTurk to annotate if the
paraphrases are valid. We set the qualification as
the location needs to be in the US, completed HITs
no less than 5000, and approval rate no lower than
98%. One HIT contains 12 instances and have 3
respondents (workers) work on it. For payment,
we pay workers $0.4 per HIT as qualification test.
After selecting qualified workers, we pay them $1
per HIT with another potential bonus of $1 if they
participate over 5 HITs published by us. On aver-
age, experienced workers spent around 10 minutes
to complete one HIT, which means our payment is
above the federal minimum wage in the US.

Instruction and Annotation. As sentiment anal-
ysis on SST-2 is intuitive, we list examples as an
instruction to guide the annotation. We count it
as an agreement if all of three workers given the
same label to one instance (i.e., positive, negative
or undecided), and we calculate IAA as the ratio of
agreements over all instances for qualified workers.
The average IAA of three workers among all in-
stances are 0.8, which indicates a good agreement.
During the dataset collection, we use the majority
vote to decide the final label of one instance. For
textual entailment on RTE dataset, we refer to the
guideline from the original guide line of RTE-4 13

to explain the textual entailment task itself with
examples. The IAA for RTE annotation is 0.71.

A.7 AESOP Helps to Improve the Decision
Boundary

We conduct a study on how augmenting the training
data would influence models’ decision boundaries.
More specifically, we test BERT models before and
after augmentation with AESOP, on the combina-
tion of the original gold test set and our collected
adversarial datsets on two downstream tasks. For

13https://tac.nist.gov/2008/rte/rte.08.
guidelines.html

https://tac.nist.gov/2008/rte/rte.08.guidelines.html
https://tac.nist.gov/2008/rte/rte.08.guidelines.html
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Model Exemplar/Selected Target Parses Generated Paraphrases

QQP
-Pos

source sentence: what is the best way to get manchester united tickets ?

SGCP (ROOT (FRAG (NP (NP (NNS ))
(NP (DT ) (NN ))) (. )))

whats the way ?
AESOP-H4 how can i get free manchester united tickets ?

SCPN (ROOT (S (NP ) (VP ) (. ) ) that ’s the best way to get manchester united tickets ?
(ROOT (FRAG (SBAR ) (. ) ) ) what ’s the best way to get manchester ?

AESOP (ROOT (SBARQ (WHADVP ) (SQ ) (. ))) how can i get free manchester united tickets ?
(ROOT (SQ (VBZ ) (NP ) (VP ) (. ))) is there any way to get free manchester united tickets ?

Para
NMT
-small

source sentence: by his side crouched a huge black wolfish dog .

SGCP (ROOT (S (NP (DT ) (JJ ) (JJ ) (NN ))
(VP (VBZ ) (PP (IN ) (NP ))) (. )))

his side waving a huge black dog .
AESOP-H4 a large black dog sits beside him .

SCPN (ROOT (S (NP ) (VP ) (. ) ) his side was a huge black dog .
(ROOT (NP (NP ) (. ) ) ) a huge black dog on his side .

AESOP (ROOT (S (S ) (NP ) (VP ) (. ))) there was a big black wolf lying next to him .
(ROOT (NP (NP ) (. ))) a large , black , wolf like dog lay beside him .

Table 9: A qualitative comparison of generated paraphrases with or without exemplar sentences from AESOP.
SGCP and AESOP-H4 use target syntactic parses from exemplar sentences to guide the generation. SCPN use
fixed target syntactic templates, while AESOP retrieves target syntactic parses automatically.

(a) SST before augmentation (b) SST after augmentation

(c) RTE before augmentation (d) RTE after augmentation

Figure 5: AESOP helps to improve the model decision boundary. For visualization, we use TSNE to reduce the
dimension of [CLS] token from the last layer of BERT model combining the collected data and dev set for SST-2
and RTE.

visualization, we use TSNE to reduce the dimen-
sion of [CLS] token from the last layer of BERT
model. Figure 5 show that AESOP helps BERT
models to improve the decision boundary to be
more clear, which is also indicated by Table 5 in
the main content.


