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Abstract

Machine Reading Comprehension (MRC),
which requires a machine to answer questions
given the relevant documents, is an impor-
tant way to test machines’ ability to under-
stand human language. Multiple-choice MRC
is one of the most studied tasks in MRC due
to the convenience of evaluation and the flex-
ibility of answer format. Post-hoc interpreta-
tion aims to explain a trained model and reveal
how the model arrives at the prediction. One
of the most important interpretation forms is
to attribute model decisions to input features.
Based on post-hoc interpretation methods, we
assess attributions of paragraphs in multiple-
choice MRC and improve the model by punish-
ing the illogical attributions. Our method can
improve model performance without any ex-
ternal information and model structure change.
Furthermore, we also analyze how and why
such a self-training method works.

1 Introduction

Machine reading comprehension (MRC), which re-
quires a machine to answer questions according to
given documents, is an important way to test the
ability of intelligence systems to understand human
language (Hermann et al., 2015; Chen, 2018). As
with other tasks in Natural Language Processing
(NLP), deep models have achieved great success on
MRC. At the same time, deep models’ opaqueness
grows in tandem with their power (Doshi-Velez and
Kim, 2017), which has motivated efforts to inter-
pret how these black-box models work. Post-hoc
interpretation aims to explain a trained model and
reveal how the model arrives at the prediction (Ja-
covi and Goldberg, 2020; Molnar, 2020), as shown
in Figure 1. This goal is usually approached with
attribution method, which assesses attributions of
inputs to model predictions (Bach et al., 2015; Sun-
dararajan et al., 2017; Shrikumar et al., 2017). In
NLP, interpretations are usually given by assess-

ing attributions of words, phrases, sentences and
paragraphs (Ribeiro et al., 2016; Lundberg and Lee,
2017; Plumb et al., 2018; Chen et al., 2020; De Cao
et al., 2020; Jacovi and Goldberg, 2020), in which
positive attributions mean support to the prediction
and negative ones mean opposition.

Figure 1: Post-hoc interpretation aims to explain a
trained model and reveal how the model arrives at the
prediction.

It is well known that the strong fit ability of deep
models can cause incredibly high performance on
the training set. The correct prediction of an MRC
model on the training set can’t reflect the model has
understood the sample and used a suitable way to
predict. Since post-hoc interpretations can provide
insights into how the model arrives at the predic-
tion, we argue that we can use these insights to ex-
plore problems which predictions can’t reflect and
to improve model performance. In this work, we in-
terpret multiple-choice MRC models by assessing
attributions of paragraphs and improve model per-
formance by punishing the illogical parts of these
attributions. The illogical attributions here mean
the positive ones to the wrong choices and negative
ones to the right, reflecting paragraphs’ support to
the wrong choices and opposition to the right in the
model reasoning process.

Figure 2 shows two specific examples, both of
which are from the training set. Numbers on the
right are model predictions and numbers on the
left are attributions of paragraphs. In example1,
if we only observe model predictions, the model
makes the right choice: B and does not appear to be
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Figure 2: Examples of attribution interpretations for multiple-choice MRC, consisting of attributions of paragraphs
to each answer choice. Model predictions are the unnormalized model outputs, in which the largest one corresponds
to the predicted choice. The examples are from the RACE training set and trained on BERTbase .

distracted. However, the attributions show strong
support of para3 to distractors A and D, which
overlap words in it. These attributions show the
model’s strong dependency on word-overlap form,
which is not suitable for answering this question.
We constrain the model from such dependency by
punishing these attributions. Attributions in this
example reflect problems predictions fail to, and
we take advantage of this to improve the model.

It is worth noting that we don’t simply constrain
the model from certain forms. On the contrary, we
let the model learn differences between different
circumstances. For example, in example2, attri-
butions show strong support of para4 to choice
C, reflecting the model’s dependency on the word-
overlap form. However, we will not constrain the
model from such dependency as in example1 be-
cause the choice C is the right choice and the attri-
bution here is logical. This way, we let the model
learn which circumstance is suitable for using such
forms and which one isn’t.

