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Abstract

Automatic Post-Editing (APE) aims to correct
errors in the output of a given machine trans-
lation (MT) system. Although data-driven ap-
proaches have become prevalent also in the
APE task as in many other NLP tasks, there
has been a lack of qualified training data
due to the high cost of manual construction.
eSCAPE, a synthetic APE corpus, has been
widely used to alleviate the data scarcity, but it
might not address genuine APE corpora’s char-
acteristic that the post-edited sentence should
be a minimally edited revision of the given
MT output. Therefore, we propose two new
methods of synthesizing additional MT out-
puts by adapting back-translation to the APE
task, obtaining robust enlargements of the ex-
isting synthetic APE training dataset1. Experi-
mental results on the WMT English-German
APE benchmarks demonstrate that our en-
larged datasets are effective in improving APE
performance.

1 Introduction

Automatic Post-Editing (APE) seeks to automati-
cally correct errors included in the output of a black-
box machine translation (MT) system to improve
the final translation quality, thereby reducing the
effort required for manual post-editing (Allen and
Hogan, 2000; Chatterjee et al., 2015; Bojar et al.,
2016; Chatterjee et al., 2018). In general, APE can
be considered as a task of sequence-to-sequence
supervised learning, which requires a considerable
amount of human-annotated data. However, con-
structing an APE corpus—a set of triplets (Table
1), each of which includes a source text (src), a
machine-translated text (mt), and a manually post-
edited text (pe)—is labor-intensive work because

∗∗ Equal contribution to this work.
1Our synthetic APE data is available at https://

github.com/wonkeelee/APE-backtranslation.
git

src Manipulates the shape of an item .
mt Bearbeitet die Form eines Elements an .
pe Verändert die Form eines Elements .

Table 1: An example of APE triplets from the WMT
dataset (Bojar et al., 2017). Boldface words are either
incorrect words in mt or post-edited words in pe.

post-editors should create pe in principle by mini-
mally editing mt while preserving the meaning of
src. In fact, the sizes of currently available ‘gen-
uine’ APE corpora provided by WMT (Bojar et al.,
2016, 2017; Chatterjee et al., 2018, 2019, 2020) are
too small to train deep APE models effectively.

To overcome the lack of genuine APE corpora,
several previous studies have proposed methods
to construct synthetic training datasets (Junczys-
Dowmunt and Grundkiewicz, 2016; Negri et al.,
2018; Lee et al., 2020), and they appear to be par-
tially helpful in mitigating the data scarcity prob-
lem. One such study is eSCAPE (Negri et al.,
2018), which has been shown to be effective in
training deep models and adopted in a number of
APE works (do Carmo et al., 2020). Utilizing par-
allel corpora, which comprise pairs of a source
sentence (src) and a reference sentence (ref ), eS-
CAPE was constructed as a set of synthetic APE
triplets in the form of (src, mt, ref ) where mt is
a machine translation of src, and ref serves as an
alternative to pe of a genuine APE triplet.

Despite the effectiveness of eSCAPE, we argue
that it may have two major drawbacks: (1) eS-
CAPE’s method relies heavily on parallel resources,
so its scalability is restricted to the quantity of avail-
able parallel resources and can be even more lim-
ited in low-resource scenarios; (2) the relation be-
tween mt and ref may not thoroughly reflect the
actual relation between mt and pe because ref is
not guaranteed to be a minimally edited revision of
mt, potentially leading to the discrepancy between

https://github.com/wonkeelee/APE-backtranslation.git
https://github.com/wonkeelee/APE-backtranslation.git
https://github.com/wonkeelee/APE-backtranslation.git
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Figure 1: (a) and (b) are categorical distributions that indicate the proportion y [%] of samples belonging to a
specific TER interval x for each of the two APE data types classified according to the type of the target MT system.
Here, TER is a metric that presents the distance (error ratio) between mt and its target (pe or ref ).

the distribution of translation errors in genuine data
and that of translation errors in the synthetic data
(Figure 1).

In this paper, we propose two automatic methods
that are inspired by back-translation from the MT
task (Sennrich et al., 2016), employing the APE
process in the forward direction and the backward
direction with applying the eSCAPE resource to
them to create additional synthetic mt. Our ap-
proach not only extends the existing resource, but
also aims to better simulate the characteristics of
real APE data by making our synthetic mt better ap-
proximate the error distribution of the WMT APE
benchmark dataset.

