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Abstract

We propose the Tough Mentions Recall (TMR)
metrics to supplement traditional named en-
tity recognition (NER) evaluation by examin-
ing recall on specific subsets of “tough” men-
tions: unseen mentions, those whose tokens
or token/type combination were not observed
in training, and type-confusable mentions, to-
ken sequences with multiple entity types in the
test data. We demonstrate the usefulness of
these metrics by evaluating corpora of English,
Spanish, and Dutch using five recent neural
architectures. We identify subtle differences
between the performance of BERT and Flair
on two English NER corpora and identify a
weak spot in the performance of current mod-
els in Spanish. We conclude that the TMR met-
rics enable differentiation between otherwise
similar-scoring systems and identification of
patterns in performance that would go unno-
ticed from overall precision, recall, and F1.

1 Introduction

For decades, the standard measures of performance
for named entity recognition (NER) systems have
been precision, recall, and F1 computed over en-
tity mentions.1 NER systems are primarily evalu-
ated using exact match2 F1 score, micro-averaged
across mentions of all entity types. While per-
entity-type scores available from the conlleval
scorer (Tjong Kim Sang, 2002) are often reported,
there are no widely-used diagnostic metrics that
further analyze the performance of NER systems
and allow for separation of systems close in F1.

1We use the term mention to refer to a specific annotated
reference to a named entity—a span of tokens (token sequence)
and an entity type. We reserve the term entity for the referent,
e.g. the person being named. The traditional NER F1 measure
is computed over mentions (“phrase” F1).

2While partial match metrics have been used (e.g. Chinchor
and Sundheim, 1993; Chinchor, 1998; Doddington et al., 2004;
Segura-Bedmar et al., 2013), exact matching is still most
commonly used, and the only approach we explore.

This work proposes Tough Mentions Recall
(TMR), a set of metrics that provide a fine-grained
analysis of the mentions that are likely to be most
challenging for a system: unseen mentions, ones
that are present in the test data but not the train-
ing data, and type-confusable mentions, ones that
appear with multiple types in the test set. We eval-
uate the performance of five recent popular neural
systems on English, Spanish and Dutch data us-
ing these fine-grained metrics. We demonstrate
that TMR metrics enable differentiation between
otherwise similar-scoring systems, and the model
that performs best overall might not be the best on
the tough mentions. Our NER evaluation tool is
publicly available via a GitHub repository.3

2 Related Work

Previous work in NER and sequence labeling
has examined performance on out-of-vocabulary
(OOV) tokens and rare or unseen entities. Ma and
Hovy (2016) and Yang et al. (2018) evaluate sys-
tem performance on mentions containing tokens
not present in the pretrained embeddings or training
data. Such analysis can be used broadly—Ma and
Hovy perform similar analyses for part of speech
tagging and NER—and can guide system design
around the handling of those tokens.

Augenstein et al. (2017) present a thorough anal-
ysis of the generalization abilities of NER sys-
tems, quantifying the performance gap between
seen and unseen mentions, among many other fac-
tors. Their work predates current neural NER mod-
els; the newest model they use in their evaluation is
SENNA (Collobert et al., 2011). While prior work
has considered evaluation on unseen mentions, it
has focused on experimenting on English data, and
the definition of “unseen” has focused on the tokens
themselves being unseen (UNSEEN-TOKENS in our

3https://github.com/jxtu/EvalNER

https://github.com/jxtu/EvalNER
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TRAINING SET Newcastle[LOC] is a city in the UK[LOC].

TEST SET John Brown[PER], the Newcastle[ORG]
star from the UK[LOC], has. . .

Newcastle John UK[LOC]

[ORG] Brown[PER]

SEEN 4

UNSEEN-TYPE 4

UNSEEN-TOKENS 4

UNSEEN-ANY 4 4

Table 1: Example data and how mentions would be
classified into unseen and type-confusable mention sets

work). We use the umbrella of “tough mentions”
to cover a number of possible distinctions that can
be made with regards to how unseen test set data
is, and we experiment on multiple languages.

