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Abstract
As NLP models are increasingly deployed in
socially situated settings such as online abu-
sive content detection, it is crucial to ensure
that these models are robust. One way of im-
proving model robustness is to generate coun-
terfactually augmented data (CAD) for train-
ing models that can better learn to distinguish
between core features and data artifacts. While
models trained on this type of data have shown
promising out-of-domain generalizability, it is
still unclear what the sources of such improve-
ments are. We investigate the benefits of CAD
for social NLP models by focusing on three
social computing constructs — sentiment, sex-
ism, and hate speech. Assessing the perfor-
mance of models trained with and without
CAD across different types of datasets, we find
that while models trained on CAD show lower
in-domain performance, they generalize better
out-of-domain. We unpack this apparent dis-
crepancy using machine explanations and find
that CAD reduces model reliance on spurious
features. Leveraging a novel typology of CAD
to analyze their relationship with model perfor-
mance, we find that CAD which acts on the
construct directly or a diverse set of CAD leads
to higher performance.

1 Introduction

Dataset design is receiving increasing attention,
especially in response to concerns related to the
generalizability of machine learning-based NLP
models. Recent critiques argue that models trained
for NLP tasks may end up “learning the dataset”
rather than a particular construct (Bras et al., 2020),
i.e, the intangible measure like sentiment or stance
that is the ultimate goal of the learning task (Jacobs
and Wallach, 2021). In particular, in the process
of inferring the mapping between an input space
and output space, models may learn cues in the
dataset which are spuriously correlated with the
construct (Schlangen, 2020). For example, senti-
ment models trained on movie reviews tend to learn

construct original counterfactual

sentiment
I thought this movie
was very well
put together.

I thought this movie
was very haphazardly
put together.

sexism Females should not
commentate on sport

AI should not
commentate on sport

hate speech
Lets talk about the
antithesis of hard
work: immigrants

Lets talk about the
antithesis of hard
work: my brother

Table 1: Examples of original/counterfactual pairs
for sentiment, sexism, and hate speech. As pairs
of data with minimal textual differences (color-coded
here) but different labels, counterfactual examples can
improve NLP models’ focus on consequential features
of the construct over dataset artifacts.

more about movies than about sentiment, thereby
failing to measure it as accurately in e.g., news me-
dia (Puschmann and Powell, 2018). This potential
learning of spurious cues over meaningful manifes-
tations of the construct makes it especially difficult
to foresee how even small differences in the con-
text of deployment would affect the performance
of NLP models, with undesirable consequences for
their applicability at large. The issue of model ro-
bustness is all the more crucial for social computing
NLP models, particularly for constructs like hate
speech and sexism, which are often deployed in
detecting abusive content on online platforms (Jig-
saw, 2021). In such settings, there is a risk of
high societal and human harms such as sanction-
ing marginalized voices due to model misclassifi-
cation and bias (Guynn, 2019). Even in contexts
other than online governance, such as using social
NLP models for detecting abuse faced by a cer-
tain subpopulations on a particular online space,
we incur the risks and consequences of mismea-
surement (Pine and Liboiron, 2015; Wagner et al.,
2021).

One suggested solution to address the issue of
spurious features is counterfactually augmented
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data (CAD)—instances generated by human anno-
tators that are minimally edited to flip their label—
and their variations such as iterative benchmark
design (Potts et al., 2020), contrast data genera-
tion (Gardner et al., 2020),1 and their combina-
tion (Vidgen et al., 2020). Drawing on the rich his-
tory of counterfactuals (Pearl, 2018; Lewis, 2013;
Kasirzadeh and Smart, 2021), the promise of CAD
is to offer a causality-based framework where only
cues that are meaningfully associated with the con-
struct are edited — which is expected to be con-
ducive to models learning less spurious features.
Indeed, recent work has shown that models trained
on CAD generalize better out of domain (Kaushik
et al., 2020; Samory et al., 2021). Yet, it is not
well understood why or how these counterfactuals
are effective, especially for social NLP tasks— do
they reduce dependence on spurious features and
to what extent?

This work. We analyze how CAD affects
social NLP models. Unlike previous work, we
leverage multiple, related social computing con-
structs to avoid confounds that may arise due to
the specific settings of a single construct. We con-
duct our experiments on three text classification
tasks: sentiment, sexism, and hate speech identi-
fication. Sentiment has been thoroughly analyzed
in past NLP robustness work, and abusive content
has been widely studied in NLP (Schmidt and Wie-
gand, 2017; Vidgen and Derczynski, 2020; Jurgens
et al., 2019; Sarwar et al., 2021). However, sex-
ism and hate speech have not been studied in as
much detail in the specific context of the impact
of training on CAD. The multifaceted nature of
these constructs warrants further investigation, es-
pecially in the context of developing models with
less spurious features.

First, we ask: (RQ1) do models trained on
CAD outperform models trained on original,
unaltered data? We assess the overall perfor-
mance of these two types of models and find that
while models trained on original data outperform
those trained on CAD in-domain, the opposite is
true out-of-domain— models trained on CAD are
more robust out-of-domain.

Next, we analyze (RQ2) the characteristics of
effective counterfactuals, categorizing CAD ac-
cording to their generation strategy, e.g., whether

1Counterfactually augmented data and contrast sets refer
to the same concept: making minimal changes to flip labels
but have different conceptual grounding—causality for CAD
and modeling decision boundaries for constrast sets.

a negation was added or a gender word re-
moved. Using this typology, we distinguish be-
tween construct-driven CAD, generated by di-
rectly acting on the construct (e.g., removing gen-
der identity terms in sexism) versus construct-
agnostic ones, generated by other strategies (e.g.,
negating a clause). We find that construct-driven
counterfactuals are more effective than construct-
agnostic ones, especially for sexism.

We unpack the gain in out-of-domain per-
formance by analyzing (RQ3) whether models
trained on CAD rely on less spurious features.
Complementing prior work, which has focused
on the overall performance of models trained on
CAD, we use explainability techniques to under-
stand what models have learned. We find that mod-
els trained on CAD promote core, or non-spurious
features, more than models not trained on CAD.
Overall contributions Whereas previous work
mainly assessed how much CAD affects model
performance, we focus on why counterfactually
augmented data improves performance for social
computing NLP models. Our work has several
implications on designing datasets and data aug-
mentation, especially with respect to the benefits
of different types of CAD. We release our code and
collated data with the type of CAD labels for all
three constructs to facilitate future research here:
https://github.com/gesiscss/socialCAD.

2 Training with Counterfactual Data

2.1 Motivation
For a given text with an associated label, say a pos-
itive tweet, a counterfactual example is obtained
by making minimal changes to the text in order
to flip its label, i.e., into a negative tweet. Ta-
ble 1 shows original-counterfactual pairs for the
three types of NLP constructs studied in this pa-
per. Counterfactual examples in text have the in-
teresting property that, since they were generated
with minimal changes, they allow one to focus on
the manifestation of the construct; in our example,
what makes a tweet have positive sentiment.