2 Background and Related Work

Back-translation. Back-translation is a method
to create synthetic source texts from clean target
texts by using an MT system that is trained in the
target–to–source direction. Back-translation has
allowed many MT studies to use monolingual data
to generate additional parallel data so that they
alleviate data scarcity; moreover, it has also been
successfully adopted by other NLP tasks such as
summarization (Parida and Motlicek, 2019; Jernite,
2019) and grammatical error correction (Xie et al.,
2018).

Learning Objective of APE. Given that APE
aims to revise mt to pe while preserving the mean-
ing of src, each one of the two sources (src, mt)
plays a distinct and critical role: src is treated as an
auxiliary source, not only offering intact semantic
and contextual information but also being help-
ful in identifying mistranslation; mt, meanwhile,
serves as the primary source, which needs to be

Figure 2: An illustration of our two synthetic data gen-
eration methods. x, y, and z are examples of src, mt,
and ref, respectively. ỹ and z̃ are expected outputs that
the proposed methods will produce. Boldface words
indicate incorrect words.

corrected. In this perspective, the multi-source
approach: (src, mt) 7→ ref, is commonly used to
take both src and mt into account (Chatterjee et al.,
2018, 2019). Specifically, considering src, mt, and
pe as x ={xi}Tx

i=1, y ={yj}
Ty

j=1, and z ={zk}Tz
k=1

with the sequence lengths Tx, Ty, and Tz , respec-
tively, the APE model learns to predict pe with the
following conditional probability:

p(z) =

Tz∏
k=1

p(zk|x,y, z<k; θ), (1)

where θ is a set of model parameters.

3 Method

Beyond the eSCAPE corpus, to yield a more con-
vincing error distribution as well as to supply APE
models with more APE resources made out of lim-
ited parallel resources, we propose synthetic-data
generation methods that can be seen as adaptations
of back-translation to the APE task in terms of cre-
ating synthetic mt, which is one of the two sources
of APE.



3687

We produce new synthetic mt so that ref can bet-
ter act as its minimally post-edited text, whereas
this ref may not do so for the original mt. Specif-
ically, we suggest two strategies, both of which
apply the APE process: ‘forward generation’ and
‘backward generation’; each one of them per-
forms APE in the forward direction and the back-
ward direction, respectively. As described in Fig-
ure 2, the former partially corrects mt to reduce the
distance between mt and ref, while the latter injects
the right quantity of translation errors into ref.

3.1 Forward Generation
The ‘Forward Generation’ (FG) method lets an
APE model take src and mt as input to produce
mtFG as output by partially correcting mt through
the forward path of APE; the training objective of
an FG model is identical to that of a normal APE
model (Eq. 1). The output mtFG then forms a new
synthetic triplet (src, mtFG, ref ) together with src
and ref. We use such triplets to construct a new set
of synthetic triplets eSCAPEFG.

Considering that mt generally requires a lot of
excessive correction to match ref, this approach’s
motivation is that mtFG, in itself a product of the
APE process, will generally be closer to ref than the
original mt. However, if the distance between mtFG
and ref is excessively small, indicating that the two
texts are almost identical, APE models trained on
eSCAPEFG may not learn error-correction patterns
sufficiently. Thus, unlike the standard training pro-
cedure, we force the FG model’s training process to
stop earlier before convergence, making the remain-
ing errors in its output mtFG ample. We therefore
use simple arrangements (§4) to find one optimal
value for this stop point.

3.2 Backward Generation
Borrowing the idea of back-translation, the
‘Backward Generation’ (BG) method reverses the
APE process during training by moving mt to the
position of ref and vice versa; hence, a BG model
is trained on (src,ref ) 7→ mt to maximize the fol-
lowing conditional probability:

p(y) =

Ty∏
j=1

p(yj |x, z, y<j ; θ). (2)

In other words, the model learns to generate mtBG
to contain translation errors that occur in mt con-
ditioned on a pair of src and ref. The output
mtBG then composes a new synthetic triplet (src,

Dataset # Triplets

WMT-PBSMT

Train 23,000
Dev 1,000
Test2016 2,000
Test2017 2,000
Test2018 2,000

WMT-NMT
Train 13,442
Dev 1,000
Test2018 1,023

eSCAPE-PBSMT 7,258,533
eSCAPE-NMT 7,258,533

Table 2: Statistics of the WMT and eSCAPE datasets
on the PBSMT and NMT subtasks.

mtBG, ref ) together with src and ref. We use such
triplets to construct another set of synthetic triplets
eSCAPEBG.