Mesbah et al. (2018) propose an iterative ap-
proach for long-tail entity extraction, focusing on
entities of two specific types in the scientific do-
main. Derczynski et al. (2017) propose evaluation
on a set of unique mentions, which emphasizes the
ability of a system to recognize rarer entities. As
entities and their types change quickly (Derczynski
et al., 2015), recall on emerging entities is becom-
ing a more critical measure in evaluating progress.
Ribeiro et al. (2020) propose CHECKLIST, which
can be applied to NER by using invariance tests;
for example, replacing a mention with another one
of the same entity type should not affect the output
of the model. Fu et al. (2020) evaluate the gener-
alization of NER models through breakdown tests,
annotation errors and dataset bias. They examine
the performance on subsets of entities based on
the entity coverage rate between train and test set.
They also release ReCoNLL, a revised version of
CoNLL-2003 English with fewer annotation errors
which we use in this work.

3 Unseen and Type-confusable Mentions

3.1 Unseen Mentions

Given annotated NER data divided into a fixed
train/development/test split, we are interested in
the relationship between the mentions of the train-
ing and test sets. We classify mentions into three
mutually-exclusive sets described in Table 1: SEEN,
UNSEEN-TYPE, and UNSEEN-TOKENS, and a su-
perset UNSEEN-ANY that is the union of UNSEEN-
TYPE and UNSEEN-TOKENS. UK[LOC] appears in
both the training and test set, so it is a SEEN men-
tion. As there is no mention consisting of the token

sequence John Brown annotated as any type in the
test set, John Brown[PER] is an UNSEEN-TOKENS

mention.4 While there is no mention with the to-
kens and type Newcastle[ORG] in the training data,
the token sequence Newcastle appears as a mention,
albeit with a different type (LOC). Newcastle[ORG]
is an UNSEEN-TYPE mention as the same token
sequence has appeared as a mention, but not with
the type ORG.

3.2 Type-confusable Mentions
Token sequences that appear as mentions with mul-
tiple types in the test set form another natural set of
challenging mentions. If Boston[LOC], the city, and
Boston[ORG], referring to a sports team5 are both
in the test set, we consider all mentions of exactly
the token sequence Boston to be type-confusable
mentions (TCMs), members of TCM-ALL. We can
further divide this set based on whether each men-
tion is unseen. TCM-UNSEEN is the intersection
of TCM-ALL and UNSEEN-TOKEN; TCM-SEEN

is the rest of TCM-ALL.
Unlike Fu et al. (2020), who explore token se-

quences that occur with different types in the train-
ing data, we base our criteria for TCMs around
type variation in the test data. Doing so places the
focus on whether the model can correctly produce
multiple types in the output, as opposed to how it
reacted to multiple types in the input. Also, if type
confusability were based on the training data, it
would be impossible to have TCM-UNSEEN men-
tions, as the fact that they are type confusable in
the training data means they have been seen at least
twice in training and thus cannot be considered
unseen. As our metrics compute subsets over the
gold standard entities, it is natural to only measure
recall and not precision on those subsets, as it is
not clear exactly which false positives should be
considered in computing precision.

3.3 Data Composition
We evaluate using the ReCoNLL English (Fu et al.,
2020), OntoNotes 5.0 English (Weischedel et al.,
2013, using data splits from Pradhan et al. 2013),
CoNLL-2002 Dutch, and CoNLL-2002 Spanish
(Tjong Kim Sang, 2002) datasets. We use Re-
CoNLL (Fu et al., 2020) in our analysis instead

4The matching criterion for the token sequence is case sen-
sitive, requires an exact—not partial—match, and only consid-
ers mentions. John Henry Brown[PER], john brown[PER], or
unannotated John Brown appearing in the training set would
not make John Brown[PER] a seen mention.

5For example: Boston[ORG] won the World Series in 2018.
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Set LOC ORG PER MISC ALL

UNSEEN-ANY 17.9 45.9 85.3 35.5 47.6
UNSEEN-TOK. 17.5 41.6 85.1 35.1 46.1
UNSEEN-TYPE 0.4 4.3 0.2 0.4 1.5

TCM-ALL 7.1 13.7 0.4 1.0 6.3
TCM-SEEN 5.4 9.5 0.4 1.0 4.6
TCM-UNSEEN 1.7 4.2 0.0 0.0 1.7

All (Count) 1,668 1,661 1,617 702 5,648

Table 2: Percentage of all mentions in each subset, with
total mentions in the final row (ReCoNLL English)

Set LOC ORG PER MISC ALL

UNSEEN-ANY 24.4 30.8 68.9 60.9 39.6
UNSEEN-TOK. 22.4 29.2 67.1 58.8 37.8
UNSEEN-TYPE 2.0 1.6 1.8 2.1 1.8

TCM-ALL 23.3 7.5 1.1 4.7 10.7
TCM-SEEN 22.6 6.8 0.8 4.1 10.1
TCM-UNSEEN 0.7 0.7 0.3 0.6 0.6

All (Count) 1,084 1,400 735 340 3,559

Table 3: Percentage of all mentions in each subset, with
total mentions in the final row (CoNLL-2002 Spanish)

of the CoNLL-2003 English data (Tjong Kim Sang
and De Meulder, 2003) to improve accuracy as it
contains a number of corrections.

