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Abstract

Position representation is crucial for building
position-aware representations in Transformers.
Existing position representations suffer from
a lack of generalization to test data with un-
seen lengths or high computational cost. We
investigate shifted absolute position embedding
(SHAPE) to address both issues. The basic idea
of SHAPE is to achieve shift invariance, which
is a key property of recent successful position
representations, by randomly shifting absolute
positions during training. We demonstrate that
SHAPE is empirically comparable to its coun-
terpart while being simpler and faster1.

1 Introduction

Position representation plays a critical role in self-
attention-based encoder-decoder models (Trans-
formers) (Vaswani et al., 2017), enabling the
self-attention to recognize the order of input se-
quences. Position representations have two cat-
egories (Dufter et al., 2021): absolute position
embedding (APE) (Gehring et al., 2017; Vaswani
et al., 2017) and relative position embedding
(RPE) (Shaw et al., 2018). With APE, each po-
sition is represented by a unique embedding, which
is added to inputs. RPE represents the position
based on the relative distance between two tokens
in the self-attention mechanism.

RPE outperforms APE on sequence-to-sequence
tasks (Narang et al., 2021; Neishi and Yoshinaga,
2019) due to extrapolation, i.e., the ability to gen-
eralize to sequences that are longer than those
observed during training (Newman et al., 2020).
Wang et al. (2021) reported that one of the key
properties contributing to RPE’s superior perfor-
mance is shift invariance2, the property of a func-
tion to not change its output even if its input is
shifted. However, unlike APE, RPE’s formulation

1The code is available at https://github.com/
butsugiri/shape.

2Shift invariance is also known as translation invariance.
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Figure 1: Overview of position representations. (a) APE
and (c) SHAPE consider absolute positions in the input
layer, whereas (b) RPE considers the relative position
of a given token pair in the self-attention mechanism.

strongly depends on the self-attention mechanism.
This motivated us to explore a way to incorporate
the benefit of shift invariance in APE.

A promising approach to achieving shift invari-
ance while using absolute positions is to randomly
shift positions during training. A similar idea can
be seen in several contexts, e.g., computer vision
(Goodfellow et al., 2016) and question-answering
in NLP (Geva et al., 2020). APE is no exception;
a random shift should force Transformer to cap-
ture the relative positional information from ab-
solute positions. However, the effectiveness of a
random shift for incorporating shift invariance in
APE is yet to be demonstrated. Thus, we formulate
APE with a random shift as a variant of position
representation, namely, Shifted Absolute Position
Embedding (SHAPE; Figure 1c), and conduct a
thorough investigation. In our experiments, we first
confirm that Transformer with SHAPE learns to be
shift-invariant. We then demonstrate that SHAPE
achieves a performance comparable to RPE in ma-
chine translation. Finally, we reveal that Trans-
former equipped with shift invariance shows not
only better extrapolation ability but also better in-
terpolation ability, i.e., it can better predict rare
words at positions observed during the training.

https://github.com/butsugiri/shape
https://github.com/butsugiri/shape
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2 Position Representations

Figure 1 gives an overview of the position represen-
tations compared in this paper. We denote a source
sequence X as a sequence of I tokens, namely,
X = (x1, . . . , xI). Similarly, let Y represent a
target sequence of J tokens Y = (y1, . . . , yJ).

2.1 Absolute Position Embedding (APE)

APE provides each position with a unique embed-
ding (Figure 1a). Transformer with APE computes
the input representation as the sum of the word em-
bedding and the position embedding for each token
xi ∈X and yj ∈ Y .

Sinusoidal positional encoding (Vaswani et al.,
2017) is a deterministic function of the position
and the de facto standard APE for Transformer3.
Specifically, for the i-th token, the m-th element of
position embedding PE(i,m) is defined as

PE(i,m)=

sin
(

i

10000
2m
D

)
m is even

cos
(

i

10000
2m
D

)
m is odd

, (1)

where D denotes the model dimension.

2.2 Relative Position Embedding (RPE)

RPE (Shaw et al., 2018) incorporates position in-
formation by considering the relative distance be-
tween two tokens in the self-attention mechanism
(Figure 1b). For example, Shaw et al. (2018)
represent the relative distance between the i-th
and j-th tokens with relative position embeddings
aKey
i−j ,a

Value
i−j ∈ RD. These embeddings are then

added to key and value representations, respec-
tively.