2.2 Task Setting
Formally, we have a model f (x) = y; y is an ap-
plication task label; x is an instance that can be
drawn from the original data set, or from the set of
counterfactual data ( f (xc) = y); f is a learned fea-
ture representation. We optimise the binary cross
entropy loss for l( f ,x,y) during learning.

https://github.com/gesiscss/socialCAD
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construct in-domain out-of-domain

reference train counterfactual test reference

sentiment Kaushik et al. pos neg pos neg pos neg
Kaggle4 pos neg

856 851 851 856 245 243 1103 1001

sexism Samory et al. sexist not
-sexist sexist not

-sexist sexist not
-sexist EXIST5 sexist not

-sexist
1244 1610 - 912 534 690 1636 1800

hate speech Vidgen et al. hate not
-hate hate not

-hate hate not
-hate Basile et al. hate not

-hate
6524 5767 5096 5852 471 464 1260 1740

Table 2: Constructs and datasets used in this work. In-domain datasets are used for both training and testing,
while out-of-domain datasets are exclusively used for testing. All in-domain datasets contain human-generated
counterfactuals for both labels, except sexism where there is only counterfactual data for the negative class.

There are different ways of incorporating coun-
terfactuals; here, we simply treat them as ordinary
training instances. This means any text classifi-
cation model can be used for training on CAD.
We learn feature representations on fully original
data (non-counterfactual or nCF models) or on a
combination of counterfactuals and original data
(counterfactual or CF models).

We have different sampling strategies — random
and stratified sampling in different proportions to
ensure various counterfactual generation strategies
are presented equally. To ensure fair comparison
between CF and nCF models, we train both types
of models on equal sized datasets — for CF models,
we simply substitute a portion of the original data
with CAD. We either randomly sample the CAD
(RQ1, RQ3), or sample based on CAD type (RQ2).

3 Experimental Setup

3.1 Datasets
Table 2 summarizes the datasets used in this work.
In vs. out-of domain We consider two types of
non-synthetic datasets per construct — in-domain
(ID) and out-of-domain (OOD). Models are both
trained and tested on in-domain data while out-of-
domain data is fully held-out for testing. For the
in-domain data, we use the same train-test splits
as the original work, except for sexism, where a
test set is not provided, so we do a stratified split
of 70-30 (train-test). The out-of-domain data is
exclusively used for testing. The EXIST data5 also
contains Spanish data, but we restrict ourselves to
only English content in this work, as the in-domain
data used for training is in English.
Counterfactually augmented data All in-
domain datasets we consider come with counter-
factually augmented data, annotated by trained

crowdworkers (Kaushik et al., 2020; Samory et al.,
2021) or expert annotators (Vidgen et al., 2020).2

Note that since previous work has shown that
models trained on CAD tend to perform well on
counterfactual examples (Kaushik et al., 2020;
Samory et al., 2021), to prevent reporting inflated
performance, we do not include counterfactual
examples in any of the test sets.

Following Kaushik et al. (2020), for sentiment
and hate speech, the CF models are trained on
50% original and 50% CAD data, while for sex-
ism, which has CAD only for non-sexist examples,
models are trained on 50% original sexist data, 25%
original non-sexist data, and 25% counterfactual
non-sexist data (Samory et al., 2021).3

Adversarial test set To further assess model ro-
bustness, in addition to evaluating on in-domain
and out-of-domain data, we generate automated
adversarial examples which do not flip the label
through textattack (Morris et al., 2020). These are
of two types — one which replaces words with
synonyms (adv_swap, Wei and Zou (2019)) and
another which replaces named entities with other
named entities (adv_inv, Ribeiro et al. (2020)).
They are both generated by perturbing the in-

2Only Samory et al. (2021) generate more than one coun-
terfactual example per original, but to keep things consistent
across all constructs, we randomly sample one counterfactual-
original pair for sexism. Vidgen et al. (2020) generate different
types of synthetic data, including CAD, as a part of dynamic
benchmarking for collecting hate speech data. We only use
the original-counterfactual pairs from their dataset.

3We assess the effect of CAD proportion on model per-
formance in Appendix 10.1

4https://www.kaggle.com/c/tweet-sentiment-extraction
This also contains tweets with neutral labels, but in this work,
we restrict ourselves to positive and negative tweets only.

5From the EXIST 2021 shared task on sexism de-
tection (Ródriguez-Sánchez et al., 2021) available at
http://nlp.uned.es/exist2021/
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domain dataset. Note that due to the nature of
these perturbations, adversarial data can only be
generated for a subset of the training data, e.g., if
an example does not contain any named entities,
then we cannot generate an adv_swap version of it.

3.2 Text Classification Methods.

We use two different text classification models: lo-
gistic regression (LR) and finetuned-BERT (De-
vlin et al., 2019). We do so as we want to con-
trast a basic model trained from scratch, which
only learns simple features directly observed in
the dataset (LR); and one which encodes a combi-
nation of background knowledge and application
dataset knowledge, and is capable of learning com-
plex inter-dependencies between features (BERT).
We train LR with TF-IDF bag-of-words feature rep-
resentations using sklearn (Pedregosa et al., 2011),
while the BERT base model is used for finetuning
in conjunction with the subword tokenizer using
HuggingFace Transformers (Wolf et al., 2020).

Each model is trained using 5-fold cross-
validation and we use gridsearch for hyperparam-
eter tuning. We conduct 5 runs for all models to
reduce variance. We report the hyperparameters of
all our models and their bounds in Appendix 9.2.

4 Experiments

We first start by assessing overall performance on
different types of data (RQ1), followed by intro-
ducing a typology of different types of CAD in
order to understand if certain strategies of generat-
ing CAD are better for model performance (RQ2),
and end by using explanations to understand which
features the CF models promote (RQ3). Unless
specified otherwise, we report results for BERT,
while including the results for LR in the appendix
for completeness (Appendix 10). We measure per-
formance using macro F1 and positive class F1,
where the latter metric is significant for constructs
like sexism and hate speech.

4.1 RQ1: Does CAD improve model
performance?

We compare the performance of the two types of
models: trained on counterfactual data (CF) and
trained on original data (nCF) on three different test
sets: held-out in-domain test set, out-of-domain
data, and adversarial examples. Table 3 shows
the results for in-domain and out-of-domain per-
formance with CF and nCF data for BERT vs LR.

mode pos F1 macro F1

construct method dataset CF nCF CF nCF

sentiment

BERT ID* 0.85 0.89 0.85 0.89
OOD* 0.87 0.85 0.85 0.83

LR ID 0.82 0.86 0.81 0.86
OOD* 0.77 0.71 0.74 0.58

sexism

BERT ID* 0.80 0.82 0.81 0.84
OOD* 0.62 0.42 0.66 0.56

LR ID 0.69 0.75 0.72 0.79
OOD* 0.43 0.32 0.55 0.50

hate
speech

BERT ID* 0.93 0.98 0.93 0.98
OOD* 0.62 0.58 0.66 0.63

LR ID* 0.72 0.92 0.72 0.92
OOD* 0.45 0.41 0.57 0.49

Table 3: Model Performance (positive class preci-
sion and macro F1) averaged over 5 runs. * indi-
cates significant results (p < 0.01) in McNemar’s Test.
CF models outperform nCF models in out-of-domain
data, while the opposite is true for in-domain data.