Tables 2, 3, and 4 give the total mentions of
each entity type and the percentage that fall un-
der the proposed unseen and TCM subsets for the
three CoNLL datasets.6 Across the three languages,
39.6%–54.6% of mentions are unseen, with the
highest rate coming from PER mentions. UNSEEN-
TYPE contains under 2% of mentions in English
and Spanish and almost no mentions in Dutch; it is
rare for a token sequence to only appear in training
with types that do not appear with it in the test data.

Similarly, TCMs appear in the English (10.7%)
6Tables for OntoNotes 5.0 English are provided in the

appendix (Tables 16-17).

Set LOC ORG PER MISC ALL

UNSEEN-ANY 36.8 52.2 72.6 51.2 54.6
UNSEEN-TOK. 36.8 52.1 72.5 50.9 54.4
UNSEEN-TYPE 0.0 0.1 0.1 0.3 0.2

TCM-ALL 0.1 0.0 0.2 0.3 0.2
TCM-SEEN 0.1 0.0 0.1 0.0 0.1
TCM-UNSEEN 0.0 0.0 0.1 0.3 0.1

All (Count) 774 882 1,098 1,187 3,941

Table 4: Percentage of all mentions in each subset, with
total mentions in the final row (CoNLL-2002 Dutch)

and Spanish (6.3%) data, but almost never in Dutch
(0.2%). The differences across languages with re-
gards to TCMs may reflect morphology or other
patterns that prevent the same token sequence from
appearing with multiple types, but they could also
be caused by the topics included in the data. In En-
glish, the primary source of TCMs is the use of city
names as sports organizations, creating LOC-ORG
confusion.

4 Results

4.1 Models and Evaluation

We tested five recent mainstream NER neural ar-
chitectures that either achieved the state-of-the-art
performance previously or are widely used among
the research community.7 The models are CHAR-
CNN+WORDLSTM+CRF8(CHARCNN),
CHARLSTM+WORDLSTM+CRF8

(CHARLSTM), CASED BERT-BASE9 (De-
vlin et al., 2019), BERT-CRF10 (Souza et al.,
2019), and FLAIR (Akbik et al., 2018).11

We trained all the models using the training
set of each dataset. We fine-tuned English Cased
BERT-Base, Dutch (Vries et al., 2019) and Spanish
(Cañete et al., 2020) BERT models and used the
model from epoch 4 after comparing development
set performance for epochs 3, 4, and 5. We also
fine-tuned BERT-CRF models using the training
data, and used the model from the epoch where
development set performance was the best within
the maximum of 16 epochs.

All models were trained five times each on a sin-
gle NVIDIA TITAN RTX GPU. The mean and stan-
dard deviation of scores over five training runs are
reported for each model. It took approximately 2
hours to train each of FLAIR and NCRF++ on each
of the CoNLL-2002/3 datasets, 12 hours to train
FLAIR, and 4 hours to train NCRF++ on OntoNotes
5.0 English. It took less than an hour to fine-tune
BERT or BERT-CRF models on each dataset. Hy-
perparameters for Spanish and Dutch models im-
plemented using NCRF++ were taken from Lample
et al. (2016). FLAIR does not provide hyperparam-
eters for training CoNLL-02 Spanish, so we used

7We could not include a recent system by Baevski et al.
(2019) because it was not made publicly available.

8Using the NCRF++ (Yang and Zhang, 2018) implementa-
tions: https://github.com/jiesutd/NCRFpp.

9NER implementation from https://github.com/
kamalkraj/BERT-NER.