RPE outperforms APE on out-of-distribution
data in terms of sequence length owing to its innate
shift invariance (Rosendahl et al., 2019; Neishi and
Yoshinaga, 2019; Narang et al., 2021; Wang et al.,
2021). However, the self-attention mechanism of
RPE involves more computation than that of APE4.
In addition, more importantly, RPE requires the
modification of the architecture, while APE does
not. Specifically, RPE strongly depends on the
self-attention mechanism; thus, it is not necessar-
ily compatible with studies that attempt to replace

3Learned position embedding (Gehring et al., 2017) is
yet another variant of APE; however, we exclusively focus on
sinusoidal positional encoding as its performance is compara-
ble (Vaswani et al., 2017).

4Narang et al. (2021) reported that Transformer with RPE
is up to 25% slower than that with APE.

the self-attention with a more lightweight alterna-
tive (Kitaev et al., 2020; Choromanski et al., 2021;
Tay et al., 2020).

RPE, which was originally proposed by Shaw
et al. (2018), has many variants in the litera-
ture (Dai et al., 2019; Raffel et al., 2020; Huang
et al., 2020; Wang et al., 2021; Wu et al., 2021).
They aim to improve the empirical performance or
the computational speed compared with the origi-
nal RPE. However, the original RPE is still a strong
method in terms of the performance. Narang et al.
(2021) conducted a thorough comparison on multi-
ple sequence-to-sequence tasks and reported that
the performance of the original RPE is compara-
ble to or sometimes better than its variants. Thus,
we exclusively use the original RPE in our experi-
ments.

2.3 Shifted Absolute Position Embedding
(SHAPE)

Given the drawbacks of RPE, we investigate
SHAPE (Figure 1c) as a way to equip Transformer
with shift invariance without any architecture mod-
ification or computational overhead on APE. Dur-
ing training, SHAPE shifts every position index of
APE by a random offset. This prevents the model
from using absolute positions to learn the task and
instead encourages the use of relative positions,
which we expect to eventually lead to the learning
of shift invariance.

Let k represent an offset drawn from a discrete
uniform distribution U{0,K} for each sequence
and for every iteration during training, where K ∈
N is the maximum shift. SHAPE only replaces
PE(i,m) of APE in Equation 1 with

PE(i+ k,m). (2)

We independently sample k for the source and tar-
get sequence. SHAPE can thus be incorporated
into any model using APE with virtually no compu-
tational overhead since only the input is modified.
Note that SHAPE is equivalent to the original APE
if we set K = 0; in fact, we set K = 0 during
inference. Thus, SHAPE can be seen as a natural
extension to incorporate shift invariance in APE.

SHAPE can be interpreted in multiple view-
points. For example, SHAPE can be seen as a
regularizer that prevents Transformer from over-
fitting to the absolute position; such overfitting is
undesirable not only for extrapolation (Neishi and
Yoshinaga, 2019) but also for APE with length
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constraints (Takase and Okazaki, 2019; Oka et al.,
2020, 2021). In addition, SHAPE can be seen as a
data augmentation method because the randomly
sampled k shifts each instance into different sub-
spaces during training.

3 Experiments

Using machine translation benchmark data, we first
confirmed that Transformer trained with SHAPE
learns shift invariance (Section 3.2). Then, we com-
pared SHAPE with APE and RPE to investigate its
effectiveness (Section 3.3).

3.1 Experimental Configuration

Dataset We used the WMT 2016 English-
German dataset for training and followed Ott et al.
(2018) for tokenization and subword segmenta-
tion (Sennrich et al., 2016). We used newstest2010-
2013 and newstest2014-2016 as the validation and
test sets, respectively.

Our experiments consist of the following three
distinct dataset settings:
(i) VANILLA: Identical to previous stud-
ies (Vaswani et al., 2017; Ott et al., 2018).
(ii) EXTRAPOLATE: Shift-invariant models are
typically evaluated in terms of extrapolation abil-
ity (Wang et al., 2021; Newman et al., 2020). We
replicated the settings of Neishi and Yoshinaga
(2019); the training set excludes pairs whose source
or target sequence exceeds 50 subwords, while the
validation and test sets are identical to VANILLA.
(iii) INTERPOLATE: We also evaluate the models
from the viewpoint of interpolation, which we de-
fine as the ability to generate tokens whose lengths
are seen during training. Specifically, we evaluate
interpolation using long sequences since, first, the
generation of long sequences is an important re-
search topic in NLP (Zaheer et al., 2020; Maruf
et al., 2021) and second, in datasets with long se-
quences, the position distribution of each token
becomes increasingly sparse. In other words, to-
kens in the validation and test sets become unlikely
to be observed in the training set at corresponding
positions; we expect that shift invariance is crucial
for addressing such position sparsity.

