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Abstract

In conversational analyses, humans manually
weave multimodal information into the tran-
scripts, which is significantly time-consuming.
We introduce a system that automatically
expands the verbatim transcripts of video-
recorded conversations using multimodal data
streams. This system uses a set of prepro-
cessing rules to weave multimodal annotations
into the verbatim transcripts and promote in-
terpretability. Our feature engineering contri-
butions are two-fold: firstly, we identify the
range of multimodal features relevant to de-
tect rapport-building; secondly, we expand the
range of multimodal annotations and show that
the expansion leads to statistically significant
improvements in detecting rapport-building.

1 Introduction

Dyadic human-human dialogs are rich in multi-
modal information. Both the visual and the audio
characteristics of how the words are said reveal
the emotions and attitudes of the speaker. Given
the richness of multimodal information, analyzing
conversations requires both domain knowledge and
time. The discipline of conversational analysis is a
mature field. In this discipline, conversations could
be manually transcribed using a technical system
developed by Jefferson (2004), containing informa-
tion about intonation, lengths of pauses, and gaps.
Hence, it captures both what was said and how
it was said1. However, such manual annotations
take a great deal of time. Individuals must watch
the conversations attentively, often replaying the
conversations to ensure completeness.

Automated Jefferson (2004) transcripts could be
generated from video-recordings (Moore, 2015).

* Corresponding author
1Please visit www.universitytranscriptions.co.uk/jefferson-

transcription-example/ for an audio example.

However, the potential issue with Jeffersonian an-
notations is that there are often within-word anno-
tations and symbols which makes it hard to benefit
from pre-trained word embeddings. Inspired by
the Jeffersonian annotations, we expand the verba-
tim transcripts with multimodal annotations such
that downstream classification models can easily
benefit from pre-trained word embeddings.

Our paper focuses on the classification task of
predicting rapport building in conversations. Rap-
port has been defined as a state experienced in in-
teraction with another with interest, positivity, and
balance (Cappella, 1990). If we can model rapport
building in the medical school setting, the volun-
teer actors can let the system give feedback for the
unofficial practice sessions, and therefore students
get more practice with feedback. Also, the lecturer
could study the conversations of the top perform-
ers and choose interesting segments to discuss. As
student doctors get better in rapport building, when
they graduate and practice as doctors, treatments
are more effective and long-term (Egbert et al.,
1964; DiMatteo, 1979; Travaline et al., 2005).

Outside of the healthcare domain, understand-
ing and extracting the features required to detect
rapport-building could help researchers build better
conversational systems. Our first contribution is
the identification of multimodal features that have
been found to be associated with rapport building
and using them to predict rapport building auto-
matically. Our second contribution is to include
them into a text-based multimodal narrative sys-
tem (Kim et al., 2019b). Why go through text? It
is because this is how human experts have been
manually analyzing conversations in the linguis-
tics community. Our text-based approach has the
merit of emulating the way human analysts analyze
conversations, and hence supporting better inter-
pretability. We demonstrate that the additions bring
statistically significant improvements. This feature-



467

engineering system2 could potentially be used to
accomplish a highly attention-demanding task for
an analyst. With an automated text-based approach,
we aim to contribute towards the research gap of
automatic visualizations that support multimodal
analysis (Kim et al., 2019a). The created multi-
modal transcript itself is a conversational analysis
product, which can be printed out on paper.

In this paper, we first introduced the problem
domain (section 3). Secondly, we motivated the
new features (detailed in Fig. 1) to be extracted
(section 4). Then, we extracted the features from
videos and encoded them as text together with ver-
batim transcripts (section 4). To evaluate whether
the text narratives were useful, we ran experiments
that predict rapport-building using texts containing
different amounts of multimodal annotations (sec-
tion 5). Finally, we discuss the results and visualize
the outputs of the system (section 6).

2 Related Works

The automated analysis of conversations has been
the subject of considerable interest in recent years.
Within the domain of doctor-patient communica-
tion, Sen et al. (2017) calculated session-level in-
put features, including affective features (Gilbert,
2014). Analyses using session-level features have
a drawback of not being able to identify specific
defining multimodal interactions in the conversa-
tion (Zhao et al., 2016; Heylen et al., 2007). There-
fore, we build upon the works of Sen et al. (2017) –
in addition to the use of session-level features, we
propose using a finer level of talk-turn multimodal
text representation as inputs into a hierarchical at-
tention network (HAN) (Yang et al., 2016).