10A Cased BERT-Base Model with an additional CRF layer.
11https://github.com/flairNLP/flair

https://github.com/jiesutd/NCRFpp
https://github.com/kamalkraj/BERT-NER
https://github.com/kamalkraj/BERT-NER
https://github.com/flairNLP/flair
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Model Precision Recall F1

CHARLSTM 91.92 (±0.29) 91.90 (±0.31) 91.91 (±0.28)
CHARCNN 92.13 (±0.18) 91.93 (±0.18) 92.03 (±0.17)
FLAIR 93.00 (±0.15) 93.66 (±0.08) 93.33 (±0.12)
BERT 91.04 (±0.11) 92.36 (±0.13) 91.70 (±0.14)
BERT-CRF 91.13 (±0.15) 92.29 (±0.04) 91.70 (±0.08)

Table 5: Standard P/R/F1 (ReCoNLL-2003 English)

Model Precision Recall F1

CHARLSTM 87.12 (±0.42) 86.38 (±0.36) 86.90 (±0.40)
CHARCNN 86.94 (±0.27) 86.28 (±0.33) 86.61 (±0.25)
FLAIR 88.56 (±0.12) 89.42 (±0.09) 88.99 (±0.10)
BERT 87.52 (±0.09) 89.84 (±0.12) 88.67 (±0.10)
BERT-CRF 87.29 (±0.33) 89.32 (±0.19) 88.29 (±0.26)

Table 6: Standard P/R/F1 (OntoNotes 5.0 English)

those for CoNLL-02 Dutch. We did not perform
any other hyperparameter tuning.

4.2 Baseline Results

We first examine the performance of these systems
under standard evaluation measures. Tables 5 and 6
give performance on ReCoNLL and OntoNotes 5.0
English datasets using standard P/R/F1. In English,
Flair attains the best F1 in both datasets, although
BERT attains higher recall for OntoNotes.12

BERT attains the highest F1 in Dutch (91.26)
and Spanish (87.36); due to space limitations, ta-
bles are provided in the appendix (Tables 14-15).
BERT-CRF performs similar or slightly worse than
BERT in all languages, but generally attains lower
standard deviation in multiple training runs, which
suggests greater stability from using a CRF for
structured predictions. The same observation also
holds for Flair which also uses a CRF layer. We
are not aware of prior work showing results from
using BERT-CRF on English, Spanish, and Dutch.
Souza et al. (2019) shows that the combination of
Portuguese BERT Base and CRF does not show
better performance than bare BERT Base, which
agrees with our observations. F1 rankings are oth-
erwise similar across languages. The performance
of CharLSTM and CharCNN cannot be differenti-
ated in English, but CharLSTM substantially out-
performs CharCNN in Spanish (+2.53) and Dutch
(+2.15).

12We are not aware of any open-source implementation
capable of matching the F1 of 92.4 reported by Devlin et al.
(2019). The gap between published and reproduced perfor-
mance likely stems from the usage of the “maximal document
context,” while reimplementations process sentences indepen-
dently, as is typical in NER. Performance of Flair is slightly
worse than that reported in the original paper because we did
not use the development set as additional training data.

ALL TCM- TCM- TCM-
Model ALL SEEN UNSEEN

CHARLSTM 91.90 85.52 (±1.09) 87.36 (±0.70) 80.61 (±3.00)
CHARCNN 91.93 85.58 (±1.08) 87.55 (±1.11) 80.36 (±3.37)
FLAIR 93.66 88.47 (±0.51) 89.75 (±0.73) 87.76 (±1.86)
BERT 92.36 88.28 (±0.74) 89.69 (±0.89) 85.46 (±1.74)
BERT-CRF 92.29 87.02 (±0.71) 89.43 (±0.76) 79.59 (±1.25)

Table 7: Recall over all mentions and each type-
confusable mention subset (ReCoNLL-2003 English)

Model ALL U-ANY U-TOK. U-TYPE

CHARLSTM 91.90 86.94 (±0.58) 87.32 (±0.63) 75.29 (±2.54)
CHARCNN 91.93 87.06 (±0.21) 87.48 (±0.18) 74.41 (±1.48)
FLAIR 93.66 89.93 (±0.25) 90.31 (±0.19) 78.53 (±2.94)
BERT 92.36 87.94 (±0.29) 88.02 (±0.31) 85.29 (±2.04)
BERT-CRF 92.29 87.55 (±0.14) 87.73 (±0.12) 82.12 (±1.53)

Table 8: Recall over all mentions and each unseen (U-)
mention subset (ReCoNLL-2003 English)

4.3 TMR for English
We explore English first and in greatest depth be-
cause its test sets are much larger than those of the
other languages we evaluate, and we have multi-
ple well-studied test sets for it. Additionally, the
CoNLL-2003 English test data is from a later time
than the training set, reducing train/test similarity.