In this study, we artificially generate a long
sequence by simply concatenating independent
sentences in parallel corpus. Specifically, given
ten neighboring sentences of VANILLA, i.e.,
X1, . . . ,X10 and Y1, . . . ,Y10, we concatenate
each sentence with a unique token 〈sep〉. We also

Original Swapped Performance Drop

APE 28.81 20.74 8.07
SHAPE 28.51 27.06 1.45

Table 1: BLEU score on the sub-sampled training
data of INTERPOLATE (10,000 pairs). In Original and
Swapped, the order of input sequence is X1, . . . ,X10

and X2, . . . ,X10,X1, respectively.

apply the same operation to the validation and test
sets.
Evaluation We evaluate the performance with
sacreBLEU (Post, 2018). Throughout the experi-
ment, we apply the moses detokenizer to the system
output and then compute the detokenized BLEU5.
Models We adopt transformer-base (Vaswani
et al., 2017) with APE, SHAPE, or RPE, re-
spectively. Our implementations are based on
OpenNMT-py (Klein et al., 2017). Unless other-
wise stated, we use a fixed value (K = 500) for
the maximum shift of SHAPE to demonstrate that
SHAPE is robust against the choice of K. We
set the relative distance limit in RPE to 16 follow-
ing Shaw et al. (2018) and Neishi and Yoshinaga
(2019)6.

3.2 Experiment 1: Shift Invariance

We confirmed that SHAPE learns shift invariance
by comparing APE and SHAPE trained on INTER-
POLATE.
Quantitative Evaluation: BLEU on Training
Data We first evaluated if the model is robust
to the order of sentences in each sequence. We
used the sub-sampled training data (10k pairs) of
INTERPOLATE to eliminate the effect of unseen
sentences; in this way, we can isolate the effect
of sentence order. Given a sequence in the origi-
nal order (Original), X1, . . . ,X10, we generated a
swapped sequence (Swapped) by moving the first
sentence to the end, i.e., X2, . . . ,X10,X1. The
model then generates two sequences Y ′1 , . . . ,Y

′
10

and Y ′2 , . . . ,Y
′
10,Y

′
1 . Finally, we evaluated the

BLEU score of Y ′1 . The result is shown in Ta-
ble 1. Here, SHAPE has a much smaller perfor-
mance drop than APE when evaluated on different
sentence ordering. This result indicates the shift
invariance property of SHAPE.
Qualitative Evaluation: Similarities of Repre-
sentations We also qualitatively confirmed the

5Details of datasets and evaluation are in Appendix A.
6See Appendix B for a list of hyperparameters.
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Figure 2: Cosine similarities of the encoder hidden
states with different offsets k ∈ {0, 100, 250, 500}.
Only the representation of SHAPE is invariant with
k.

Dataset Model Valid Test Speed

VANILLA APE† 23.61 30.46 x1.00
RPE† 23.67 30.54 x0.91
SHAPE† 23.63 30.49 x1.01

EXTRAPOLATE APE 22.18 29.22 x1.00
RPE 22.97 29.86 x0.91
SHAPE 22.96 29.80 x0.99

INTERPOLATE APE 31.40 38.23 x1.00
RPE∗ - - -
SHAPE 32.50 39.09 x0.99

Table 2: BLEU scores on newstest2010-2016. Valid is
the average of newstest2010-2013. Test is the average of
newstest2014-2016. The scores for individual newstests
are available in Appendix D. †: the values are averages
of five distinct trials with five different random seeds.
∗: not available as the implementation was very slow.
Speed is the relative speed to APE (larger is faster).

shift invariance as shown in Figure 2. The figure
illustrates how the offset k changes the encoder rep-
resentations of trained models APE and SHAPE.
Given the two models and an input sequence X , we
computed the encoder hidden states of the given in-
put sequence for each k ∈ {0, 100, 250, 500}. For
each position i, we computed the cosine similarity
(sim) of the hidden states from two offsets, i.e.,
hk1
i ,hk2

i ∈ RD, and computed its average across
the positions as

1

I

I∑
i=1

sim(hk1
i ,hk2

i ). (3)

As shown in Figure 2, SHAPE builds a shift-
invariant representation; regardless of the offset
k, the cosine similarity is almost always 1.0. Such
invariance is nontrivial because the similarity of
APE does not show similar characteristics7.