We also build upon our previous work (Kim
et al., 2019b) by broadening the range of multi-
modal features considered. As for the different
methods of multimodal information fusion, Poria
et al. (2017) completed an extensive review of the
different state-of-the-art multimodal fusion tech-
niques. Recent multimodal fusion research (such
as ICON (Hazarika et al., 2018a), CMN (Hazarika
et al., 2018b), MFN (Zadeh et al., 2018), Dia-
logueRNN (Majumder et al., 2019), M3ER (Mit-
tal et al., 2020)) has focussed on end-to-end ap-
proaches. Unlike the typical end-to-end approach
of representing and fusing multimodal features us-
ing numeric vectors, our contribution is an entirely
text-based multimodal narrative, thereby improv-

2Open-sourced at https://github.com/SpectData/MONAH

ing downstream analysis’s interpretability. The
approach of this system not only annotates the pres-
ence of nonverbal events (Eyben et al., 2011), but
also the degree of the nonverbal event intensity at
both the session-level and talkturn-level.

3 Data

This study uses data from the EQClinic platform
(Liu et al., 2016). Students in an Australian medi-
cal school were required to complete at least one
medical consultation on the online video confer-
encing platform EQClinic with a simulated patient
who is a human actor trained to act as a patient.
Each simulated patient was provided with a patient
scenario, which mentioned the main symptoms ex-
perienced. The study was approved by the Human
Research Ethics Committee of the University of
New South Wales (project number HC16048).

The primary outcome measurement was the re-
sponse to the rapport-building question on the
Student-Patient Observed Communication Assess-
ment (SOCA) form, an adapted version of the
Calgary-Cambridge Guide (Kurtz and Silverman,
1996). Simulated patients used the SOCA form to
rate the students’ performances after each video
consultation. Our dataset comprises of 873 ses-
sions, all from distinct students. Since we have
two recordings per session (one of the student, the
second of the simulated patient), the number of
recordings analyzed is 1,746. The average length
per recording is 928 seconds (sd=253 seconds),
amounting to a total of about 450 hours of record-
ings analyzed. The dataset’s size is small relative
to the number of multimodal features extracted;
therefore, there is a risk of overfitting.

We used the YouTube platform to obtain the tran-
script per speaker from the recordings. We chose
YouTube because we (Kim et al., 2019c) found that
it was the most accurate transcription service (word
error rate: 0.28) compared to Google Cloud (0.34),
Microsoft Azure (0.40), Trint (0.44), IBM Wat-
son (0.50), when given dyadic video-conferences
of an Australian medical school. Jeong-Hwa and
Cha (2020) found that among the four categories of
YouTube errors (omission, addition, substitution,
and word order), substitution recorded the high-
est amount of errors. Specifically, they found that
phrase repetitions could be mis-transcribed into
non-repetitions. From our experience, (a) repair-
initiation techniques such as sound stretches (e.g.
“ummmm”) (Hosoda, 2006), were either omitted or
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substituted with “um”; (b) overlapping speech was
not a problem because our speakers were physically
separated and recorded into separate files.

We brought together the two speakers’ tran-
scripts into a session-level transcript through word-
level timings and grouped together words spoken
by one speaker until the sequence is interrupted by
the other speaker. When the interruption occurs,
we deem that the talk-turn of the current speaker
has ended, and a new talk-turn by the interrupting
speaker has begun. The average number of talk-
turns per session is 296 (sd=126), and the average
word count per talk-turn is 7.62 (sd=12.2).

At this point, we note that acted dialogues dif-
fer from naturally occurring dialogues in a few
ways. Firstly, naturally occurring dialogues tend
to be more vague (phrases like “sort of”, “kinda”,
“or something”) due to the shared understanding
between the speakers (Quaglio, 2008). Secondly,
taboo words or expletives that convey emotions
(like “shit”, “pisssed off”, “crap”) is likely to be less
common in an acted medical setting than naturally
occurring conversations. Some conversations trans-
form into genuine dialogues where the speakers
“shared parts of themselves they did not reveal to
everyone and, most importantly, this disclosure was
met with acceptance” (Montague, 2012). This defi-
nition of genuine conversation is similarly aligned
to our definition of rapport-building in section 4.1.

Figure 1 shows a summary of the features ex-
tracted. We annotated verbatim transcripts with
two different levels of multimodal inputs – annota-
tions at the session-level are labeled coarse, whilst
annotations at the talk-turn-level are labeled fine.
To facilitate comparisons, all input families belong-
ing to the coarse (fine) level would be annotated
with uppercase (lowercase) letters, respectively. In
this paper, we refer to the previously existing set
of features (with white background) as the “prime”
(′) configuration. Families are also abbreviated by
their first letter. For example, the coarse P ′ family

would consist of only speech rate and delay, whilst
the coarse P family would consist of P ′ plus tone.
As another example, the coarse D′ family is the
same as the D family because there are no newly
added features (in blue). We introduce the frame-
work of our multimodal feature extraction pipeline
in Figure 2.

Figure 2: MONAH (Multi-Modal Narratives for
Humans) Framework.

4 Multimodal features extractions

As an overview, we extracted the timestamped ver-
batim transcripts and used a range of pre-trained
models to extract temporal, modality-specific fea-
tures. We relied on pre-trained models for feature
extraction and did not attempt to improve on them –
demonstrating the value of using multidisciplinary
pre-trained models from natural language process-
ing, computer vision, and speech processing for
conversational analysis.