Revised CoNLL English. One of the advantages
of evaluating using TMR metrics is that systems
can be differentiated more easily. Table 7 gives
recall for type-confusable mentions (TCMs) on Re-
CoNLL English. As expected, recall for TCMs
is lower than overall recall, but more importantly,
recall is less tightly-grouped over the TCM sub-
sets (range of 8.17) than all mentions (1.76). This
spread allows for better differentiation, even though
there is a higher standard deviation for each score.
For example, BERT-CRF generally performs very
similarly to BERT, but scores 5.87 points lower
for TCM-UNSEEN, possibly due to how the CRF
handles lower-confidence predictions differently
(Lignos and Kamyab, 2020). Flair has the high-
est all-mentions recall and the highest recall for
TCMs, suggesting that when type-confusable men-
tions have been seen in the training data, it is able
to effectively disambiguate types based on context.

Table 8 gives recall for unseen mentions. Al-
though Flair attains higher overall recall, BERT
attains higher recall on UNSEEN-TYPE, the set on
which all models perform their worst. While there
are few (85) mentions in this set, making assess-
ment of statistical reliability challenging, this set
allows us to identify an advantage for BERT in this
specific subset: a BERT-based NER model is better
able to produce a novel type for a token sequence
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Model ALL TCM-ALL TCM-SEEN

CHARLSTM 86.38 80.65 (±0.46) 82.24 (±0.46)
CHARCNN 86.28 79.80 (±0.41) 81.49 (±0.40)
FLAIR 89.42 86.00 (±0.44) 87.39 (±0.51)
BERT 89.84 84.72 (±0.18) 85.61 (±0.00)
BERT-CRF 89.32 85.46 (±0.40) 86.83 (±0.46)

Table 9: Recall over all mentions and each type-
confusable mention subset (OntoNotes 5.0 English)

Model ALL U-ANY U-TOKENS

CHARLSTM 86.38 72.71 (±0.80) 74.34 (±0.80)
CHARCNN 86.28 72.50 (±0.76) 74.10 (±0.75)
FLAIR 89.42 77.56 (±0.21) 79.05 (±0.16)
BERT 89.84 79.97 (±0.11) 81.14 (±0.14)
BERT-CRF 89.32 78.46 (±0.56) 79.63 (±0.61)

Table 10: Recall over all mentions and each unseen
mention subset (OntoNotes 5.0 English)

only seen with other types in the training data.

OntoNotes 5.0 English. Examination of the
OntoNotes English data shows that Flair outper-
forms BERT for type-confusable mentions, but
BERT maintains its lead in overall recall when
examining unseen mentions. Tables 9 and 10 give
recall for type-confusable and unseen mentions.13

Summary. Table 11 gives a high-level compari-
son between BERT and Flair on English data. Us-
ing the TMR metrics, we find that the models that
attain the highest overall recall may not perform
the best on tough mentions. However, the results
vary based on the entity ontology in use. In a head-
to-head comparison between Flair and BERT on
ReCoNLL English, despite Flair having the highest
overall and TCM recall, BERT performs better than
Flair on UNSEEN-TYPE, suggesting that BERT is
better at predicting the type for a mention seen
only with other types in the training data. In con-
trast, on OntoNotes 5.0 English, BERT attains the
highest recall on UNSEEN mentions, but performs
worse than Flair on TCMs. The larger and more
precise OntoNotes ontology results in the unseen
and type-confusable mentions being different than
in the smaller CoNLL ontology. In general, Flair
performs consistently better on TCMs while BERT
performs better on UNSEEN mentions.

13We do not display results for TCM-UNSEEN and
UNSEEN-TYPE as they each represent less than 1% of the
test mentions. BERT’s recall for TCM-UNSEEN mentions is
19.51 points higher than any other system. However, as there
are 41 mentions in that set, the difference is only 8 mentions.

4.4 TMR for CoNLL-02 Spanish/Dutch

Tables 12 and 13 give recall for type-confusable
and unseen mentions for CoNLL-2002 Spanish and
Dutch.14 The range of the overall recall for Spanish
(11.80) and Dutch (17.13) among the five systems
we evaluate is much larger than in English (1.76),
likely due to systems being less optimized for those
languages. In both Spanish and Dutch, BERT has
the highest recall overall and in every subset.