3.3 Experiment 2: Performance Comparison
We compared the overall performance of position
representations on the validation and test sets as

7Additional figures are available in Appendix C.
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Figure 3: BLEU score improvement from APE on vali-
dation and test sets with respect to the source sequence
length. The gray color means no training data.

shown in Table 2. Figure 3 shows the BLEU im-
provement of RPE and SHAPE from APE with
respect to the source sequence length8.

On VANILLA, the three models show compa-
rable results. APE being comparable to RPE is
inconsistent with the result reported by Shaw et al.
(2018); we assume that this is due to a difference
in implementation. In fact, Narang et al. (2021)
have recently reported that improvements in Trans-
former often do not transfer across implementa-
tions.

On EXTRAPOLATE, RPE (29.86) outperforms
APE (29.22) by approximately 0.6 BLEU points
on the test set; this is consistent with the result re-
ported by Neishi and Yoshinaga (2019). Moreover,
SHAPE achieves comparable test performance to
RPE (29.80). According to Figure 3a, both RPE
and SHAPE have improved extrapolation ability,
i.e., better BLEU scores on sequences longer than
those observed during training. In addition, Fig-
ure 3a shows the performance of SHAPE with the
maximum shift K = 40 that was chosen on the
basis of the BLEU score for the validation set. This
model outperforms RPE, achieving BLEU scores
of 23.12 and 29.86 on the validation and test sets,
respectively. These results indicate that SHAPE
can be a better alternative to RPE.

On INTERPOLATE, we were unable to train
RPE because its training was prohibitively slow9.

8The same graph with absolute BLEU is in Appendix D.
9A single gradient step of RPE took about 5 seconds,

which was 20 times longer than that of APE and SHAPE. We
assume that the RPE implementation available in OpenNMT-
py has difficulty in dealing with long sequences.
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Figure 4: Tokenwise analysis on gold references: the
value in each cell represents the ratio that SHAPE as-
signs a higher score to a gold token than APE.

Similarly to EXTRAPOLATE, SHAPE (39.09) out-
performs APE (38.23) on the test set. Figure 3b
shows that SHAPE consistently outperformed APE
for every sequence length. From this result, we find
that the shift invariance also improves the interpo-
lation ability of Transformer.

4 Analysis

This section provides a deeper analysis of how the
model with translation invariance improves the per-
formance. We hereinafter exclusively focus on
APE and SHAPE because SHAPE achieves com-
parable performance to RPE, and we were unable
to train RPE on the INTERPOLATE dataset as ex-
plained in footnote 9.

As discussed in Section 3.3, Figure 3 demon-
strated that SHAPE outperformed APE in terms
of BLEU score. However, BLEU evaluates two
concepts simultaneously, that is, the token preci-
sion via n-gram matching and the output length via
the brevity penalty (Papineni et al., 2002). Thus,
the actual source of improvement remains unclear.
We hereby exclusively analyzed the precision of
token prediction. Specifically, we computed token-
wise scores assigned for gold references, and we
then compared them across the models; given a se-
quence pair (X,Y ) and a trained model, we com-
puted a score (i.e., log probability) sj for each to-
ken yj in a teacher-forcing manner. Here, a higher
score to gold token means better model perfor-
mance. We used the validation set for comparison.

Figure 4 shows the ratio that SHAPE assigns a
higher score to a gold token than APE, compared

across for each position of the decoder.
Better extrapolation means better token preci-
sion Figure 4a shows that SHAPE outperforms
APE, especially in the right part of the heat map.
This area corresponds to sequences longer than
those observed during training. This result indi-
cates that better extrapolation in terms of BLEU
score means better token precision.
Interpolation is particularly effective for rare
tokens As shown in Figure 4b, SHAPE consis-
tently outperforms APE and the performance gap is
especially significant in the low-frequency region
(bottom part). This indicates that SHAPE predicts
rare words better than APE. One plausible expla-
nation for this observation is that SHAPE carries
out data augmentation in the sense that in each
epoch, the same sequence pair is assigned a differ-
ent position depending on the offset k. Rare words
typically have sparse position distributions in train-
ing data and thus benefit from the extra position
assignment during training.

5 Conclusion

We investigated SHAPE, a simple variant of APE
with shift invariance. We demonstrated that
SHAPE is empirically comparable to RPE yet im-
poses almost no computational overhead on APE.
Our analysis revealed that SHAPE is effective at
extrapolation to unseen lengths and interpolating
rare words. SHAPE can be incorporated into the
existing codebase with a few lines of code and no
risk of a performance drop from APE; thus, we
expect SHAPE to be used as a drop-in replacement
for APE and RPE.
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A Summary of Datasets

We summarized the statistics, preprocessing, and
evaluation metrics of datasets used in our experi-
ment in Table 3. The length statistics are in Fig-
ure 5.