Table 4 shows results with BERT for adversarial
data. Recall that since we can only generate ad-
versarial examples for a subset of the original data,
we also include results on the original data for fair
comparison. Results for LR models follow a simi-
lar trend and are included in Appendix 10.

4.2 Results

The overall results indicate that counterfactual
models outperform non-counterfactual models on
out-of-domain data, while results are mixed for in-
domain data.. There are several possible explana-
tions of this – on one hand, the lower performance
on the in-domain data could be due to the preva-
lence of spurious or domain-specific features in the
nCF models as opposed to the CF models. On the
other hand, CF models tend to learn less domain-
specific features and more ‘general’ features, which
leads to performance gains in other domains that
the construct manifests in (as we explore in RQ3).

As for adversarial data, it appears that CF mod-
els perform worse on it than their nCF counter-
parts in absolute terms. Note though that the ad-
versarial data is automatically generated from the
in-domain data, which indicates that nCF models
have an advantage on it since nCF models might
be picking up artifacts in the in-domain data that
are also present in the adversarial examples (See
Section 3.1). On the other hand, we do not find
CF models’ performance degrading on adversar-
ial data anymore than nCF models, and in cer-
tain cases have smaller gaps between original and
adversarial performance compared to their nCF
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sentiment sexism hate speech

CF nCF CF nCF CF nCF

original 0.85 0.89 0.81 0.85 0.92 0.98
adv_inv 0.84 0.88 0.81 0.83 0.92 0.98

original 0.85 0.89 0.8 0.84 0.93 0.98
adv_swap 0.81 0.83 0.76 0.78 0.85 0.96

Table 4: BERT Performance (macro F1) for adver-
sarial data; performance on the original in-domain
subset added for comparison. As the adversarial data
was generated from the original data, it is expected that
nCF models have an advantage there, yet CF model per-
formance does not degrade on the adversarial examples
any more than on their nCF counterparts.

construct affect gender identity neg hedge

sentiment 0.98 0.11 0.03 0.75 0.39
sexism 0.18 0.79 0.15 0.10 0.01
hate speech 0.55 0.21 0.23 0.16 0.13

Table 5: The distribution of different modifica-
tion strategies. The proportions in bold refer to the
construct-driven types — affect for sentiment, gender
for sexism, identity for hate speech.

counterparts (the case of adv_inv), implying that
CF models are equally robust, if not more.

To summarize, we determine that CAD improves
model robustness, especially for out-of-domain
generalization. It neither helps nor hinders perfor-
mance on adversarial examples. While the BERT
models have much higher performance than LR,
both family of models show similar trends.

4.3 RQ2: What are the characteristics of
effective counterfactuals?

Whereas the previous analyses assess whether CF
models are more robust or not, we now turn to the
question of whether all CAD is equally effective
in improving classifier performance. Armed with
a minimal set of instructions, annotators use sev-
eral different strategies for generating CAD. Are
some better than others? We aim to answer this
question by categorizing different types of coun-
terfactuals based on the strategy used to generate
them. Then, to understand the ‘power’ of different
types of CAD, we assess the overall performance
of models trained on the different types.

A Typology of Counterfactuals. Previous
work has manually assessed a sample of counterfac-
tuals to understand the strategies used to generate
them, such as introducing negation or distancing
the speaker (Kaushik et al., 2020; Vidgen et al.,
2020). Yet, to the best of our knowledge, there is

no categorization of the entire dataset of counterfac-
tuals. Inspired by causal inference, particularly the
notion of direct and indirect mediation (Pearl, 2014;
Frölich and Huber, 2014), we describe two distinct
types of counterfactual data generation: construct-
driven and construct-agnostic. Construct-driven
CAD are generated by directly acting on the con-
struct, e.g. replacing the gender word in sexism,
or altering the affect-laden word in sentiment. On
the other hand, construct-agnostic CAD are gener-
ated by indirectly acting on the construct, through
general-purpose strategies such as introducing sar-
casm or negation which yields CAD for several
constructs (see Table 5). Since construct-driven
CAD directly act on the construct, we hypothesize
that construct-driven strategies are more effective.

To determine which instances represent which
modification strategy, we use a simple lexicon-
based automatic annotation strategy. Based on
strategies manually assessed in previous litera-
ture (Kaushik et al., 2020; Vidgen et al., 2019),
we devise 5 specific strategies — affect, gender,
identity, hedges, and negation. The first three are
construct-driven strategies for sentiment, sexism,
and hate speech, respectively, while the last two are
construct-agnostic.4 We use a set of lexica for dis-
cerning each strategy — a lexicon of positive and
negative words for affect (Hu and Liu, 2004),5 list
of gender words6 and a list of identity-based hateful
terms and slurs (Silva et al., 2016).7 For negation,
we use the list compiled by Ribeiro et al. (2020)
and for hedges, we use Islam et al. (2020). Table 5
enumerates the different types of CAD. We con-
sider any counterfactual that does not fall under the
construct-driven category to be construct-agnostic,
e.g., 21% of the CAD for sexism is construct-
agnostic (as 79% is construct-driven).

To determine whether a CAD sample is
construct-driven or -agnostic, we first find the dif-
ference between the original datapoint and its coun-
terfactually augmented counterpart and retrieve the
additions and deletions based on that difference.
We then check if the additions or deletions contain
any of the words with the strategy-associated lex-

4A construct-driven strategy for one construct could be
construct-agnostic for another, e.g., changing affect words is a
construct-agnostic strategy for sexism and hate speech.

5obtained from: https://www.cs.uic.edu/~liub/FBS/
sentiment-analysis.html#lexicon

6obtained from: https://github.com/uclanlp/gn_

glove/tree/master/wordlist
7obtained from HateBase through their API

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
https://github.com/uclanlp/gn_glove/tree/master/wordlist
https://github.com/uclanlp/gn_glove/tree/master/wordlist
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Figure 1: Performance (macro F1) of BERT mod-
els trained on different types of CAD over differ-
ent injection proportions on the out of domain data.
nCF model performance is included as a reference.
Construct-driven CAD performs well especially for
sexism, while in hate speech, diverse CAD is better.

icon. Note that a single counterfactual example
could span multiple strategies; e.g, the tweet “It
was horrible, I could not watch it”, with the coun-
terfactual “It was excellent, I could watch it many
times” pertains to a change in affect and negation.
We sample 100 random original-counterfactual
pairs over all constructs to validate our automatic
categorization and find that for 89 cases, we are
able to correctly label the annotation strategy. Er-
rors include misplellings of slurs, or creative dis-
tancing strategies like “[identity] stink” to “awful
graffitti I saw today: ‘[identity] stink’ ”.

Models trained on different types of CAD.
We train models on the different types of coun-
terfactuals (see Table 5). Specifically, we train
three types of models: (a) models trained on just
construct-driven counterfactuals (CF_c); (b) mod-
els trained on just construct-agnostic counterfac-
tuals (CF_r); and (c) models trained on equal pro-
portions of both (CF_a).8 We measure the macro
F1 of each of these types of models for the out-
of-domain data. Since we have almost negligible
construct-agnostic CAD for sentiment, we conduct
the analyses for RQ2 on sexism and hate speech
only.9 Furthermore, due to less than 50% CAD for
certain types, instead of a 50% injection, we vary
the proportion between 10% to 20%.