Compared to existing work (Niu et al., 2020; Jin
et al., 2020; Zhu et al., 2020), our method does not
need any external information and model structure

change. We simply train a new model after getting
attributions of the original model. We demonstrate
the effectiveness of our method through experi-
ments on three representative datasets: RACE (Lai
et al., 2017), MULTIRC (Khashabi et al., 2018) and
DREAM (Sun et al., 2019). The main attributions
of this paper are summarized as follows:

• We innovatively explore the illogical attribu-
tions of the multiple-choice MRC model, and
improve the model by punishing them. To
the best of our knowledge, we are the first to
improve MRC models resorting to post-hoc
interpretations.

• We conduct extensive experiments and the
results demonstrate that our method can im-
prove multiple-choice MRC consistently on
three datasets. Our method can improve both
trivial and strong baselines (BERTbase and
ALBERTxxlarge). Furthermore, our method
can be applied to the most advanced model.

• We conduct an in-depth analysis of the exper-
imental results and analyze why our method
works.
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2 Related Work

2.1 Attribution Interpretation Methods
In the post-hoc interpretation research field, meth-
ods to get attributions can be classified as erasure-
based methods, gradient-based methods, and
attention-based methods. In erasure-based meth-
ods, attributions of inputs are measured by the
change of output when these inputs are removed (Li
et al., 2016; Feng et al., 2018). In gradient-based
and attention-based methods, the magnitudes of
the gradients and attention weights serve as fea-
ture importance scores, respectively (Serrano and
Smith, 2019; Vashishth et al., 2019; Sundararajan
et al., 2017; Shrikumar et al., 2017). Erasure-based
methods are model-agnostic. Gradient-based and
attention-based methods are applicable for differen-
tiable models and models with attention structures,
respectively. The advantage of erasure-based meth-
ods is that it is conceptually simple and can opti-
mize well-defined goals (De Cao et al., 2020). The
advantage of gradient-based and attention-based
methods is they are computationally efficient, How-
ever, attention-based and gradient-based methods
have received much scrutiny (Sixt et al., 2019; Nie
et al., 2018; Jain and Wallace, 2019), arguing that
they cannot theoretically prove that the network
ignores low-scored features.

2.2 Multiple-choice Machine Reading
Comprehension

Multiple-choice MRC requires the machine to de-
cide the correct choice from a set of answer choices
given the relevant documents and questions.The
question and choice types of multiple-choice MRC
are flexible, such as arithmetic, abstract, common
sense, logical reasoning, language inference, and
sentiment analysis (Lai et al., 2017; Sun et al.,
2018; Jin et al., 2020). It requires many advanced
reading skills for the machine to perform well on
the multiple-choice MRC task.

3 Methods

3.1 Task Description
In multiple-choice MRC, given a relevant docu-
ment D containing n paragraphs {p1, p2, ..., pn},
a question Q and an choice set with m choices
C = {c1, c2, ..., cm}, the model should determine
which choice is correct. The task can be formalized
as:

ĉ = argmax
c′∈C

P (c′|Q,D).

3.2 Method
The overview of our method is shown in Figure 3,
which contains three steps:
1. Training and Interpreting: train a model and
obtain attributions Attr.
2. Processing attributions: find the illogical attri-
butions and record the corresponding paragraph
indexes I .
3. Retraining: train a new model with I . I is used
to normalize the model during training.

Figure 3: Pipeline of our method.

3.2.1 Training and Interpreting
The commonly used framework for multiple-choice
MRC is shown in Figure 4: The document, ques-
tion, and one of the choices are concatenated to-
gether, resulting in m sequences for one question.
The model takes these sequences as input sepa-
rately, and outputs logits L = {l1, l2, , ..., lm} for
m choices. choice with the largest logit is the pre-
dicted choice. If the softmax function is used to
normalize the logits, P (ci|Q,D) = eli∑m

j=1
elj

, and

the corresponding cross-entropy loss is:

lossmc = −log (P (cr|Q,D)) ,

where cr denotes the correct choice.
We train a multiple-choice MRC model and use

erasure-based method to obtain attributions of the
trained model. Following previous work (Chen
et al., 2020; Feng et al., 2018; Ribeiro et al., 2016;
Li et al., 2016), an input subset’s attributions are
obtained by calculating the output change when
erasing this subset. In this work, we use leave-one-
out (Li et al., 2016) method to perform erasure and
get attributions of paragraphs.