B Hyperparameters

We present the list of hyperparameters used in our
experiments in Table 4. Hyperparameters for train-
ing Transformer follow the recipe available in the
official documentation page of OpenNMT-py10.

C Similarities of Representations

In Section 3.2, we presented Figure 2 to qual-
itatively demonstrate that the representation of
SHAPE is shift-invariant. We present ten addi-
tional figures that we created from ten additional
instances in Figure 6. The characteristic of the fig-
ures are consistent with that observed in Figure 2;
the representation of SHAPE is shift-invariant,
whereas the representation of APE is not.

D Detailed BLEU Scores

We report the BLEU score on each of newstest2010-
2016 in Table 51112. In addition, we report the per-
formance of APE, RPE, and SHAPE with respect
to the source sequence lengths in Figure 7.

E Learning Curve of Each Model

We present the learning curve of each model
(APE, RPE, SHAPE) trained on different datasets
(VANILLA, EXTRAPOLATE, INTERPOLATE). Fig-
ures 8 and 9 present the validation perplexity
against the number of gradient steps and wall clock,
respectively. From these figures, we made the fol-
lowing observations:

First, according to Figure 8, the speed of con-
vergence is similar across the models in terms of
the number of gradient steps. In other words, in
our experiment (Section 3), we never compare the
models whose degree of convergence is different.

10https://opennmt.net/OpenNMT-py/FAQ.
html#how-do-i-use-the-transformer-model

11SacreBLEU hash of VANILLA and EXTRAPOLATE is:
BLEU+case.mixed+lang
.en-de+numrefs.1+smooth.exp+
test.wmt{10,11,12,13,
14/full,15,16}+tok.13a+version.1.5.0.

12SacreBLEU hash of INTERPOLATE is
BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.5.0.

Second, Figure 9 demonstrates that RPE re-
quires more time to complete the training than
APE and SHAPE do. As explained in Section 2.2,
RPE causes the computational overhead because it
needs to compute attention for relative position em-
beddings. The amount of time required to complete
the training is presented in Table 6.

F Sanity Check of the Baseline
Performance

Building a strong baseline is essential for trustable
results (Denkowski and Neubig, 2017). To con-
firm that our baseline model (i.e., Transformer with
APE) trained using OpenNMT-py (Klein et al.,
2017) is strong enough, we compared its perfor-
mance with that trained on Fairseq (Ott et al., 2019).
Fairseq is another state-of-the-art framework used
by winning teams of WMT shared task (Ng et al.,
2019). For training on Fairseq, we used the official
recipe available in the documentation13. The result
is presented in Table 7. Here, the results are the
average of five distinct trials with different random
seeds. From the table, we can confirm that both
models can achieve comparable results.

13https://github.com/pytorch/fairseq/
tree/master/examples/scaling_nmt

https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model
https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model
https://github.com/pytorch/fairseq/tree/master/examples/scaling_nmt
https://github.com/pytorch/fairseq/tree/master/examples/scaling_nmt
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Dataset Name Training Data # of Sent.
Pairs in
Training
Data

Validation Test Evaluation Metric

VANILLA WMT 2016 English-German 4.5M newstest2010-
2013

newsetst2014-
2016

detokenized BLEU
via sacreBLEU

EXTRAPOLATE WMT 2016 English-German.
We removed sequence pairs if
the length of the source or target
sentence exceeds 50 subwords.

3.9M newstest2010-
2013

newsetst2014-
2016

detokenized BLEU
via sacreBLEU

INTERPOLATE WMT 2016 English-German.
Given neighboring ten sentence
of VANILLA, i.e., X1, . . . ,X10

and Y1, . . . ,Y10, we concate-
nate each sentence with a spe-
cial token 〈sep〉.

450K newstest2010-
2013. We concate-
nated sentences as
in training data.

newstest2014-
2016. We concate-
nated sentences as
in training data.

detokenized BLEU
via sacreBLEU

Table 3: Summary of statistics, preprocessing, and evaluation metric of datasets used in our experiment.
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(c) INTERPOLATE dataset

Figure 5: Distribution of source sequence length of each dataset.