8We train the last type with equal proportions instead of a
random set of CAD like the CF models in RQ1 and RQ3 since
construct-driven CAD makes up the majority for sexism.

9One reason for the low proportion of construct-agnostic
CAD in sentiment is the nature of the in-domain data; while for
sexism and hate speech, the in-domain data consists of tweets
or short single-sentence utterances, the data for sentiment
comes from movie reviews which are much longer and have
multiple edits made throughout. It is natural to find reviews
which have a negation injected, while also having an affect
word being changed.

4.4 Results

We show the macro F1 of these three types of mod-
els on out-of-domain data over different CAD pro-
portions in Figure 1. We obtain mixed results for
RQ2. First, we see that performance increases
with the CAD proportion, except for hate speech
at 20% (complemented by our analysis in Ap-
pendix 10.1). Our results indicate that models
trained on construct-driven CAD (CF_c) are more
effective than other types for sexism, especially at
higher injection proportions. On the other hand,
for hate speech, CF_a, or the diverse set of coun-
terfactuals are better. Models trained on construct-
agnostic CAD (CF_r) have mixed efficacy.

4.5 RQ3: Do models trained on CAD rely on
fewer artifacts?

While the overall performance gains can help us
understand the improvements led by counterfactual
data, we still do not know how or why these per-
formance gains came to fruition. To that end, we
apply explainability techniques to shed light on the
models’ inner workings and pinpoint what changes
were brought about by the counterfactual data.

While explainability for transformer models like
BERT is an active area of research, explanation
methods for them are usually at the level of individ-
ual predictions (local explanations). In this work,
as we wish to assess how CAD holistically impacts
social NLP models, we are primarily interested in
model understanding over prediction understand-
ing. Therefore, we need a way to aggregate lo-
cal explanations into global features, a non-trivial
task (van der Linden et al., 2019). Furthermore,
explanations generated in an unsupervised way are
not always faithful (Atanasova et al., 2020) and
BERT does not learn weights for words, but for sub-
words,10 making it difficult to find the importance
of words. Therefore, as we cannot ascertain the
reliability of BERT-generated global features and
since LR and BERT models show similar trends in
overall performance, for this analysis, we use the
built-in feature weights of the LR models to com-
pute the top-k global important features for CF and
nCF models. We experiment with BERT explana-
tions and include the result in Appendix 14 but we
leave a detailed analysis of aggregation strategies
of local BERT explanations for future work.

Quantitative Global Feature Analysis. As the

10see e.g. https://huggingface.co/transformers/
tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html
https://huggingface.co/transformers/tokenizer_summary.html
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Figure 2: Proportion of core features in the top-k positive LR global feature importances Models trained
on CAD have a higher proportion of core (non-spurious) features, demonstrated by the gap between CF and nCF
models in lexica, especially for sentiment and hate speech. For pivot words, the gap is smaller.

goal of training on CAD is to reduce the reliance
on spurious features, we hypothesize that CF mod-
els have higher proportions of core (non-spurious)
features in their feature ranking. ‘Core’ features
are those that are consequential manifestations of
the construct (e.g. the word ‘happy’ for sentiment),
while spurious features are those that happen to be
correlated with the construct in a particular dataset
while not being truly indicative of it (‘movie’ for
sentiment). Therefore, core features of a particular
construct span multiple domains or datasets of that
construct. Besides manually inspecting the top-20
global features, we also quantitatively assess the
presence of spurious features in the global feature
importances, i.e., we check the proportion of core
features in the top feature rankings.

Identifying core features. To answer RQ3, we
need a source of core features, or words associated
with each of our constructs. To do so, we define
two sources — (a) lexica and (b) pivot words. For
the first, we use the same lexica for understand-
ing the construct-driven modification strategies in
RQ2, i.e., affect words for sentiment, gender words
for sexism, and identity-based hate words for hate
speech. Note that, while for sentiment, we have
a list of core features for both classes, for sexism
and hate speech, we only have core features for
the positive class for sexist and hate cases, and not
for non-sexist and non-hate cases. For the second
source, we turn to the literature on domain adap-
tation, particularly work on pivot words (Blitzer
et al., 2007). Concretely, for a given construct, we
find words that are highly frequent in both domains;
then find their correlation with the out-of-domain
dataset labels to reduce the inclusion of in-domain
artifacts. We rank these words based on mutual
information and use the first 100 words as a set
of core features. The list of pivot words is in Ap-

pendix 11.

4.6 Results

We manually inspect the top 20 features ranked
most important by each model. The non-
counterfactual models tend to learn more domain-
specific features such as ‘script’ (sentiment), ‘foot-
ball’ (sexism), and ‘wrong’ (hate speech), which
prevents them from generalizing to other domains.
The counterfactual models show fewer spurious fea-
tures in their most important features, instead hav-
ing more affect words (sentiment), gendered words
(sexism), and identity-based slurs (hate speech).
The top-20 features are in Appendix 12.

To scale this analysis, we use lexica and pivot
words as proxies for core, i.e, non-spurious fea-
tures. We plot the proportion of core features in
the top positive feature ranking. Figure 2 shows
that LR CF models rank core features more highly,
especially based on the core feature list from lexica,
strongly evident for sentiment, but also present to a
lesser degree for sexism and hate speech. Therefore,
our analysis indicates that training on CAD leads
to reduced reliance on spurious features, while pro-
moting core features. In contrast to lexica words,
for pivot words, the gap between CF and nCF
models is much smaller for sentiment and sexism.
Whereas, for hate speech, the nCF models tend to
have a higher proportion of core pivot word fea-
tures after a certain k. We include the results for
proportion of negative features in Appendix 13.

5 Related Work

Our work connects the area of learning with coun-
terfactuals to improve NLP models’ robustness
with the area of social NLP.

Counterfactuals in NLP. Counterfactuals in
NLP have been used for model testing, and ex-
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planation, but in this work, we are interested in
using them for training models. Counterfactuals
can be used for augmenting training data where
previous research, focused on sentiment and NLI,
has shown models trained on this augmented data
are more robust to data artifacts (Kaushik et al.,
2020; Teney et al., 2020). Counterfactuals need
not always be label-flipping, but usually entail
making minimal changes to original data either,
and can be generated by manually or automati-
cally (Nie et al., 2020). Recent work has also ad-
dressed automatic CAD generation through lexical
or paraphrase changes (Garg et al., 2019; Iyyer
et al., 2018), templates (Nie et al., 2020), and con-
trolled text generation (Wu et al., 2021; Madaan
et al., 2021). Concurrent and closely related to
our work, Joshi and He assess the efficacy of CAD
for Natural Language Inference and Question An-
swering, and find that diverse CAD is crucial for
improving generalizability, in line with our current
work. On the other hand, CAD generated by hu-
man annotators has not been analyzed in detail to
see which strategies are used for generating coun-
terfactuals nor which strategies are more effective,
particularly for social computing NLP tasks.