Effectively, we extracted structured data from
unstructured video data (section 4.2). With the
structured data and verbatim transcript, we weaved
a multimodal narrative using a set of predefined
templates (sections 4.3 and 4.4). With the multi-
modal narrative, we employed deep learning tech-
niques and pre-trained word embeddings to predict
the dependent variable (section 5).

4.1 Dependent variable - rapport building

The dependent variable is defined as the success
in rapport building. Rapport building is one of

Figure 1: High-level features introduction. We build on our previous work (Kim et al., 2019b) – the new features
introduced in this work are coloured in blue, whilst the existing set of features are in white.
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the four items scored in the SOCA. The original
4-point Likert scale is Fail, Pass-, Pass, Pass+, we
converted this scale into a binary variable where
it is true if the rapport-building score is “Pass+”
as we are concerned here with identifying good
rapport building. “Pass+” means that the actor felt
rapport such that all information could be com-
fortably shared. 38 percent of the population has
achieved “Pass+”. All actors followed the same
pre-interview brief. Because only the actor scored
the student performance and there is no overlap,
the limitation is that we do not have measures of
agreement.

4.2 Description of features

Table 1 gives an overview of all features for each
speaker. We define six families of coarse-level in-
puts -– demographics, actions, prosody, semantics,
mimicry, and history. We computed the features
per speaker. From all families, there are a total of
77 features per session.

We first discuss the family of demograph-
ics. Talkativeness is chosen because the patient’s
talkativeness would initiate the doctor’s active lis-
tening while aiding identification of patient’s con-
cerns – processes that could establish rapport. In

Hall et al. (2009), it appears that patients appre-
ciate a certain degree of doctor’s dominance in
the conversation, which itself is also correlated
with higher rapport. Big 5 Personality consists of
Extraversion, Agreeableness, Conscientiousness,
Neuroticism, and Openness to Experience (Mc-
Crae and Costa, 1987). This personality structure
is widely used in research and practice to quantify
aspects of a person’s natural tendency in thought,
feeling, and action, with good validity and reliabil-
ity indicators (McCrae, 2017). It is chosen because
traits of agreeableness and openness on the part
of both doctor and patient predict higher rapport.
Among doctors, higher openness and agreeableness
predict higher empathy towards patients (Costa
et al., 2014). Among patients, higher agreeable-
ness predicted higher trust towards doctors (Cousin
and Mast, 2013), and higher openness predicted
higher doctor affectionate communication (Hesse
and Rauscher, 2019). Big 5 Personality is extracted
through feeding transcripts to the IBM Watson Per-
sonality Insights API (version 2017-10-13), cost-
ing a maximum of 0.02 USD per call. Gender is
chosen because personality differences between
genders were observed cross-culturally. Among
twenty-three thousand participants across cultures

Family Child Template

Demo
graphics

Talkativeness
Total word count, total distinct word count, and proportion of word
count

Big 5 Personality Percentile scores for each of the big 5 personality
Gender Male or Female

Actions

Laughter Total laughter count
Head Nodding* Count of nods
Forward Trunk
Leaning*

Count of leaning in

Smiling* Count of smiles
PosiFace* Counts of times of positive and negative facial expressions
AU Summary statistics of the selected AU (05,17,20,25) intensities

Prosody
Delay Summary statistics of time gaps between talk-turns
Speech rate Average speech rate
Tone* Happy, sad, angry tone

Semantics
Sentiment* Composite, positive, neutral, and negative sentiment
Questions* Proportion of talk-turns that are open/closed questions

Mimicry
Speech Rate* Dynamic time wrapping distance for speech rate
Tone* Dynamic time wrapping distance for tone

History
Num. Sessions* Number of past sessions the assessor has scored before this
Proportion given
extreme marks*

Proportion of past sessions that the assessor has given an extreme
score

Table 1: Session-level input features for each participant. * indicates new features outside of Kim et al. (2019b).
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for both college-age and adult samples, females re-
ported higher agreeableness, warmth, and openness
to feelings than males (Costa Jr et al., 2001), traits
that could be linked to rapport building.