In contrast to FG, the concept of BG is to corrupt
a clean text (ref ) by learning until the distance
between the BG output and ref becomes similar to
the edit distance of real APE data. However, if we
let the BG model fully converge, the output mtBG
may not have a big difference from the original
mt; on the other hand, if the model has been barely
trained, mtBG would be almost the same as ref. In
both instances, APE models trained on eSCAPEBG
may not learn error-correction patterns sufficiently.
We use the same arrangements (§4) as in FG to find
an optimal value for the BG model’s stop point.

4 Experiments

Metric. Following the evaluation setting used in
the WMT APE shared task, we adopt TER (Snover
et al., 2006) as the primary metric to measure the
distance between the model’s prediction and the
reference text; and BLEU (Koehn et al., 2007) as
the secondary metric to measure the degree of n-
gram match. In addition, all evaluations in our
experiments are case-sensitive.

Dataset. We use two kinds of APE datasets:
human-made APE datasets, which are provided
by WMT, and eSCAPE. Both are English–German
(EN–DE) APE corpora; they are further catego-
rized according to their subtask depending on
whether the target MT system is a phrase-based
statistical MT (PBSMT) system or a neural MT
(NMT) system. The WMT datasets are in the IT do-
main, whereas eSCAPE was made out of domain-
general parallel corpora. Detailed data statistics are
presented in Table 2. We tokenized all words in
our datasets into sub-word units by using Senten-
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MODELS

PBSMT NMT

Test16 Test17 Test18 Avg. Test18

TER(↓) BLEU(↑) TER(↓) BLEU(↑) TER(↓) BLEU(↑) TER(↓) BLEU(↑) TER(↓) BLEU(↑)

WMT Baseline (No edit) 24.76 62.11 24.48 62.49 24.24 62.99 24.49 62.53 16.84 74.73

eSCAPE 16.97 73.94 17.35 72.93 17.74 72.34 17.35 73.07 16.39 75.70

eSCAPEFG 17.06 73.96 17.40 72.81 18.00 72.19 17.48 72.98 16.30 75.77

eSCAPEBG 17.25 73.58 17.85 72.30 17.93 72.12 17.66 72.66 16.50 75.40

eSCAPE + eSCAPEFG 16.79 74.25 17.05∗ 73.30∗ 17.32∗ 72.95∗ 17.05∗ 73.50∗ 16.09∗ 76.11∗

eSCAPE + eSCAPEBG 16.73 74.32∗ 16.96∗ 73.41∗ 17.26∗ 73.14∗ 16.98∗ 73.62∗ 15.95∗ 76.14∗

eSCAPE + eSCAPEFG + eSCAPEBG 16.57∗ 74.52∗ 16.99∗ 73.50∗ 17.29∗ 73.11∗ 16.95∗ 73.71∗ 16.15∗ 76.00∗

BERT-APE (Correia and Martins, 2019) 16.91 74.29 17.26 73.42 17.71 72.74 17.29 73.48 – –

BERT-APE (Correia and Martins, 2019) (Ensemble) 16.49 74.98 16.83 73.94 17.15 73.60 16.82 74.17 – –

BERT-APE (Lopes et al., 2019) – – – – – – – – 16.06 75.96

Table 3: Evaluation results of our APE models using different configurations on training datasets. ‘*’ represents
that our model’s improvement is significant enough compared to the eSCAPE baseline in the second row with
p < 0.05. The best result among our models in each column is in bold type. The three models at the bottom are
current state-of-the-art models.

cePiece (Kudo and Richardson, 2018).

Model Configuration. We implemented a
Transformer-based APE model, the “sequential”
model proposed by Lee et al. (2019), which is one
of the best performing models. We use this model
both as generation models that create synthetic mt
with our two proposed methods and also as the
final APE models to examine the effectiveness
of those synthesized data as additional training
data. We follow the hyperparameter setting
described in Lee et al. (2019), which again follows
almost the same setting of the “base” Transformer
described in the original paper Vaswani et al.
(2017). However, we adjust the warm-up rate to
15,000 and the batch size to 25,000. We used
OpenNMT-py2 to implement and execute all
models.

Synthetic Data Generation. To prevent our data
generation model from generating what it has al-
ready seen during the training phase, we adopt
the n-fold jack-knifing technique, which splits the
whole dataset into n − 1 folds for training and 1
left-out fold for generation and validation, into our
data generation process. Specifically,

1. Split eSCAPE into n = 8 folds: {fi}8i=1.

2. Construct a training set,
Di = Append

(
{fj}8j=1 \ {fi}

)
.