In this work, we focus on human generated,
label-flipping counterfactuals for relatively under-
studied constructs in this domain — sexism and
hate speech, while more importantly focusing on
how CAD impacts models. Inspired by causal
mediation (Pearl, 2014), we put forth a typology
of construct-driven and construct-agnostic CAD.
Complementing previous research on overall per-
formance, we take a deeper dive into which features
CAD promotes, and which types are effective.

Social Computing and Online Abuse Detec-
tion. Even though sentiment, sexism, and hate
speech can all be considered social computing
tasks, the latter two, and generally NLP tasks re-
lated to abuse detection (Schmidt and Wiegand,
2017; Jurgens et al., 2019; Nakov et al., 2021; Vid-
gen and Derczynski, 2020; Sarwar et al., 2021),
differ from tasks like sentiment and NLI because
of their subjective nature and the relatively higher
risk of social harms incurred by deploying spurious
and non-robust models for decision making. Pre-
vious work has shed light on several dimensions
of hate speech data that prevents generalisation,
such as imprecise construct specification (Samory
et al., 2021), biased data collection (Ousidhoum
et al., 2020), and annotation artifacts (Waseem,

2016). Several solutions have been proposed for
these issues such as adversarial data generation (Di-
nan et al., 2019), dynamic benchmarking (Kiela
et al., 2021) and debiasing techniques (Nozza et al.,
2019).

Building on these threads of research, we aim
to understand the benefits of different types and
proportions of CAD in training social NLP models.

6 Discussion: Designing
Counterfactually Augmented Data

NLP models are now embedded in many real-world
applications and understanding their limits and ro-
bustness is of the utmost importance, especially for
social computing applications. In this work, using a
detailed and systematic set of analyses we establish
convergent validity of the use of counterfactually
augmented data for improving the reliability of
datasets, particularly for learning social constructs
like sentiment, sexism, and hate speech.

Through extensive testing on different types of
data, including adversarial data, we corroborate
and strengthen previous findings that training on
CAD leads to robust models (Kaushik et al., 2020;
Samory et al., 2021). While it is promising that CF
models do not fall prey to adversarial perturbations
any more than their nCF counterparts, the disparity
in out-of-domain performance and the lack thereof
in adversarial examples might indicate that adver-
sarial examples are not strong testbeds for detecting
model robustness on out-of-domain data.

Having established this, we assessed if all CAD
are equally effective. Using a fine-grained catego-
rization of counterfactual generation strategy, we
find that to not be the case, where for sexism, ex-
amples generated by directly acting on the con-
struct are more effective in improving overall per-
formance. Our results indicate that different strate-
gies have different strengths, and model designers
can prioritize certain strategies over others based
on their needs. Finally, using explainability tech-
niques, we establish that models trained on CAD
tend to rely and promote core features over spuri-
ous ones using lexica and domain-agnostic words.

Limitations. The main limitation of our paper
is that we rely on lexica and automated methods
for several prongs of our analyses — for detecting
core or non-spurious features and for classifying
the different types of counterfactuals. Although
manual vetting of both reveals that the results are
sound, we caution against using them outside of
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this particular context. As we are limited in our
computational resources, we further did not com-
pare different explanation generation methods.

The second limitation of our work is using ex-
planations from a bag-of-words LR model, which
is motivated by two factors. First, since we want to
understand how counterfactuals affect ML models
holistically, we require precise and faithful global
explanations, making the feature importances from
LR an ideal choice. Second, explanation methods
are an active area of research for Transformer mod-
els, and aggregating local explanations to global
ones remains challenging (van der Linden et al.,
2019). As we could not guarantee that the aggre-
gated BERT explanations would reflect the model’s
internal decision-making mechanism, we default
to the LR models for this particular analysis.

Future Work. We used lexica to detect types of
counterfactuals, however, they have several draw-
backs such as limited recall. A supervised clas-
sification approach could be considered as a step
forward, which might be more sophisticated and
accurate. On the other hand, such an approach
would have to grapple with the complexities of the
task of finding types of counterfactuals, since the
input is paired (original-counterfactual) rather than
a single document. Furthermore, a labeled dataset
of sufficient size and careful feature engineering
would be needed, which could be tackled in future
work.

The use of counterfactuals for training data aug-
mentation is fairly recent, with work by Kaushik
et al. in 2019, even more so for social comput-
ing constructs. Therefore, there are several open
questions about their properties as training data,
including the notion of minimality of a counter-
factual, i.e, what constitutes a minimal edit in gen-
erating CAD, either through quantitaive measures
such as lexical distance, qualitative approaches, or
their combination. Recent work has also attempted
to automatically generate CAD (Wu et al., 2021;
Madaan et al., 2021). However, comparing au-
tomated and human generated counterfactuals as
training data is an open question and the analysis
conducted in our work could be reused for this
comparison.

Finally, the measurement of all three constructs
in this work were modeled as binary classifica-
tion tasks. Indeed, the counterfactual generation
framework implicitly assumes binary labels as the
approach asks for annotators to flip the label. Nev-

ertheless, social constructs are multifaceted and
could be modeled as multiclass (or even, multil-
abel) classification tasks. Future work could extend
the current binary setup of counterfactual genera-
tion to accommodate multiclass classifications for
example, through a one-vs-rest approach.

7 Conclusion

We take a deeper dive into the utility of training
on counterfactually augmented data (CAD) for im-
proving the robustness of social NLP models. For
three text classification constructs—sentiment, sex-
ism, and hate speech—we train LR and BERT mod-
els with and without counterfactual data. For the
counterfactual models, we experiment with differ-
ent sampling strategies to understand how different
types of CAD affect model performance. Firstly,
we corroborate previous findings on using coun-
terfactual data, showing that models trained on
CAD have higher out-of-domain performance. Our
work’s core novelty is that we study different strate-
gies for CAD generation, and find that examples
generated by acting on the construct are effective
for sexism, while a diverse set is better for hate
speech. Finally, we show that models trained on
CAD promote core or non-spurious features over
spurious ones. Taken together, our analysis serves
as a blueprint for assessing the potential of CAD,
while our findings can help dataset and model de-
signers design better CAD for social NLP tasks.
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8 Ethical Considerations

In this work, we attempt to understand the con-
nection between training on counterfactually aug-
mented data and increased model robustness. Our
work centers on social NLP constructs like sex-
ism and hate speech, whose manifestations in data
can be harmful and potentially traumatizing to re-
searchers. Furthermore, the sensitive nature of
this data has the potential of victimising or re-
victimizing the people referred to in them. There-
fore, in accordance with ethical guidelines (Vitak
et al., 2016; Zimmer and Kinder-Kurlanda, 2017;
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Vidgen and Derczynski, 2020) we conduct our an-
alyses on aggregate data only and do not infer any
attributes of the speakers in the data. We release a
dataset which only contains the IDs of the original
data and the typology labels we annotate.