Secondly, for the family of actions, laughter is
chosen because humor (which was defined in part
by the presence of laughter) on the part of both doc-
tor and patient was found to be twice as frequent in
high-satisfaction than low-satisfaction visits (Sala
et al., 2002). Laughter events were detected using
the Ryokai et al. (2018) algorithm. Facial expres-
sions that resemble smiling is another behavioral
indicator of humor appreciation, and approval of
one another (Tickle-Degnen and Rosenthal, 1990).
Head nodding is a type of backchannel response
(i.e., response tokens) that has been shown to re-
flect rapport between doctor and patient, especially
when the primary activity is face to face communi-
cations (Manusov, 2014). Forward trunk leaning
is chosen because it has long been found to re-
flect an expression of interest and caring, which are
foundational to rapport building (Scheflen, 1964).
Additionally, facial positivity (posiface) is included
as it is useful in rapport building detection in small
groups (Müller et al., 2018). Lastly, action units
(AU) that describe specific facial expressions, in
particular AU 05 (upper lid raiser), 17 (chin raiser),
20 (lip stretcher), 25 (lips part), are also included
as they were useful in automated dyadic conversa-
tional analyses to detect depression in our previous
work (Kim et al., 2019b). All features introduced
in this paragraph were calculated using the AU
and landmark positioning features extracted using
OpenFace (Baltrušaitis et al., 2016).

Thirdly, for the family of prosody, delay is cho-
sen because it has been shown to be an indicator
of doctor-to-patient influence – patients of low rap-
port with their doctors were found to speak less
in response to doctor’s comments (Sexton et al.,
1996). Speech rate is chosen because doctor’s flu-
ent speech rate and patient’s confident communica-
tion have been positively correlated with the pa-
tient’s perception of rapport (Hall et al., 2009).
Delay and speech rate are calculated using the
time-stamped transcripts. Tone is chosen because
a warm and respectful tone on the part of both
doctor and patient is positively correlated with the
patient’s perception of rapport (Hall et al., 2009).
Tone is calculated using the Vokaturi algorithm
(version 3.3) (Vokaturi, 2019).

Fourthly, for the family of semantics, sentiment

is chosen because the provision of positive regard
from a practitioner to a patient is an important fac-
tor to foster therapeutic alliance; additionally, this
process may be further enhanced if the patient also
demonstrates positive behaviors towards the prac-
titioners (Farber and Doolin, 2011). Sentiment
is extracted using the VADER algorithm (Gilbert,
2014), in line with Sen et al. (2017). Questions is
chosen because higher engagement by the doctor
(e.g., asking questions) with the patient and the
patient asking fewer questions have been shown to
positively correlate with the patient’s perception of
rapport (Hall et al., 2009). Questions are detected
using Stanford CoreNLP Parser (Manning et al.,
2014) and the Penn Treebank (Bies et al., 1995) tag
sets.

Next, mimicry is chosen because doctor-patient
synchrony is an established proxy for rapport. In a
review paper, rapport is theorized to be grounded in
the coupling of practitioner’s and patient’s brains
(Koole and Tschacher, 2016). Such a coupling pro-
cess would eventuate in various forms of mimicry
in the dyad, for instance, vocally (e.g., matching
speech rate and tone), physiologically (e.g., turn-
taking, breathing), physically (e.g., matching body
language) (Wu et al., 2020). In this study, we aim
to use vocal mimicry to capture this underlying
phenomenon. Session level mimicry scores are
approximated through Dynamic Time Wrapping
distances (Giorgino and others, 2009), in line with
Müller et al. (2018).

Lastly, history is chosen because the scores given
by the assessors could be subjective evaluations
where the evaluations are unduly influenced by
the assessor’s leniency bias (Moers, 2005). We
attempted to mitigate the leniency bias by intro-
ducing history features that indicate the assessor’s
leniency and its consistency.

4.3 Generation of coarse multimodal
narrative

In this section, we discuss the coarse multimodal
narrative. We summarized the automatic genera-
tion of the text representation in Table 2.

We calculated the z-score for all the above tem-
plates (except Template 3 which is categorical) us-
ing the following z-score formula. The average
(µ), and standard deviation (σ) are computed using
observations from the training observations. Using
the z-score, we bucketed them into “very low” (z<-
2), “low” (z<-1), “high” (z>1) and “very high”
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Family Child ID Template

Demo
graphics

Talkativeness 1
doctor number of words high, doctor number of distinct
words high

Big 5 Personality 2 doctor openness high
Gender 3 The patient is female

Actions

Laughter 4 doctor laughter counts high
Head Nodding 5 doctor head nod counts high
Forward Trunk
Leaning

6 doctor forward trunk leaning high

Smiling 7 doctor smiling counts high
PosiFace 8 doctor positive face expression counts high

AU 9
doctor minimum lip depressor very low, maximum lip de-
pressor low, average lip depressor low, variance lip depressor
low

Prosody
Delay 10

minimum delay very low, maximum delay low, average delay
low, variance delay low

Speech rate 11 speech rate high
Tone 12 angry tone high

Semantics
Sentiment 13 positive sentiment high
Questions 14 open questions high

Mimicry
Speech Rate 15 speech rate mimicry high
Tone 16 tone mimicry high

History
Num. Sessions 17 patient number of sessions before this very high
Proportion given
extreme marks

18 patient question four proportion given maximum marks high

Table 2: Templates for the session-level coarse summary.