Configurations Selected Value

Encoder-Decoder Architecture transformer-base (Vaswani et al., 2017)
Optimizer Adam (β1 = 0.9, β2 = 0.98, ε = 1× 10−8)
Learning Rate Schedule “Noam” scheduler described in (Vaswani et al., 2017)
Warmup Steps 8,000
Learning Rate Scaling Factor† 2
Dropout 0.1
Gradient Clipping None
Beam Search Width 4
Label Smoothing εls = 0.1 (Szegedy et al., 2016)
Mini-batch Size 112k tokens
Number of Gradient Steps 200,000
Averaging Save checkpoint for every 5,000 steps and take an average of last 10 checkpoints
Maximum Offset K (for SHAPE) We set K = 500 for the most of the experiments. We manually tuned K on validation

BLEU for EXTRAPOLATE from following range: {10, 20, 30, 40, 100, 500}, and report
the score of K = 40 in addition to K = 500. We used a single random seed for the
tuning.

Relative Distance Limit (for RPE) 16 following (Neishi and Yoshinaga, 2019)
GPU Hardware Used DGX-1 and DGX-2

Table 4: List of hyperparameters. †: this corresponds to “learning rate” variable defined in OpenNMT-py framework.
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(b) Sequence ID: #2
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(c) Sequence ID: #3
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(e) Sequence ID: #5
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(f) Sequence ID: #6
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(g) Sequence ID: #7
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(h) Sequence ID: #8
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(i) Sequence ID: #9
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(j) Sequence ID: #10

Figure 6: Cosine similarities of encoder hidden states with different offsets k ∈ {0, 100, 250, 500}. Only the
representation of SHAPE is invariant with k.

Model 2010 2011 2012 2013 2014 2015 2016 Average Speed

Dataset: VANILLA

APE† 24.22 21.98 22.20 26.06 26.95 29.98 34.46 26.55 x1.00
RPE† 24.29 22.05 22.22 26.13 27.00 30.00 34.61 26.61 x0.91
SHAPE† 24.18 22.01 22.23 26.08 26.89 30.12 34.48 26.57 x1.01

Dataset: EXTRAPOLATE

APE 22.69 20.36 20.72 24.94 26.24 28.79 32.62 25.19 x1.00
RPE 23.46 21.19 21.69 25.54 26.80 29.43 33.34 25.92 x0.91
SHAPE 23.60 21.24 21.53 25.45 26.54 29.22 33.63 25.89 x0.99

Dataset: INTERPOLATE ‡

APE 31.41 29.71 29.79 34.69 35.36 38.00 41.32 34.33 x1.00
RPE∗ - - - - - - - - -
SHAPE 32.71 30.77 30.96 35.54 35.72 39.18 42.37 35.32 x0.99

Table 5: BLEU scores on newstest2010-2016. Average column shows the macro average of all newstests. †: the
values are averages of five distinct trials with five different random seeds. ∗: not available as the implementation
was very slow. Speed is the relative speed to APE (larger is faster).
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Model Dataset Hardware Training Time (sec) Number of Parameters

APE VANILLA DGX-1 97,073 61M
RPE VANILLA DGX-1 107,089 61M
SHAPE VANILLA DGX-1 96,439 61M

APE EXTRAPOLATE DGX-1 101,469 61M
RPE EXTRAPOLATE DGX-1 111,246 61M
SHAPE EXTRAPOLATE DGX-1 102,535 61M

APE INTERPOLATE DGX-2 69,148 61M
SHAPE INTERPOLATE DGX-2 69,529 61M

Table 6: Training time required to complete 200,000 gradient steps. RPE requires more time than APE and SHAPE
do. Figure 9 illustrates the corresponding learning curve.

Model Implementation 2010 2011 2012 2013 2014 2015 2016 Average

APE Fairseq 24.24 22.10 22.40 26.38 27.11 29.58 34.34 26.59
APE OpenNMT-py 24.22 21.98 22.20 26.06 26.95 29.98 34.46 26.55

Table 7: BLEU score on newstest2010-2016. We report average result of five distinct trials with different random
seeds.
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Figure 7: BLEU score on validation and test sets with
respect to the source sequence length. The gray color
means no training data.
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(a) VANILLA dataset
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(b) EXTRAPOLATE dataset
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(c) INTERPOLATE dataset

Figure 8: Learning curves for each position representation and dataset. We compare the speed of convergence in
terms of number of gradient steps.
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(a) VANILLA dataset
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(b) EXTRAPOLATE dataset
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(c) INTERPOLATE dataset

Figure 9: Learning curves for each position representation and dataset. We compare the speed of convergence in
terms of wall clock.