Following common practice in NLP, we use
a gendered lexicon that only contains gendered
words based on the gender binary. We acknowl-
edge that this practice is exclusionary towards non-
binary individuals. We alleviate this to a certain
extent by having a broader and more detailed list
of identity terms, which also contains hateful terms
and slurs directed towards non-binary people. In
future, we hope to adopt a more intersectional
perspective which is more inclusive of the sex-
ism faced by trans and non-binary people (Serano,
2016; Winter et al., 2009).

Constructs like sexism and hate speech detec-
tion are often depicted as neutral or objective but
they are deeply contextual, subjective and ambigu-
ous (Vidgen et al., 2019; Jurgens et al., 2019;
Nakov et al., 2021), where misclassifications can
cause harm (Blackwell et al., 2017). We use lex-
ica to determine core features of sexism or hate
speech, but we acknowledge that both of these may
manifest in context-dependent ways and there is no
single objective determinant of hate speech or sex-
ism (or even sentiment). Furthermore, promoting
features like identity terms can increase the risk of
misclassifying non-hate content with such terms,
such as disclosure or reports of facing hate speech,
leading to unintended bias (Blodgett et al., 2020).

We do not undertake any further data genera-
tion or data annotation by human subjects, as we
use data made available by previous researchers
and use lexica for annotating counterfactual types.
Nonetheless, as we show the potential of CAD
in improving some aspects of model robustness,
we hope that the community will adopt annota-
tion guidelines that factor in the risk of harm that
annotators and CAD designers working on abu-
sive language might face (Vidgen and Derczynski,
2020).

We aim to understand how CAD improves model
robustness, but we acknowledge and caution that
these types of data augmentation can also be used
to poison NLP models and cause them to have
several harmful properties (Wallace et al., 2020;
Sun et al., 2018).
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Appendix

Here is the appendix for our paper, “How Does
Counterfactually Augmented Data Impact Models
for Social Computing Constructs?”. The appendix
contains details for facilitating reproducibility (9),
the LR results to supplement the BERT results in
the paper (10), the entire list of pivot words (11),
global top-20 features (12), results for negative
features’ in RQ3 (13), and the BERT explanations
(14).

Caution: The appendix contains examples
of terminology found to be discerning of hate
speech and sexism, and are therefore, of an of-
fensive nature.

9 Reproducibility

9.1 Compute Infrastructure

All models were trained or finetuned on a 40 core
Intel(R) Xeon(R) CPU E5-2690 (without GPU).

9.2 Model Training Details:
Hyperparameters and Time Taken

We preprocess all the data by removing social me-
dia features such as hashtags and mentions. The
hyperparameter bounds for LR models are:
1. stopwords: English, none, English without nega-
tion words
2. norm: (’l1’, ’l2’)
3. C: (0.01, 0.1, 1)
4. penalty: (’l2’, ’l1’)

while for BERT we use:
1. epochs:[4, 5]
2. learning rate: 2e-5, 3e-5, 5e-5

For LR, we have 36 combinations over 5 fold
cross-validation, leading to 180 fits, while for
BERT, we have 6 combinations also over 5 fold
CV, leading to 30 fits.

We use gridsearch for determining hyperparam-
eter, where the metric for selection was macro F1.
Run times and hyperparameter configuartions for
the best performance for all CF (with randomly
sampled 50% data) and nCF models (RQ1) are in-
cluded in Table 6. The hyperparameters and run
times for the CF models trained on different types
of CAD (RQ2) are in Table 7.

9.3 Metrics

The evaluation metrics used in this paper are
macro average F1, positive class precision for RQ1
and RQ2. We used the sklearn implementation

of these metrics: https://scikit-learn.org/

stable/modules/generated/sklearn.metrics.

precision_recall_fscore_support.html. For
RQ3, we compute the fraction of core features in a
feature list based on intersection with the lexica
and the pivot words (included in the appendix 11).
The code for computing the metric is included in
our code (uploaded with the submission)

9.4 Model Parameters

Model parameters are included in Table 8.

10 LR Results

Here we show the results for LR models. While
the BERT models have much higher performance
than LR, both family of models show similar trends,
indicating that CAD is beneficial across model fam-
ilies. We show the results for LR for adversarial
examples in Table 9. We also experiment with dif-
ferent proportions of CAD and measure their effect
on performance in Figure 3. Finally, we also in-
clude the performance of the LR models trained on
different types of CAD in Figure 4.

10.1 Injection Analysis.

In the main paper, we have replaced half of the
original data with CAD (25% for sexism) and seen
that it improves out-of-domain performance. But
is there a limit to CAD’s benefits? We investi-
gate which amount of counterfactually augmented
data is effective. We assess how different propor-
tions of counterfactual examples injected affect
the overall performance in Figure 3. While sub-
stituting original training data with counterfactu-
ally augmented data leads to reduced performance
in-domain where the decrease is proportional to
the amount of counterfactually augmented data,
the trends are dissimilar for out-of-domain perfor-
mance. Models trained on counterfactually aug-
mented data perform better out-of-domain but only
to a certain extent, after which point they begin de-
grading, potentially due to learning CAD-specific
cues, though the limits are different for different
constructs. Our analysis implies that while in-
jecting counterfactually augmented data can be
indeed effective for out-of-domain data, using
an equal proportion of counterfactual and nor-
mal data achieves best performance.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
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construct model best model
hyperparameters

time to train
(one run)

sentiment

CF LR english without negation, l1, 1, l1 24.12s
CF BERT epochs: 5, learning rate: 5e-5 4h07m32s
nCF LR english without negation, l1, 0.1, l1 26.88s
nCF BERT epochs: 5, learning rate: 3e-5 4h10m20s

sexism

CF LR english, l2, 0.01, l2 5.42s
CF BERT epochs: 5, learning rate: 2e-5 3h42m20s
nCF LR none, l2, 0.01, l2 4.87s
nCF BERT epochs: 5, learning rate: 2e-5 3h38m57s

hate speech

CF LR english without negation, l2, 0.01, l2 26.27s
CF BERT epochs: 4, learning rate: 5e-5 17h54m03s
nCF LR english without negation, l2, 0.01, l2 26.67s
nCF BERT epochs: 5, learning rate: 5e-5 17h39m29s

Table 6: Hyperparameters for CF (trained on 50% CAD) and nCF models.

construct model best model hyperparams time to train (one run)

sentiment

CF_c LR english, l1, 1, l1 25.53s
CF_a LR none, l1, 0.1, l1 23.69s
CF_r LR none, l1, 0.1, l1 26.88s
CF_c BERT epochs: 5, learning rate: 3e-5 4h10m20s
CF_a BERT epochs: 5, learning rate: 3e-5 4h21m05s
CF_r BERT epochs: 5, learning rate: 3e-5 4h11m02s

sexism

CF_c LR english, l1, 1, l1 5.91s
CF_a LR english without negation, l1, 1, l1 6.15s
CF_r LR english, l2, 0.1, l2 5.27s
CF_c BERT epochs: 5, learning rate: 5e-5 3h42m20s
CF_a BERT epochs: 5, learning rate: 3e-5 3h34m36s
CF_r BERT epochs: 5, learning rate: 2e-5 3h50m18s

hate speech

CF_c LR english without negation, l1, 1, l1 33.35s
CF_a LR english without negation, l1, 0.1, l1 30.08s
CF_r LR none, l1, 0.1, l1 32.67s
CF_c BERT epochs: 5, learning rate: 3e-5 18h09m11s
CF_a BERT epochs: 5, learning rate: 3e-5 17h58m33s
CF_r BERT epochs: 5, learning rate: 2e-5 17h49m46s

Table 7: CF models trained on different types of CAD.
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construct model #params

Sentiment CF LR 16282
nCF LR 18478
CF BERT

110M
nCF BERT

Sexism CF LR 4750
nCF LR 5505
CF BERT

110M
nCF BERT

Hate speech CF LR 13763
nCF LR 14800
CF BERT

110M
nCF BERT

Table 8: Number of model parameters for the CF and
nCF models.