As shown in Figure 4, given a document D
containing n paragraphs {p1, p2, ..., pn}, we use
D−i to represent D with pi erased. For D−i

, Q, C, the model will output logits L−i ={
l−i1 , l−i2 , ..., l−im

}
, which means model’s output

with pi erased. Thus, the attributions of pi can be
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Figure 4: Commonly used framework for multiple-
choice MRC and the leave-one-out method to get at-
tributions. aij represents the attributions of paragraph
pi to choice cj and can be calculated by subtracting l−i

j

from lj (e.g., a21 = l1 − l−2
1 ).

calculated by subtractingL−i fromL. For example,
aij = lj − l−ij is the attributions of pi to cj . For pi,
we get attributions Attri =

{
ai1, a

i
2, ..., a

i
m

}
for all

choices C = {c1, c2, ..., cm}. Since erasure-based
method is model-agnostic, we don’t need to make
any changes to the structure of the MRC model.

3.2.2 Processing Interpretations

The illogical attributions mean positive ones to the
wrong choices and negative ones to the right, re-
flecting paragraphs’ support to the wrong choices
and opposition to the right, formally as:
aij is illogical⇔ aij 6= 0∧ (aij > 0 xor cj = cr).

The absolute value of aij reflects the degree of
support and opposition, which can be used to mea-
sure the illogical degree. For each choice, if aij is
illogical, we record the corresponding paragraph in-
dex i and calculate aij during retraining. To shorten
retraining time, if we find more than one illogical
attribution for one choice, we only use the one with
the largest illogical degree. For each sample, we
obtain a paragraph index set I = {i1, i2, ..., im}
corresponding to m choices, where ij is a number
or None. (If there is no illogical attribution for cj ,
we record ij = None.)

3.2.3 Retraining

We train a new model and punish the model for gen-
erating illogical attributions corresponding to I dur-
ing the training process. As shown in Figure 5, we
calculate attributions AttrI =

{
ai11 , a

i2
2 , ..., a

im
m

}

Figure 5: Overview of the retraining process.

and add a extra loss:

lossex =
m∑
j=1

(a
ij
j )

2,

to perform punishment. If ij = None, Dij = D,
which means aijj = 0 and lossex = 0. The extra
loss is used to punish the model for generating
illogical attributions. The total loss of retraining
is the combination of the task-specific loss and the
extra loss:

loss = lossmc + α lossex,

where α is a factor to balance the two loss terms.
Though we need to calculate aijj at each step, this
only requires one additional subtraction operation.
The main complexity introduced is the amount of
input is doubled. It takes about twice as long to
retrain compared to train the initial model.

Recently, a new task form has emerged in
multiple-choice MRC, which has an uncertain num-
ber of correct choices for each question (Khashabi
et al., 2018). It requires the model to determine the
correctness of each choice respectively and can be
formalized as a binary classification task as shown
in Figure 6. We use the same method to solve such
tasks, in which the task is seen as a single-choice
task with two choices: right and wrong.

Figure 6: Framework of tasks with an uncertain num-
ber of correct choices. The task can be formalized as
a binary classification task in which the model should
determine whether an choice is correct or wrong.
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RACE-M RACE-H RACE MultiRC DREAM
Model / Dataset Dev Test Dev Test Dev Test Dev Dev Test

acc acc acc acc acc acc F1m F1a EM0 acc acc

BERTbase 72.3 71.7 64.1 62.6 66.5 65.2 71.8 69.1 21.2 63.4 63.2
+ retraining 74.2 72.6 66.1 65.2 68.5 67.4 73.5 70.7 22.9 64.1 63.7
ALBERTxxlarge 90.2 89.3 86.2 85.7 87.3 86.7 88.3 86.5 59.5 89.2 88.5
+ retraining 91.3 91.2 87.2 86.7 88.4 88.0 89.4 87.8 61.6 90.2 90.0