(z>2). The reason for z-transformation is to cre-
ate a human-readable text through bucketing con-
tinuous variables into easy-to-understand buckets
(“high” vs. “low”).

z =
x− µTrain

σTrain
(1)

4.4 Generation of fine multimodal narrative

In addition to the verbatim transcript, we intro-
duced two new families of information – prosody,
and actions. Table 3 gives an overview of the tem-
plates, and the bold-face indicates a variable. The
motivations of the features have been discussed;
we discuss the rules of insertion in the next few
paragraphs.

Template 19 is the verbatim transcript returned
from the ASR system. Before each talk-turn, we
identified the speaker (doctor/patient) and added
multimodal information using templates 20-29.
Speech rate and tone were standardized across all
training observations. We appended template 20,
21 where possible values are dependent on the z-
score – “quickly” (1 < z-score < 2) and “very

quickly” (z-score ≥ 2). For delay, we used time
intervals of 100 milliseconds, and between 200 and
1200 milliseconds – in line with Roberts and Fran-
cis (2013). We appended template 22 at the front
of the talk-turn if a delay of at least 200 millisec-
onds is present between talk-turns. In addition, we
appended template 23 where possible values are
dependent on the standardized duration of delay
– “short” (< 1 z-score), “long” (< 2 z-score) and
“significantly long” (≥ 2 z-score). Template 23
captures longer than usual delay, considering the
unique turn-taking dynamics of each conversation.
The standardized duration of delay is calculated
using talk-turn delays from the respective session.
Lastly, as for the actions family, templates 24 – 28
were added if any of the actions are detected during
the talk-turn. For template 29, it was only added if
the AU is detected throughout the entire duration
of the talk-turn.

5 Experimental settings

There are two main types of inputs – (1) numeric in-
puts at the session-level, and (2) coarse and/or fine
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Family Child ID Template
Verbatim Transcript 19 Transcript returned from the ASR system

Prosody
Speech rate 20 the doctor quickly said
Tone 21 the doctor said angrily

Delay
22 after two hundred milliseconds
23 a long delay

Actions

Laughter 24 the doctor laughed
Nodding 25 the doctor nodded
Forward trunk learning 26 the doctor leaned forward
Smiling 27 the doctor smiled
PosiFace 28 the doctor displayed positive facial expression
AU05, 17, 20, 25 29 the doctor exhibited lip depressor

Table 3: Templates for the talkturn-level fine summary.

multimodal narrative text inputs. As an overview,
for (1), we trained the decision tree classifier us-
ing session-level numeric inputs. As for (2), we
trained the HAN (Yang et al., 2016). We aim to fa-
cilitate how humans analyze conversations – HAN
can work with text and has easy interpretation with
single-headed attention, making it a suitable candi-
date. Relative to BERT (Devlin et al., 2018), the
HAN is faster to train and easier to interpret.

5.1 Research questions

The proposed features have been motivated by sci-
entific studies in Section 4. A natural next question
is, “what are the impacts of these proposed fea-
tures on model performance?” We break this broad
question into three questions.

Firstly, (Q1) do the newly added features im-
prove performance over the existing set of features
for the classification tree and/or HAN?

Secondly, modelling using unstructured text in-
put data (as opposed to using numeric inputs) has
the risk of introducing too much variability in the
inputs. Therefore, we investigate (Q2) – given the
coarse-only inputs, do the performance between
the HAN and classification tree differ significantly?

Lastly, adding more granular talkturn-level in-
puts to the coarse session-level inputs has the bene-
fit of deeper analyses, because it allows the analyst
to analyze important talkturns of the conversation.
On top of this benefit, (Q3) do we also have signif-
icant performance improvement between coarse-
only vs. both coarse and fine inputs?

For all models, the area under the receiver-
operator curve (AUC) was used as the evaluation
metric. The AUC measures the goodness of rank-
ing (Hanley and McNeil, 1982) and therefore does

not require an arbitrary threshold to turn the proba-
bilities into classes. The partitioning of the dataset
to the five-folds is constant for decision tree and
HAN to facilitate comparison. The five folds are
created through stratified sampling of the depen-
dent variable.

5.2 Classification tree set-up

To answer (Q1) and (Q2), we tested for all 72 con-
figurations of prime (23 = 8) plus full (26 = 64)
family inputs for the decision tree. We performed
the same z-transformation pre-processing (as in
section 4.3) on the decision tree input variables and
limited random search to twenty trials.

The algorithm used is from the rpart package
with R. As part of hyperparameter tuning, we tuned
the cp (log-uniform between 10−7 to 10−9), max-
imum depth (uniform between 1 to 20), and min-
imum split (uniform between 20 to 80) through
five-fold cross-validation and random search.

5.3 HAN set-up

To answer (Q1) and (Q2), we chose the input con-
figurations that performed that best for the classifi-
cation tree, and used the same input configurations
in HAN to compare the difference. Therefore, this
test is biased in favour of the classification tree.
To answer (Q3), we added the fine narratives to
each coarse-only configuration, and compared the
difference.