Macro F1

mode CF nCF

construct method dataset

sentiment logreg adv_inv 0.80 0.85
sentiment logreg adv_inv original 0.82 0.86
sentiment logreg adv_swap 0.75 0.83
sentiment logreg adv_swap original 0.82 0.86

sexism logreg adv_inv 0.71 0.76
sexism logreg adv_inv original 0.71 0.77
sexism logreg adv_swap 0.68 0.75
sexism logreg adv_swap original 0.72 0.78

hate speech logreg adv_inv 0.75 0.92
hate speech logreg adv_inv original 0.75 0.91
hate speech logreg adv_swap 0.66 0.86
hate speech logreg adv_swap original 0.73 0.92

Table 9: The Performance of LR models on adver-
sarial data.
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Figure 3: Performance of LR models trained on dif-
ferent proportions of counterfactually augmented
data over 5 runs. For all three constructs, we see
that models degrade consistently in in-domain datasets,
while improve to a certain point for out-of-domain data.
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Figure 4: Performance (macro F1) of LR models
trained on different types of counterfactually aug-
mented data over different injection proportions on
the out of domain data. Construct-driven CAD per-
forms well especially for sexism (like the BERT mod-
els), while in hate speech there is more variance.

11 Pivot Words

Here are the list of pivot words per construct. Not
all pivot words are meaningfully representative of
the construct and contain out-of-domain artifacts
like ‘elvis’ and ‘south’. Since none of the models
were trained on out-of-domain data, we do not ex-
pect such words to inflate our metrics in Figure 2
of the main paper.

Sentiment. ’long’, ’boring’, ’never’, ’glad’,
’see’, ’ending’, ’credits’, ’roll’, ’not’, ’good’, ’buy’,
’watch’, ’someone’, ’head’, ’like’, ’elvis’, ’real’,
’king’, ’movie’, ’bad’, ’time’, ’worst’, ’7’, ’through-
out’, ’something’, ’anything’, ’really’, ’waste’,
’garbage’, ’spanish’, ’smart’, ’interesting’, ’stories’,
’case’, ’name’, ’badly’, ’missed’, ’chance’, ’story’,
’seen’, ’movies’, ’39’, ’major’, ’release’, ’span’,
’awful’, ’unhappy’, ’complete’, ’b’, ’instead’, ’clas-
sic’, ’terrible’, ’acting’, ’film’, ’watched’, ’unless’,
’looking’, ’cure’, ’insomnia’, ’imagine’, ’anyone’,
’actually’, ’thinking’, ’best’, ’given’, ’ever’, ’top’,
’direction’, ’great’, ’got’, ’turned’, ’silly’, ’shame’,
’idea’, ’potential’, ’shot’, ’lots’, ’example’, ’dr’,
’daughter’, ’ages’, ’years’, ’wait’, ’video’, ’much’,
’100’, ’brain’, ’cell’, ’killing’, ’way’, ’money’,
’store’, ’mad’, ’sat’, ’spent’, ’absolutely’, ’slow’,
’wish’, ’could’, ’say’

Sexism. ’fuck’, ’women’, ’shit’, ’web’, ’ex-
perience’, ’similar’, ’key’, ’know’, ’twitter’, ’ad-
ditional’, ’controls’, ’verified’, ’man’, ’hungry’,
’making’, ’best’, ’damn’, ’sandwich’, ’ever’, ’limit’,
’michelle’, ’obama’, ’happy’, ’looked’, ’beautiful’,
’deep’, ’blue’, ’purple’, ’dress’, ’wore’, ’today’,
’knock’, ’found’, ’color’, ’made’, ’black’, ’street’,
’player’, ’monkey’, ’started’, ’getting’, ’heat’, ’ob-
viously’, ’logical’, ’state’, ’family’, ’paid’, ’father’,
’mother’, ’lost’, ’stand’, ’watching’, ’conceited’,
’idiots’, ’husband’, ’right’, ’expect’, ’wife’, ’times’,
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’think’, ’less’, ’clearly’, ’men’, ’emotional’, ’be-
lieve’, ’wear’, ’dresses’, ’trying’, ’decide’, ’time’,
’contact’, ’police’, ’call’, ’w’, ’lawyer’, ’never’,
’thought’, ’say’, ’unless’, ’trouble’, ’involved’, ’ac-
tually’, ’girl’, ’not’, ’sensitive’, ’seen’, ’cabinet’,
’gender’, ’matters’, ’dear’, ’sexist’, ’get’, ’like’,
’nagging’, ’work’, ’society’, ’culture’, ’giving’,
’due’, ’respect’

Hatespeech. ’burden’, ’society’, ’many’, ’b’, ’l’,
’c’, ’k’, ’country’, ’not’, ’around’, ’like’, ’hate’,
’called’, ’nigger’, ’horrible’, ’people’, ’smell’,
’dirty’, ’stinky’, ’lazy’, ’black’, ’trans’, ’fucking’,
’hell’, ’life’, ’real’, ’cunt’, ’absolutely’, ’muslims’,
’street’, ’cute’, ’gay’, ’non’, ’immigrants’, ’men’,
’asian’, ’women’, ’living’, ’area’, ’really’, ’nice’,
’get’, ’tired’, ’time’, ’foreigners’, ’never’, ’wash’,
’sorry’, ’bad’, ’way’, ’clever’, ’blacks’, ’kept’,
’aside’, ’actually’, ’possible’, ’seem’, ’less’, ’be-
long’, ’south’, ’east’, ’refugees’, ’general’, ’would’,
’rather’, ’near’, ’better’, ’statistics’, ’show’, ’num-
ber’, ’lack’, ’work’, ’hard’, ’bring’, ’world’,
’made’, ’lot’, ’muslim’, ’friends’, ’since’, ’men-
tally’, ’retarded’, ’contribute’, ’anything’, ’normal’,
’banned’, ’schools’, ’apart’, ’kids’, ’soooo’, ’much’,
’killed’, ’go’, ’ahead’, ’nuts’, ’one’, ’day’, ’stop’,
’getting’, ’told’

12 Top 20 words by construct for CF and
nCF models

13 LR Negative Class Features

Complementing Figure 2 in the main paper, we
plot the proportion of core features in the most im-
portant negative feature importance ranking of the
LF CF ad nCF models in Figure 5. This analy-
sis demonstrates an interesting distinction between
sentiment and the other two constructs, also seen
in the top-20 global feature importances. Since it
is difficult to envision negative features for con-
structs like sexism and hate speech, there is very
little difference in the rankings of global features
for the negative class between the two types of
models, as opposed to sentiment where there is a
clear difference between CF and nCF models.