Table 1: Results on three multiple-choice MRC datasets. (F1a: F1 score on all choices; F1m: macro-average
F1 score of all questions; EM0: exact match.) Results of baseline models are copied from the corresponding
leaderboards and papers (Niu et al., 2020). Additionally, our reproduced results of ALBERTxxlarge and BERTbase

on the RACE dataset are higher than those on the leaderboards, so we report our results.

4 Experiments

4.1 Datasets

We evaluate our method on three representative
multiple-choice MRC datasets:
RACE (Lai et al., 2017) is a large-scale dataset
collected from English examinations. RACE has a
wide variety of question types such as summariza-
tion, inference, deduction and context matching,
and most of the questions need reasoning more
than lexical-level matching.
MULTIRC (Khashabi et al., 2018) requires gather-
ing information from multiple sentences to choice
a question. MULTIRC requires evaluating the cor-
rectness of each choice individually. Following pre-
vious work (Yadav et al., 2020; Niu et al., 2020),
we use the original MULTIRC dataset1, not the
version on SuperGLUE (Wang et al., 2019).
DREAM (Sun et al., 2019) is a dialogue-based
dataset collected from English examinations. Most
of the questions are non-extractive and need rea-
soning from more than one sentence.

4.2 Baselines and Implement Details

Since the wide use of pre-trained language mod-
els in NLP, we choose two pre-trained lan-
guage models BERTbase (Devlin et al., 2018) and
ALBERTxxlarge (Lan et al., 2019) as the trivial
and strong baselines respectively. We use the same
model architecture as that in Transformer2, which
is commonly used in multiple-choice MRC: a pre-
trained language model as the encoder and a single-
layer linear network connected to [CLS] as the
matching network. In addition to the commonly
used model architecture, we also experimented on
DUMA (Zhu et al., 2020), which is the state-of-

1https://cogcomp.seas.upenn.edu/multirc/
2https://github.com/huggingface/transformers

the-art model architecture on the DREAM leader-
boards.

Our implementation is based on Transformer2.
We use default model settings in Transformer2 and
follow basic experimental settings in the leader-
boards and corresponding papers. We directly
adopted the same learning rate and batch size as the
baseline models for retraining. We search the coef-
ficient α among 0.1, 0.5, and 1. For MULTIRC and
DREAM, we use the original paragraph divisions
of the datasets. For RACE with a noisy paragraph
division, we limit the length of paragraphs based
on the original paragraph division.

4.3 Main Results
We evaluate our method on three multiple-choice
MRC datasets and adopt the metrics from the re-
ferred papers. The results are summarized in Table
1. Our method can improve model performance re-
markably: 1.33% and 1.63% average performance
improvement for BERTbase and ALBERTxxlarge,
which demonstrates that our method can help both
a trivial baseline as well as a competitive base-
line. Furthermore, ALBERTxxlarge + retraining
produces competitive results: On the RACE leader-
board, our result only lags behind super-large pre-
trained language model Megatron-LM (Shoeybi
et al., 2019). On the DREAM leaderboard, our
results only lags behind DUMA (Zhu et al., 2020).
Note that we only compare single-task and non-
ensemble models. In addition, since our method is
model-agnostic, we also experiment with DUMA
as model architecture on the DREAM dataset,
which is the state-of-the-art model architecture on
the DREAM leaderboards.