The model architecture is the HAN architecture
by Yang et al. (2016), with about 5 million parame-
ters. We used the pre-trained Glove word embed-
dings (Pennington et al., 2014) of 300-dimensions
to represent each word. Words not found in the
Glove vocabulary are replaced with the “unk” to-
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Coarse Inputs Tree
Coarse-

only
(HAN)

Significance of
Difference

(Coarse-only
vs. Tree)

Coarse +
Fine

(HAN)

Significance of
Difference

(Coarse + Fine
vs. Coarse-only)

D′A′P ′

(Existing Features)
0.577

(0.011)
0.637

(0.018)
ˆˆˆ

[0.038, 0.082]
0.629

(0.041)
[-0.054, 0.038]

H
0.613 **
(0.036)

0.642
(0.038)

[-0.025, 0.083]
0.652

(0.048)
[-0.053, 0.073]

DH
0.670 ***
(0.049)

0.670 **
(0.034)

[-0.062, 0.062]
0.654

(0.030)
[-0.063, 0.031]

PAH
0.684 ***
(0.022)

0.645
(0.043)

[-0.089, 0.011]
0.661

(0.029)
[-0.038, 0.070]

APMH
0.664 ***
(0.037)

0.643
(0.036)

[-0.074, 0.032]
0.657

(0.037)
[-0.039, 0.067]

APSMH
0.649 ***
(0.021)

0.644
(0.049)

[-0.060, 0.050]
0.653

(0.051)
[-0.064, 0.082]

DAPSMH
0.630 ***
(0.032)

0.661 *
(0.030)

[-0.014, 0.076]
0.650

(0.028)
[-0.053, 0.031]

Table 4: Summary of the model performances. We report the average five-fold cross-validation AUC and its
standard deviation in brackets. Row-wise: We begin with the D′A′P ′, which is the full existing feature set from
Kim et al. (2019b), and progressively compare it against the new sets of features to answer Q1. Column-wise: We
compare the difference in AUC between the classification tree and coarse-only HAN to answer Q2. We compare
the difference in AUC between the coarse-only HAN and coarse + fine HAN to answer Q3. Asterisks (*) indicate
significance relative to the D′A′P ′ row. Carets (ˆ) indicate significance relative to column-wise comparisons, we
also provide the confidence intervals in square brackets [] for the difference in performance. The number of
symbols indicate the level of statistical significance, e.g., ***: 0.01, **: 0.05, *: 0.10.

ken. The hyperparameter tuning procedure is re-
ported in Appendix A, and the best hyperparameter
configurations are reported in Appendix B. There
are twenty hyperparameter search trials for each
input configuration3.

6 Experimental results

The results are summarized in Table 4. The key
findings are: (Q1) with the extended inputs, we
observed statistically significant improvements in
both the HAN and tree over the existing full set of
features (one-tailed t-test); (Q2) given the coarse-
only inputs, the performances between the HAN
and classification tree did not differ significantly
(two-tailed t-test), therefore it is plausible that fea-
ture engineering into text features do not risk per-
formance; (Q3) although adding the fine narratives
allow deeper analyses by the analyst, it does not
lead to significant differences over the coarse-only
inputs (two-tailed t-test).

(Q1) When compared to the full set of existing
3We conducted additional tuning experiments for the tree

in Appendix C to observe potential improvements in perfor-
mance.

features, the classification tree achieved statisti-
cally significant improvements (at α = 0.05) in all
six out of six coarse input families. For HAN, it
achieved statistically significant improvements in
one (at α = 0.05) or two (at α = 0.10) out of six
coarse input families. This demonstrates the value
of the newly introduced coarse features4.

(Q2) Across the seven coarse input configura-
tions, there are no significant differences in the
performance from the classification tree when com-
pared to the HAN in six out of seven input con-
figurations. The only exception is in the baseline
D′A′P ′ configuration where the HAN is signifi-
cantly better. However, the lack of statistically
significant differences does not mean that the per-
formances are the same. In line with Quertemont
(2011) recommendation, we provided the confi-
dence interval around the difference in performance
for discussion. Of all confidence intervals that in-
cluded zero in the fourth column of Table 4, the

4We performed additional tests in Appendix D to observe
the impact of the additions to the fine narratives, and found
small improvements (but statistically insignificant) in all three
out of three input families (va, vp, vpa).
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confidence intervals do not suggest that that the
effect sizes are negligible (for example, less than
0.01). In summary, we cannot conclude that the
performance of HAN differs significantly from tree
nor are they the same.

(Q3) The addition of fine narratives to the coarse
narrative did not result in significantly stronger
(nor weaker) performance in any of the seven input
configurations. We posit that this negative find-
ing is due to the difficulty in prioritizing the back-
propagation updates to the parts of the network
interacting with the coarse features, where there
is likely a high signal-to-noise ratio. Despite the
negative finding, we think it is important to explore
fine features’ addition onto coarse features because
it produces a complete transcript for the human to
understand how the conversation proceeded.