14 BERT Explanations

As we state in the main paper, we use LR feature
weights for understanding if CF models tend to
rely on less spurious features. The reason for using
LR is the purported unreliability of Transformer-
based methods’ explanations (Jain and Wallace,

2019; Atanasova et al., 2020) and the issues in ag-
gregating local BERT explanations to global expla-
nations for model understanding (van der Linden
et al., 2019). Since not all explainability methods,
especially for deep learning, are faithful.

As an exploratory step, we complement the LR
explanations with explanations for BERT, using
Integrated Gradients (Sundararajan et al., 2017),
where input importance is measured using the gra-
dients computed with respect to the inputs. Pre-
vious research has found gradient-based methods
outperform perturbation or model simplification-
based approaches. As we are interested in model
understanding rather than prediction understand-
ing, we convert local explanations for BERT into a
global feature ranking by aggregating the weights
for every token in a local explanation.11 While
the trends are similar for sexism and sentiment,
though the disparity between CF and nCF models
is much smaller compared to the LR results, we
caution against making concrete inferences from
these results due to the potential unreliability of
global BERT explanations.

11Unlike LR where the weight for a token is fixed for all
examples, BERT weighs tokens based on context.
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Counterfactual Non-Counterfactual

pos feature pos coef neg feature neg coeff pos feature pos coef neg feature neg coeff

0 hilarious 0.77 bad -3.45 lives 0.94 bad -3.63
1 every 0.81 worst -3.23 classic 0.99 horror -2.48
2 nice 0.82 terrible -3.10 amazing 1.00 worst -2.33
3 loved 0.84 boring -3.09 young 1.01 boring -1.96
4 beautiful 0.88 not -2.85 romance 1.02 waste -1.95
5 funny 0.96 awful -2.39 highly 1.04 awful -1.87
6 interesting 1.03 poor -1.86 loved 1.04 terrible -1.85
7 brilliant 1.13 poorly -1.65 family 1.09 poor -1.62
8 awesome 1.18 dull -1.63 beautiful 1.11 worse -1.54
9 perfect 1.38 worse -1.54 enjoyed 1.17 plot -1.35
10 fantastic 1.39 waste -1.53 especially 1.19 stupid -1.35
11 exciting 1.44 stupid -1.48 fun 1.37 horrible -1.32
12 well 1.54 horrible -1.46 life 1.42 script -1.27
13 love 1.66 lame -1.37 perfect 1.47 like -1.18
14 good 1.96 weak -1.24 best 1.48 poorly -1.17
15 excellent 1.98 nothing -1.17 excellent 1.49 money -1.15
16 wonderful 1.98 fails -1.17 wonderful 1.66 don -1.14
17 amazing 2.20 hate -1.11 romantic 1.86 pointless -1.12
18 best 2.33 avoid -1.11 love 1.97 minutes -1.11
19 great 4.38 mediocre -1.06 great 3.28 movie -1.07

Table 10: We enumerate the top 20 global feature importances for sentiment detection. Spurious features are
marked in red. We find that the counterfactual models learn more general less spurious or in-domain-specific
features such as movie review related words.
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Counterfactual Non-Counterfactual

pos feature pos coef neg feature neg coeff pos feature pos coef neg feature neg coeff

0 wifes 1.24 people -3.37 in 1.48 love -2.28
1 football 1.25 love -2.34 lady 1.50 people -1.97
2 boy 1.33 person -1.99 me 1.62 as -1.78
3 family 1.34 adults -1.74 shouldn 1.68 these -1.63
4 not 1.34 adult -1.68 than 1.75 this -1.62
5 sex 1.55 kids -1.67 don 1.79 that -1.61
6 guys 1.85 rookie -1.57 sexist 1.91 kat -1.50
7 wife 1.90 grownups -1.54 when 2.10 same -1.50
8 husband 2.00 racist -1.45 girl 2.14 without -1.38
9 male 2.05 happy -1.40 sports 2.17 you -1.30
10 lady 2.06 grownup -1.38 females 2.29 lucky -1.22
11 females 3.12 elders -1.36 woman 2.39 those -1.18
12 girls 3.59 kid -1.36 man 2.48 happy -1.18
13 sexist 3.68 lucky -1.33 girls 2.59 hope -1.17
14 man 3.92 without -1.33 should 2.69 we -1.14
15 girl 3.92 freedom -1.25 rt 2.72 andre -1.08
16 female 4.29 equal -1.22 football 2.98 well -1.06
17 woman 4.31 changed -1.21 female 3.28 equally -1.05
18 men 4.60 elder -1.16 women 3.67 free -1.01
19 women 6.08 hope -1.10 men 3.86 equal -0.95

Table 11: We enumerate the top 20 global feature importances for sexism detection. Spurious features are marked
in red. We find that the counterfactual models learn more general less spurious or in-domain-specific features such
as movie review related words. Note that we only mark the spurious positive features because it is difficult to
ascertain spurious features for the negative class. However, we see domain-specific terms like ‘Kat’ and ‘Andre’ in
the top features as well.
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Counterfactual Non-Counterfactual

pos feature pos coef neg feature neg coeff pos feature pos coef neg feature neg coeff

0 black 2.29 racists -2.74 jews 2.69 fucking -9.87
1 wogs 2.30 food -1.98 nice 2.76 lot -5.41
2 fags 2.32 cars -1.88 wrong 2.81 fuck -5.05
3 trannies 2.35 corona -1.84 urgh 2.81 neighbour -4.63
4 mussies 2.42 racist -1.77 concepts 2.95 know -4.26
5 foreigners 2.47 awful -1.68 already 2.98 sucks -4.23
6 women 2.48 supremacists -1.67 think 2.99 call -4.18
7 chinks 2.49 strong -1.67 idea 3.03 bitch -4.15
8 jew 2.49 covid -1.57 happy 3.09 many -3.70
9 whores 2.52 cats -1.52 let 3.53 friend -3.64
10 jews 2.53 hatred -1.51 understand 3.58 called -3.49
11 white 2.53 2020 -1.45 likes 3.60 area -3.45
12 jewish 2.59 fight -1.43 one 3.61 like -3.21
13 immigrants 2.64 homophobes -1.43 tell 3.76 useless -2.95
14 camel 2.66 dogs -1.43 talk 4.45 hate -2.90
15 pakis 2.72 tories -1.40 loves 4.76 black -2.76
16 yids 2.73 hear -1.40 women 4.82 corona -2.71
17 paki 2.95 ukba -1.39 everyone 5.38 piece -2.69
18 niggers 3.00 haters -1.38 rude 7.81 man -2.62
19 blacks 4.10 foxes -1.35 love 11.32 failure -2.57

Table 12: We enumerate the top 20 global feature importances for hate speech detection. Spurious features are
marked in red. We find that the counterfactual models learn less spurious or in-domain-specific features. Note that
we only mark the spurious positive features because it is difficult to ascertain spurious features for the negative
class.