3. Train a data generation model (FG or BG)Mi

2https://github.com/OpenNMT/OpenNMT-py.
git

on Di and use 2,000 randomly extracted held-
out samples from fi for validation.

4. At a given model checkpoint, generate m̃ti with
Mi by supplying it with the pair of two sources
in fi.

5. Construct mtFG/BG = Append
(
{m̃ti}8i=1

)
.

To examine the optimal stop point (§3.1, §3.2),
we saved a model checkpoint every 25K training
steps up to 150K steps, where the model converges
with respect to its validation perplexity; thus, we
obtained 6 sets of synthetic mt for each one of
the two methods. Finally, for each method, we
trained 6 APE models by using each new set of
triplets including synthetic mt; and choose one set
of synthetic mt that reports the best performance
on the WMT validation dataset.

Evaluation With assistance from the FG and BG
methods, we have a set of synthetic APE triplets
S = {eSCAPE, eSCAPEFG, eSCAPEBG} avail-
able for training. In our experiments, we trained
several APE models on various combinations of
synthetic triplets in S together with the WMT train-
ing datasets and then compared the evaluation re-
sults to investigate how each data configuration af-
fects the model’s APE performance. Finally, after
training the models until their perplexities on the
WMT development dataset converge, we evaluated
them on the WMT test datasets. We considered
two baselines: (1) TER between mt and pe of the
test datasets and (2) the performance of the APE
model that is trained only on eSCAPE; the former

https://github.com/OpenNMT/OpenNMT-py.git
https://github.com/OpenNMT/OpenNMT-py.git
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Task Gen. type New samples (Ratio) TER

PBSMT
FG 6,041,622 (83.23 %) 53.35
BG 6,444,517 (88.79 %) 49.11

NMT
FG 4,969,521 (68.46 %) 52.53
BG 6,304,471 (86.86 %) 45.89

Table 4: Statistics of synthetic mt produced by each
proposed scheme. TERs are computed between mt and
ref. ‘New samples (Ratio)’ indicates the number of syn-
thetic mt that do not overlap with mt in eSCAPE.

implies that no post-editing has occurred yet, and
it is used as the official baseline for the WMT APE
shared task.

5 Results and Discussion

Table 3 shows the evaluation results. We observed
that when eSCAPEFG or eSCAPEBG is used in-
stead of eSCAPE, the APE model’s performance
does not make a big difference from the eSCAPE
baseline. One possible reason that we expect is
the gap between those synthetic mt and mt in the
WMT dataset; in other words, synthetic mt is not
produced by an existing MT system.

Nevertheless, we found that when we augment
eSCAPE with eSCAPEFG and/or eSCAPEBG, the
trained APE model shows consistent improvements
in its APE performance and most of the improve-
ments upon the eSCAPE baseline are statistically
significant. Moreover, the results also surpass cur-
rent state-of-the-art (except the ensemble models)
APE models (Correia and Martins, 2019; Lopes
et al., 2019), which are built on top of BERT (De-
vlin et al., 2019), thus contain more model param-
eters, and exploit a huge amount of monolingual
data. We expect that these results are because, in
addition to an increase in the total quantity of train-
ing samples, the integration of multiple synthetic
datasets, each of which focuses on different aspects
of APE from the other—eSCAPE contains actual
MT outputs; on the other hand, synthetic triplets
better satisfy the minimal-edit criterion—appears
to have an effect on the models’ APE performance.

We found that our proposed methods derive a
large number of new mt (Table 4) from eSCAPE
and also yield a more similar TER distribution to
that of WMT data than that of eSCAPE in terms
of not only the mean TER (Table 4) but also the
decrease in KL-divergence (Figure 3).
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Figure 3: Presentation of DKL(P ‖ Q) (with base-10
logarithms) where P and Q are TER categorical distri-
butions; P is for the WMT data, and Q is for each kind
of synthetic triplets. The TER categorical distributions
are plotted in the same manner as in Figure 1.

6 Conclusion and Future Work

In this paper, we tried to alleviate the drawbacks of
eSCAPE by suggesting two new methods that adapt
back-translation to the APE task, consequently in-
creasing the data quantity and address the mini-
mum editing characteristic. According to our ex-
perimental results, although APE models trained
on each one of our two synthetic datasets show just
comparable performances to the eSCAPE baseline,
those trained on integrations of multiple synthetic
datasets show consistent improvements over the
baseline, implying that our new synthetic datasets
are beneficial enlargements of eSCAPE. However,
we manually selected the optimal stop points for
both of our proposed generation schemes, so we
will automate these selection processes in our fu-
ture work.
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