6.1 Qualitative Analysis

We visualized the talkturn-level and word-level at-
tention weights from the model. Attention weights
are normalized using z-transformation and buck-
eted into four buckets (< 0, < 1, < 2, ≥ 2) (Kim
et al., 2019b). The analyst could analyze an im-
portant segment in detail (as in Fig. 3) or see an
overview of the important segments in the conver-
sation (see appendix E). In the example (Fig. 3), we
observed that the multimodal annotations of lean-
ing forward and positive expression were picked
up as important words by the model.

7 Conclusion

In this paper, we build upon a fully text-based
feature-engineering system. We motivated the
added features with existing literature, and demon-
strated the value of the added features through ex-
periments on the EQClinic dataset. This approach
emulates how humans have been analyzing con-
versations with the Jefferson (2004) transcription
system, and hence is human-interpretable. It is
highly modular, thereby allowing practitioners to
inject modalities. In this paper, we have used a
wide range of modalities, including demograph-
ics, actions, prosody, mimicry, actions, and history.
The ablation tests showed that the added coarse
features significantly improve the performance for
both decision tree and HAN models.

Future research could (1) investigate whether
this feature engineering system is generalizable to
wider applications of conversational analysis; (2)
conduct user studies to validate the usability and

Figure 3: Conversation analysis for a true positive. The
talkturn-level attentions are labelled Low (L), Medium
(M) and High (H), while the words with higher atten-
tion have a larger and darker font. We also transcribed
this segment using the Jefferson system in Appendix F.

ease of interpretability of the visualization.
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Jon Gillick, and David Bamman. 2018. Capturing,
Representing, and Interacting with Laughter. In Pro-
ceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, page 358. ACM.

Fabio Sala, Edward Krupat, and Debra Roter. 2002.
Satisfaction and the use of humor by physicians and
patients. Psychology and Health, 17(3):269–280.

Albert E Scheflen. 1964. The significance of posture
in communication systems. Psychiatry, 27(4):316–
331.

Taylan Sen, Mohammad Rafayet Ali, Mo-
hammed Ehsan Hoque, Ronald Epstein, and
Paul Duberstein. 2017. Modeling doctor-patient
communication with affective text analysis. 2017
7th International Conference on Affective Com-
puting and Intelligent Interaction, ACII 2017,
2018-Janua:170–177.

Harold C Sexton, Kristin Hembre, and Guri Kvarme.
1996. The interaction of the alliance and therapy mi-
croprocess: A sequential analysis. Journal of Con-
sulting and Clinical Psychology, 64(3):471.

Linda Tickle-Degnen and Robert Rosenthal. 1990. The
nature of rapport and its nonverbal correlates. Psy-
chological inquiry, 1(4):285–293.

John M Travaline, Robert Ruchinskas, and Gilbert E
D’Alonzo Jr. 2005. Patient-physician communica-
tion: why and how. Journal of the American Osteo-
pathic Association, 105(1):13.



477

Vokaturi. 2019. Vokaturi Overview.

Kaihang Wu, Chunfeng Liu, and Rafael A Calvo. 2020.
Automatic Nonverbal Mimicry Detection and Anal-
ysis in Medical Video Consultations. International
Journal of Human–Computer Interaction, pages 1–
14.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Amir Zadeh, Paul Pu Liang, Navonil Mazumder,
Soujanya Poria, Erik Cambria, and Louis-Philippe
Morency. 2018. Memory fusion network for multi-
view sequential learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol-
ume 32.

Ran Zhao, Tanmay Sinha, Alan W Black, and Justine
Cassell. 2016. Socially-aware virtual agents: Au-
tomatically assessing dyadic rapport from temporal
patterns of behavior. In International conference on
intelligent virtual agents, pages 218–233. Springer.

Appendices

A Tuning procedure
We tuned the SGD optimizer with a learning rate
between 0.003 to 0.010, batch size to be between
4 to 20, L2 regularization between 10−6 and 10−3,
and trained for up to 350 epochs without early
stopping. We tuned the number of gated recur-
rent units (GRU) (Cho et al., 2014) between 40
to 49 in both the word-level and talk-turn-level
layers, with both the GRU dropout and recurrent
dropout (Gal and Ghahramani, 2016) to be between
0.05 to 0.50. The method of choosing hyperpa-
rameters is through uniform sampling between the
above-mentioned bounds, except for the learning
rate where log-uniform sampling is used. Training
is performed on a RTX2070 GPU or V100 GPU.

B Hyperparameter configurations for
best-performing models

Table 5 (HAN) and Table 6 (Tree) report the hy-
perparameter configurations for each of the best-
performing model reported in Table 4.