Because Zhu et al. (2020) did not provide some
important details such as the number of DUMA
attention heads and the head size, we use the set-
tings in another re-implementation Wan (2020) and
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Model Dev Test
basic model architecture 89.2 88.5
DUMA (Zhu et al., 2020) 89.3 90.4
DUMA (implementation 90.7 88.6
by (Wan, 2020))
DUMA(our implementation) 90.5 88.9
+ retraining 91.3 90.2

Table 2: Experimental results with DUMA as model
architecture on the DREAM dataset. All models use
ALBERTxxlarge as the encoder.

gain similar results: higher accuracy on the dev
set and lower accuracy on the test set compared to
Zhu et al. (2020). As shown in Table 2, the DUMA
architecture outperforms the basic model architec-
ture on the DREAM dataset, and our method can
further improve model performance on this basis.
The results further demonstrate the effectiveness of
our method.

4.4 The Relationship Between Illogical
Attributions and Model Performance

In this section, we explore the relationship between
illogical attributions and model performance. We
use the maximum value of illogical attributions as
the illogical score of a choice and sum the scores
of all choices as the illogical score of a sample.
According to illogical scores, we sort samples and
divide them into 20 subsets of the same number of
samples. We evaluate model performance on these
subsets and investigate the relationship between
illogical score and model performance. We use
two widely used correlation coefficients: Spear-
man rank-order correlation coefficient (SROCC)
(Spearman, 1961) and Pearson correlation coeffi-
cient (PLCC) (Benesty et al., 2009) to evaluate the
correlation between them.

Test Set Results We first experiment on the test
set. As shown in Figure 7, the SROCC and PLCC
values on the test are close to -1. The results show
that there is a strong correlation between illogi-
cal score and model performance, where a higher
illogical score corresponds to poorer model perfor-
mance. Moreover, since MRC models’ understand-
ing ability is evaluated via test set performance, the
results also demonstrate that we can utilize inter-
pretations to evaluate MRC models’ understanding
ability from another perspective.

Training Set Results The correlation on the
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Figure 7: Relationship between illogical score and
model performance. SROCC, KROCC are correlation
coefficients in which the closer the absolute value is
to 1, the stronger the correlation. We scaled the illogi-
cal score of BERT proportionally to draw on the same
graph with ALBERT.

training set is weaker than the test set. This is be-
cause the model has fitted training samples during
training, which causes the training set performance
cannot reflect MRC models’ understanding ability.
However, we find a interesting phenomenon: the
correlation of strong model is stronger consistently
in all datasets. We hypothesize that the stronger
model can fit more linguistic features of the training
samples while the trivial model needs to fit more
unique features of the training samples. Since these
unique features are hard to interpret and generalize
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to test set samples, the correlation between inter-
pretation (illogical score) and performance is weak,
and the test set performance is poor.

4.5 Effectiveness of Retraining the Illogical
Interpretations

In this section, we explore whether the illogical
attributions are constrained after retraining. We
compare the illogical score of the retrained model
to the original model. Figure 8 shows an example
of change in illogical scores after retraining. We
can see from the figure that most samples’ illogical
scores are constrained close to zero after retrain-
ing. In this example, the average value of illogical
scores declines from 1.22 to 0.11 on the training set
and declines from 1.43 to 0.37 on the test set. Table
3 shows changes in the average illogical score after
retraining. The average illogical scores decline con-
sistently in six experiments, which demonstrates
the effectiveness of the retraining strategy.

Figure 8: The change in illogical scores. The results
are from ALBERTxxlarge-DREAM.

Set training set test set
BERT retrained/original retrained/original
RACE 0.19 0.36
MULTIRC 0.16 0.78
DREAM 0.08 0.35
ALBERT retrained/original retrained/original
RACE 0.06 0.09
MULTIRC 0.19 0.63
DREAM 0.09 0.26

Table 3: Changes of the average illogical scores after
retraining. We show the ratio of the retrained value and
the original value.

According to the illogical score of the original
model, we divide the test set into ten subsets with
the same number of samples . Model performance
on these subsets is shown in Figure 10. On subsets
with high illogical scores, the model performance
gets a remarkable gain after retraining. However,

the model performance declines after retraining on
some low-score subsets. We hypothesis that the
punishment of illogical interpretations will affect
the model’s confidence in using the right reasoning
form in some samples. For example, although we
let the model to learn the difference between ex-
amples in Figure 2, punishment in example1 may
affect the model’s confidence in using the same
form in example2.