While our proposed TMR metrics do not help
differentiate models in Spanish and Dutch, they
can provide estimates of performance on subsets of
tough mentions from different languages and iden-
tify areas for improvement. For example, while the
percentage of UNSEEN-TYPE mentions in Span-
ish (1.8) and ReCoNLL English (1.5) is similar,
the performance for BERT for those mentions in
Spanish is 34.04 points below that for ReCoNLL
English. By using the TMR metrics, we have iden-
tified a gap that is not visible by just examining
overall recall.

Compared with ReCoNLL English (6.3%)
and Spanish (10.7%), there are far fewer type-
confusable mentions in Dutch (0.2%). Given the
sports-centric nature of the English and Spanish
datasets, which creates many LOC/ORG confus-
able mentions, it is likely that their TCM rate is
artificially high. However the near-zero rate in
Dutch is a reminder that either linguistic or data
collection properties may result in a high or negli-
gible number of TCMs. OntoNotes English shows
a similar rate (7.7%) to ReCoNLL English, but due
to its richer ontology and larger set of types, these
numbers are not directly comparable.

5 Conclusion

We have proposed Tough Mentions Recall (TMR),
a set of evaluation metrics that provide a fine-
grained analysis of different sets of formalized men-
tions that are most challenging for a NER system.
By looking at recall on specific kinds of “tough”
mentions—unseen and type-confusable ones—we
are able to better differentiate between otherwise
similar-performing systems, compare systems us-
ing dimensions beyond the overall score, and eval-
uate how systems are doing on the most difficult
subparts of the NER task.

We summarize our findings as follows. For

14In Table 12, TCM-UNSEEN is not shown because it in-
cludes less than 1% of the test mentions (0.6%); in Table 13
UNSEEN-TYPE (0.2%) and TCM (0.2%) are not shown.
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Dataset Model ALL U-ANY U-TOK. U-TYPE TCM-ALL TCM-SEEN TCM-UNSEEN

ReCoNLL-English BERT 4

FLAIR 4 4 4 4 4 4

Ontonotes 5.0 BERT 4 4 4 N/A N/A
FLAIR N/A 4 4 N/A

Table 11: Performance comparison between BERT and Flair on English data. A 4 indicates higher recall under a
metric. No comparisons are made for UNSEEN-TYPE and TCM-UNSEEN using OntoNotes due to data sparsity.

ALL U- U- U- TCM-
Model ANY TOK. TYPE ALL

CHARLSTM 79.76 70.56 (±0.93) 71.72 (±0.94) 46.25 (±3.86) 70.31 (±0.84)
CHARCNN 77.05 67.28 (±0.69) 68.13 (±0.51) 49.38 (±4.76) 68.48 (±0.68)
FLAIR 87.47 79.89 (±0.59) 81.65 (±0.50) 42.81 (±3.05) 77.02 (±1.23)
BERT 88.85 83.04 (±0.58) 84.55 (±0.58) 51.25 (±3.39) 80.00 (±0.78)
BERT-CRF 88.70 82.36 (±0.42) 83.93 (±0.40) 49.38 (±1.78) 79.74 (±0.63)

Table 12: Recall over all mentions and unseen and type-confusable mention subsets (CoNLL-2002 Spanish)

Model ALL U-ANY U-TOKENS

CHARLSTM 77.35 66.32 (±0.23) 66.46 (±0.23)
CHARCNN 74.55 64.50 (±0.37) 64.61 (±0.32)
FLAIR 89.43 82.86 (±0.26) 83.00 (±0.26)
BERT 91.68 86.65 (±0.17) 86.74 (±0.20)
BERT-CRF 91.26 85.88 (±0.58) 85.94 (±0.58)

Table 13: Recall over all mentions and unseen mention
subsets (CoNLL-2002 Dutch)

English, the TMR metrics provide greater differ-
entiation across systems than overall recall and
are able to identify differences in performance be-
tween BERT and Flair, the best-performing sys-
tems in our evaluation. Flair performs better on
type-confusable mentions regardless of ontology,
while performance on unseen mentions largely fol-
lows the overall recall, which is higher for Flair on
ReCoNLL and for BERT on OntoNotes.