C Performance of additional tuning
We conducted additional experiments on the tree
configurations to (1) compare the improvements in
performance when tuning the HAN and tree, and
(2) evaluated the increase in performance if the tree

is allowed twenty more hyperparameters random
search trials (Fig. 4).

Figure 4: Best cumulative AUC performance given N
random search trials.

From the larger increases in HAN performances,
it is plausible that HAN is more sensitive to the
hyperparameter tuning than the tree.

D Additional tests for additions to the fine
narratives

Table 7 reports the additional tests on the impact
of the added fine features. We observe that whilst
all three input configurations (va, vp, vpa) have
small increases in performance, none of them are
statistically significant.

E Conversation thumbnail visualization
By illustrating the talkturn-level attention weights
as a heatmap thumbnail (Fig. 5), the analyst could
quickly get a sense of the important segments of
the conversation without reading the content and
zoom-in if required.

F Jefferson example
As an optional reference, we engaged a profes-
sional transcriptionist to transcribe the conversa-
tion segment presented (Fig. 3) using the Jefferson
system. The Jefferson example is presented in Fig.
6. The verbal content is slightly different due to (1)
different methods to determine talkturns transitions
and (2) automatic speech recognition accuracy.

https://developers.vokaturi.com/getting-started/overview
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Config. Batch
Size

Num.
of

GRU

Learning
Rate

GRU
dropout

GRU
recurrent
dropout

L2
regularization Epoch

H 19 42 0.010 0.10 0.23 1× 10−4 223
DH 11 46 0.010 0.07 0.09 3× 10−6 74
PAH 14 47 0.005 0.16 0.50 2× 10−5 329
APMH 8 44 0.005 0.29 0.16 1× 10−3 275
APSMH 9 43 0.005 0.16 0.48 4× 10−5 305
DAPSMH 14 41 0.010 0.49 0.48 2× 10−5 138
D′A′P ′ 19 46 0.004 0.06 0.50 1× 10−4 260
v 16 40 0.009 0.15 0.09 2× 10−5 316
va 13 43 0.007 0.13 0.48 1× 10−6 347
vp 8 42 0.006 0.13 0.05 2× 10−5 310
vpa 9 48 0.010 0.45 0.46 1× 10−5 349
va′ 12 40 0.006 0.11 0.30 1× 10−4 346
vp′ 11 42 0.007 0.44 0.19 2× 10−5 341
vp′a′ 10 45 0.008 0.31 0.41 4× 10−6 267
H-vpa 8 42 0.005 0.38 0.33 2× 10−5 346
DH-vpa 12 44 0.009 0.25 0.14 1× 10−5 316
PAH-vpa 11 47 0.005 0.08 0.49 5× 10−5 349
APMH-vpa 18 46 0.008 0.13 0.50 1× 10−5 339
APSMH-vpa 9 43 0.010 0.13 0.21 2× 10−6 240
DAPSMH-vpa 15 46 0.009 0.15 0.50 2× 10−5 340
D′A′P ′ - vp′a′ 13 46 0.008 0.26 0.16 1× 10−5 262

Table 5: Best HAN configurations for the development set.

Config. Min.
split

Max.
depth cp

H 27 17 3.13×10−6
DH 72 18 1.14×10−6
PAH 70 15 8.84×10−5
APMH 72 18 1.14×10−6
APSMH 68 14 5.26×10−5
DAPSMH 37 10 2.94×10−5
D′A′P ′ 68 21 3.74×10−5

Table 6: Best Tree configurations for the development
set.
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Config. Existing
inputs

New
inputs

Significance
of Difference
(existing vs.

new)
v 0.617 (0.053) N/A

vp′
0.630

(0.037)
0.636

(0.055)
[-0.062, 0.074]

va′
0.616

(0.055)
0.622

(0.033)
[-0.060, 0.072]

vp′a′
0.630

(0.038)
0.648

(0.027)
[-0.030, 0.066]

Table 7: Summary of the model performances for the
fine narratives. We report the average five-fold cross-
validation AUC and its standard deviation in brackets.
Row-wise, we begin with the v configuration to show
the impact of fine multi-modal annotations over the ver-
batim transcript. Then, we show the impact of the addi-
tions (Q1) over the existing fine annotations from Kim
et al. (2019b) using column-wise comparisons. As-
terisks (*) indicate significance relative to the v row.
Carets (ˆ) indicate significance relative to column-wise
comparisons, we also provide the confidence intervals
in square brackets [] for the difference in performance.
The number of symbols indicate the level of statistical
significance, e.g., ***: 0.01, **: 0.05, *: 0.10.

Figure 5: Heatmap thumbnail. Darker blue indicates
higher talkturn attention weights.

Figure 6: Jefferson transcription example. : (colon) -
stretched sound; (0.2) - a pause of 0.2 seconds; .hhh
- in breath, .h - short in breath; ↑ - Rise in intonation;
underline - emphasis; <> - slowed speech rate, >< -
quickened speech rate; [] - overlapping speech.