5 Discussion

5.1 Using Post-hoc Interpretations to
Improve NLP Models

Existing work focusing on using post-hoc inter-
pretations to improve NLP models has forced the
model to generate the ‘correct’ interpretation. Al-
though conceptually simple, ‘correct’ interpreta-
tions served as the ground truth are difficult to get.
For example, Liu and Avci (2019) uses human-
selected terms as the target attributions, which is
noisy and hard to be generalized to other datasets.
Chen and Ji (2020) does sampling during training
and resorts to mean-field approximation (Blei et al.,
2017) to get target attributions, which leads to dif-
ficult training and unstable results. Moreover, their
improvements are limited, and they all choose to
experiment on simple text classification tasks, in
which some words can be regarded as the decisive
factors for prediction. However, for MRC tasks
that often require complex reasoning, getting inter-
pretations served as the ground truth to guide the
model is more difficult and costly.

Figure 9: Two ways of using post-hoc interpretations
to improve NLP models

Different from existing methods, we focus on
finding illogical parts of interpretations of trained
models instead of the ground-truth interpretations
of the task. As shown in Figure 9, we punish the il-
logical parts and force the model to find other ways
to get the prediction by itself. Because forms found
by humans are usually easy to learn for deep mod-
els, it is hard to create interpretations helpful for
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Figure 10: Model performance on subsets where the larger index corresponding to the higher illogical score. Since
the F1 score is affected by the ratio of positive and negative samples, we use accuracy as the metrics for MULTIRC.

deep models. We believe analyzing models’ inter-
pretations and finding problems is a more suitable
way to improve model performance.

5.2 Guilding Strong Models by Penalizing
Errors

We get similar average performance improvement
for the strong baseline ALBERTxxlarge and the
trivial baseline BERTbase. This is contrary to
many methods, which are usually effective on triv-
ial baselines but difficult to get improvement on
strong ones. For example, similar work (Niu et al.,
2020) focusing on improving multiple-choice MRC
models designs a sentence selector for learning
evidence sentences. Their method gets signifi-
cant improvement on BERTbase but fails to apply
to a stronger baseline RoBERTalarge (Liu et al.,
2019). Telling a strong model which sentences
are evidence sentences is more difficult because
the model’s strong learning ability might makes
this extra guidance redundant. This suggests a hy-
pothesis that it is more effective to penalize errors
than to promote correct answers for a strong model
when high-quality labeled correct answers are not
available.

5.3 Case Study

We can observe the wrong reasoning process of
deep MRC models through analysis of the illogical
interpretations, some of which are interesting and
unexpected. For example in Table 4, the model was
not distracted by the distractor ’March 5th’ which
exactly appears in the document. However, para2
made a very high attribution (strong support) to the

DOCUMENT:
para1: M: Were you here on March 5th?
para2: W: Mm. not really. In fact I arrived
three days later.
QUESTION:
When pid the woman arrive?
ANWSERS:
March 15th. (illogical attr: (para2, 14.8))
March 5th. (illogical attr: None)
March 8th.

√
(illogical attr: None)

Table 4: An example of illogical attributions in
ALBERT-DREAM. (

√
: the correct choice. (parai,

score): paragraphs and the illogical score, (None)
means there are no illogical attribution for this choice.)
The example is from the test set of DREAM.

wrong choice ’March 15th’. We hypothesis that
the model understands ’not really’ is a nega-
tion of ’March 5th’. However, the model notices
’three’ in para2 and believes that the choice is
3 times 5 equals 15. We observed the linguistic
characteristics of high illogical score examples on
the test set, and found they are different between
BERTbase and ALBERTxxlarge. For example, ex-
amples with negation and transition tend to have
high illogical scores on BERTbase, but have low
illogical scores on ALBERTxxlarge. We hypothe-
sis that is because ALBERTxxlarge perform better
than BERTbase in not being distracted by these
grammatical phenomena. We suggest analyzing
interpretations and finding problems can help hu-
mans get a more comprehensive understanding of
deep models.
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6 Conclusion and Future Work

In this work, we improve multiple-choice MRC
resort to attribution interpretations. Experimental
results show that our method can remarkably im-
proves model performance on three representative
datasets. We believe using post-hoc interpretations
to improve NLP models is a promising research
field. The future work contains two aspects:

1. We plan to experiment with our method on
other tasks, such as natural language inference and
sentiment analysis, and explore methods applicable
to tasks without choice options or specific classes,
such as generative MRC and span extractive MRC.