In Spanish and Dutch, the TMR metrics are not
needed to differentiate systems overall, but they
provide some insight into performance gaps be-
tween Spanish and English related to UNSEEN-
TYPE mentions.

One challenge in applying these metrics is sim-
ply that there may be relatively few unseen men-
tions or TCMs, especially in the case of lower-
resourced languages. While we are interested in
finer-grained metrics for lower-resourced settings,
data sparsity issues pose great challenges. As
shown in Section 3.3, even in a higher-resourced
setting, some subsets of tough mentions include
less than 1% of the total mentions in the test set.
We believe that lower-resourced NER settings can
still benefit from our work by gaining information

on pretraining or tuning models towards better per-
formance on unseen and type-confusable mentions.

For new corpora, these metrics can be used to
guide construction and corpus splitting to make
test sets as difficult as possible, making them better
benchmarks for progress. We hope that this form
of scoring will see wide adoption and help provide
a more nuanced view of NER performance.
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Precision Recall F1

CHARCNN 76.74 (±0.36) 74.55 (±0.27) 75.63 (±0.26)
CHARLSTM 78.21 (±0.34) 77.35 (±0.21) 77.78 (±0.27)
FLAIR 90.11 (±0.15) 89.43 (±0.13) 89.77 (±0.14)
BERT 91.26 (±0.23) 91.68 (±0.18) 91.47 (±0.18)
BERT-CRF 90.75 (±0.47) 91.26 (±0.18) 91.00 (±0.32)

Table 14: Standard precision/recall/F1 for all types for each model trained on the CoNLL-2002 Dutch dataset

Precision Recall F1

CHARCNN 77.75 (±0.22) 77.05 (±0.21) 77.40 (±0.20)
CHARLSTM 80.09 (±0.59) 79.76 (±0.63) 79.93 (±0.61)
FLAIR 86.96 (±0.23) 87.47 (±0.19) 87.21 (±0.20)
BERT 87.36 (±0.52) 88.85 (±0.39) 88.10 (±0.45)
BERT-CRF 87.25 (±0.38) 88.70 (±0.20) 87.97 (±0.29)

Table 15: Standard precision/recall/F1 for all types for each model trained on the CoNLL-2002 Spanish dataset

Mentions ALL GPE PER ORG DATE CARD NORP PERC MONEY

UNSEEN-ANY 30.3 10.5 48.9 41.4 20.3 15.3 12.4 29.5 61.8
UNSEEN-TOKENS 29.4 9.9 48.0 40.8 19.7 14.9 12.0 29.5 60.2
UNSEEN-TYPE 0.9 0.6 0.9 0.6 0.6 0.4 0.4 0.0 1.6

TCM-ALL 7.7 11.5 1.7 4.9 3.2 15.4 18.5 0.0 5.1
TCM-SEEN 7.3 11.1 1.6 3.8 3.2 15.2 18.4 0.0 5.1
TCM-UNSEEN 0.4 0.4 0.1 1.1 0.1 0.2 0.1 0.0 0.0

Total (Count) 11,265 2,241 1,991 1,795 1,604 936 842 349 314

Table 16: Percentage of all mentions in each subset, with total mentions in the final row (OntoNotes 5.0 English).
Due to space constraints, types are split across this table and the following one.

Mentions TIME ORD LOC WA FAC QUAN PROD EVENT LAW LANG

UNSEEN-ANY 41.5 3.6 39.1 83.1 80 73.3 52.6 47.6 75.0 22.7
UNSEEN-TOKENS 39.6 3.1 34.1 78.9 74.8 73.3 48.7 47.6 57.5 4.5
UNSEEN-TYPE 1.9 0.5 5.0 4.2 5.2 0.0 3.9 0.0 17.5 18.2

TCM-ALL 7.5 12.8 14 5.4 15.5 0.0 0.0 7.9 0.0 54.5
TCM-SEEN 7.5 12.8 14 2.4 14.8 0.0 0.0 7.9 0.0 54.5
TCM-UNSEEN 0.0 0.0 0.0 3.0 0.7 0.0 0.0 0.0 0.0 0.0

Total (Count) 212 195 179 166 135 105 76 63 40 22

Table 17: Percentage of all mentions in each subset, with total mentions in the final row (OntoNotes 5.0 English).
Due to space constraints, types are split across this table and the preceding one.