2. In addition to attributions, we plan to use other
forms of post-hoc interpretations, such as feature
interaction, to improve NLP models.
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A Experiments Details

Getting Attributions
There is no need to select the model used to gen-
erate attributions carefully. In our experiment, we
use the last saved results of the maximum train-
ing step. We use the original paragraph division of
the dataset for MULTIRC and DREAM. For RACE
with a chaotic paragraph division, we limit the max-
imum length and minimum length of paragraphs
based on the original division. Specifically, if a
paragraph’s length is less than 10, then combine
it with the previous one. If the length exceeds 30,
the beginning of the next sentence after 30 is the
beginning of a new paragraph. For MULTIRC with
an uncertain number of correct choices, which can
be formalized as a binary classification task, we see
the task as a single-choice task with two choices:
the choice is right, and the choice is wrong. Be-
cause of the opposition relation between these two



3651

Model BERTbase ALBERTxxlarge DUMA
Dataset RACE MULTIRC DREAM RACE MULTIRC DREAM DREAM
max seq-length 512 512 512 512 512 512 512
learning rate 2e-5 2e-5 2e-5 1e-5 1e-5 1e-5 1e-5
batch size 32 32 24 8 24 8 8
epochmax 8 14 16 4 4 4 2
warmup steps 1000 1000 400 1000 400 300 150
α 0.5 0.1 0.5 0.1 1 0.5 0.1

Table 5: Hyperparameters of retraining.

choices, we only record the paragraph indexes of
the option representing the choice is wrong for re-
training.

Retraining

For hyperparameters, all three tasks use 512 as
the maximum sequence length. We adopted the
same learning rate and batch size as the baseline
models for retraining. We use the default model
settings in Transformer2. We search the coefficient
alpha among 0.1, 0.5, and 1. The details are shown
in Table 5. We follow the experimental settings
from the leaderboards and corresponding papers.
If there is no relevant information, we retrain the
model three times and pick the model with the best
accuracy on the dev set. We use FP16 training
from Apex3 for accelerating the training process,
and all the experiments are run on two Titan RTX
GPUs and two Tesla V100 GPUs. We calculate
the task-specific loss and regulation loss separately
during retraining because of the limitation of video
memory.

B Case Study

We present cases with the top 5 high illogical scores
on the DREAM test set:

BERT√
: the correct choice

(pi: score): paragraphs and the illogical score
DOCUMENT:
p1: M: pid you go shopping yesterday?
p2: W: Yes. I bought a bag for my mother and some tea
for my father.
QUESTION:
What pid the woman buy for her father?
ANWSERS:
A bag. (p2: 3.6)
Some tea.

√
(None)

A bag and some tea. (p2: 11.8)

3https://github.com/NVIpiA/apex

DOCUMENT:
p1: M: Is that Ann?
p2: W: Yes.
p3: M: This is Mike. How are things with you?
p4: W: Oh, very well, but I’m very busy.
p5: M: Busy? But you’ve finished all your exams?
p6: W: Yes, but I have to help my little sister with her
foreign language.
p7: M: How about coming out with me this evening?
There’s a new film on.
p8: W: I’m afraid I can’t. A friend of mine is coming from
the south and I have to go to the station to meet him.
p9: M: What a pity! How about the weekend then?
p10: W: No, I’ve arranged to go to an art exhibition with
my parents.
p11: M: What about next week sometime?
p12: W: Maybe.
QUESTION:
What is the woman going to do tonight?
ANWSERS:
Help her sister with English. (p6: 11.3)
Meet her friend at the station.

√
(None)

Go to an exhibition with her parents. (p10: 11.7)
DOCUMENT:
p1: W: You are interested in sports, aren’t you?
p2: M: Yes. I go swimming once a week and play tennis
twice a month.
QUESTION:
How often does the man go swimming?
ANWSERS:
Once a week.

√
(None)

Twice a week. (p2: 11.6)
Once a month. (p2: 11.7)
DOCUMENT:
p1: W: Can you tell me where the café is?
p2: M: Yes. It’s to the left of ...no, to the right ... of the
tree.
p2: W: I thought it was behind the Magic Castle.
QUESTION:
Where is the café, accorping to the man?
ANWSERS:
To the right of the tree. (p2: 11.6)
To the left of the tree. (p2: 11.6)
Behind the Magic Castle.

√
(None)
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DOCUMENT:
p1: W: Good afternoon! Dr. Perkins’ office.
p2: M: Good afternoon. I’d like to speak to the doctor. Is
he in?
p3: W: Who is that calling, please?
p4: M: My name is Li Hong. I’m from China.
p5: W: I’m sorry. Dr. Perkins is now at an important
meeting and can’t choice your call.
p6: M: I’m an exchange scholar. Dr. Perkins asked me
to give a lecture. There are some details I want to piscuss
with him.
p7: W: I see, but you must speak to himself about that. Oh,
well, if you leave your number, I’ll tell him to ring you as
soon as he is available.
p8: M: Thanks. My number is 7838298.
QUESTION:
Why does the man want to talk to Dr. Perkins on the phone?
ANWSERS:
To piscuss something with the doctor.

√
(None)

To ask Dr. Perkins to give a lecture. (p6: 11.3)
To see him about his illness. (p2: 0.58)
ALBERT√

: the correct choice
(pi: score) : paragraphs and the illogical score
DOCUMENT:
p1: M: Were you here on March 5th?
p2: W: Mm. not really. In fact I arrived three days later.
QUESTION:
When pid the woman arrive?
ANWSERS:
March 15th. (p2: 14.8)
March 5th. (None)
March 8th.

√
(None)

DOCUMENT:
p1: W: We’d like some information, please. We want to go
to England.
p2: M: OK. What do you want to know?
p3: W: Well, first of all, we want to know the air fare to
London.
p4: M: When do you want to go?
p5: W: We don’t really know, maybe July.
p6: M: I see. Well, in May and June the fare is 480 dollars,
but it’s less in March and April. It’s only 460 dollars.
p7: W: And what about July?
p8: M: It’s more in July.
p9: W: More? How much is it then?
p10: M: It’s 525 dollars.
p11: W: Oh... I’ll think it over before I make the final
decision.
QUESTION:
In which month or months is the fare to London the most
expensive?
ANWSERS:
In March and April. (p6: 5.5)
In May and June. (p6: 14.7)
In July.

√
(p1: 0.2)

DOCUMENT:
p1: W: I wish I hadn’t hurt Linda’s feeling like that yester-
day. You know I never meant to.
p2: M: The great thing about Linda is that she doesn’t hold
any grudges. By tomorrow she’ll have forgotten all about
it.
QUESTION:
What does the man say about Linda?
ANWSERS:
She is forgetful. (p2: 14.1)
She is considerate. (p2: 4.2)
She is forgiving.

√
(None)

DOCUMENT:
p1: W: Are you traveling alone?
p2: M: No, I will take my family abroad this time. My
wife and our three children are all going along with me.
p3: W: What a wonderful experience that will be! I wish I
could travel abroad some day.
QUESTION:
How many people will go with the man?
ANWSERS:
Three. (None)
Five. (p2: 14.0)
Four.

√
(None)

DOCUMENT:
p1: W: Hello. Can I speak to Linda, please?
p2: M: Sorry, there’s no Linda here.
QUESTION:
What does he mean?
ANWSERS:
The girl can’t speak to Linda. (p2: 13.5)
Linda isn’t here now. (p2: 13.7)
The girl has pialed the wrong number.

√
(None)


