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Abstract

The growing availability of powerful mobile
devices and other edge devices, together with
increasing regulatory and security concerns
about the exchange of personal information
across networks of these devices has chal-
lenged the Computational Linguistics commu-
nity to develop methods that are at once fast,
space-efficient, accurate and amenable to se-
cure encoding schemes such as homomorphic
encryption. Inspired by recent work that re-
stricts floating point precision to speed up neu-
ral network training in hardware-based SIMD,
we have developed a method for compressing
word vector embeddings into integers using
the Chinese Reminder Theorem that speeds up
addition by up to 48.27% and at the same time
compresses GloVe word embedding libraries
by up to 25.86%. We explore the practical-
ity of this simple approach by investigating the
trade-off between precision and performance
in two NLP tasks: compositional semantic re-
latedness and opinion target sentiment classi-
fication. We find that in both tasks, lowering
floating point number precision results in neg-
ligible changes to performance.

1 Introduction

In recent years, NLP models, particularly lan-
guage models, have come under increasing
scrutiny for their potential privacy leaks (e.g., Car-
lini et al. (2018)). One answer has been to push
NLP models onto edge devices, such as mobile
phones and browsers, for on-device inference us-
ing differentially private federated learning (e.g.,
Yang et al. (2018)). Edge computing, in turn, re-
quires smaller and faster models, such as Distill-
BERT (Sanh et al., 2019) or mobileBERT (Sun
et al., 2020), which theoretically improves the vi-
ability of using BERT embeddings on these de-
vices.

What has yet to take place, however, is careful
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numerical analysis of word embeddings at vary-
ing precisions for different NLP tasks. Numerical
analysis can inform potential alternatives to defin-
ing the representations of word embeddings them-
selves. We must carefully orchestrate a balance
among the size of these representations, their se-
curity, the algebra of operations that they enable,
and, because many edge devices are resource-
restricted relative to the GPU clusters that we do
research on, the efficiency and power consumption
of those operations. In particular, feature/basic
phones are growing in popularity in developing
nations!2, often with the possibility of expand-
ing their memory to about 16GB with a MicroSD.
Many privacy-enabled language models, in partic-
ular, are simply out of reach for these low-resource
devices.

No work to date has proposed using the Chinese
Remainder Theorem (CRT) to create software-
based compressed word embeddings, adapted to
Single Instruction Multiple Data (SIMD). We pro-
pose here a CRT-based method which speeds up
addition by up to 48.27% and compresses GloVe
(Pennington et al., 2014) word embedding li-
braries by up to 25.86% (up to 68.68% of the orig-
inal full-precision library), depending on the pre-
cision selected. We also explore different levels of
numerical precisions for a representative task, as
well as more abstractly by analysing the absolute
error resulting from adding and multiplying trun-
cated and rounded values.

Related Work. A number of recent papers have
explored limiting input precision in order to speed
up neural network training and inference. Zhang
et al. (2018) and Ling et al. (2016) specifically
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looked at the effects of limiting word embedding
precision. Zhang et al. (2018) evaluate embed-
dings of different sizes combined with hardware-
implemented SIMD for an adaptation of stochas-
tic gradient descent that achieves a memory im-
provement of 2X and 1.2X faster training speed.
Ling et al. (2016) demonstrate that using word em-
beddings made up of 8-bit fixed-point values per-
forms just as well as other embeddings on word
similarity, phrase similarity, and dependency pars-
ing tasks. Tissier et al. (2019), on the other hand,
has shown how to generate binary word embed-
dings that fit within a CPU’s cache to increase
computing speed. With limited effect on task ac-
curacy, they manage to generate 256-bit embed-
dings which are 37.5x smaller than traditional
300-dimensional word embeddings.

While we have demonstrated that CRT can be
used to increase the efficiency of word vector ad-
dition by transforming a vector into a single large
number, it is usually used for the opposite purpose:
to transform larger numbers into many smaller
numbers to improve multiplication efficiency. For
this purpose, CRT is integrated in certain homo-
morphic encryption libraries.

CRT has also been proposed as a method of en-
crypting multiple entries in a database (e.g., a;) as
one number, each decryptable by a secret modu-
lus (e.g., m;) (Yan, 2002). The security of such
schemes are shaky and more complexity is usually
added to guarantee security (Liu et al., 2014; Lin
etal., 1992).

2 Background

2.1 Single Instruction Multiple Data

Single Instruction Multiple Data is a computer ar-
chitecture classification described in Flynn (1966)
as a single instruction acting simultaneously on
multiple operands. Flynn (1966) points out that
performance increases with the number of units.
Prior to Flynn (1966), SIMD was discussed in
Unger (1958); Slotnick et al. (1963); Crane and
Githens (1965); Hellerman (1966). More re-
cently, the Chinese Remainder Theorem was pro-
posed as a method for attaining SIMD in order
to optimize arithmetic for homomorphically en-
crypted values (Gentry et al., 2012; Smart and Ver-
cauteren, 2014). We do not know of work that
takes advantage of CRT-based SIMD for NLP, de-
spite the repetitive tasks performed within certain
algorithms.

2.2 Chinese Remainder Theorem

Theorem 2.1 (The Chinese Remainder Theorem).
Let my,ma,...,m, be pairwise relatively prime
positive integers. Then the system of congruences

X = aj(mod my)

X = az(mod myg)

X = a,(mod m,)

has a unique solution modulo M = mims...ms.
(Rosen, 2000)

We use a to denote the vector of val-
ues ai,as,...,a, and m to denote the vector
M1, M2y ceeey M.

The Chinese Remainder Theorem can also be
used to separate very large numbers into smaller
chunks on which, in certain cases, arithmetic op-
erations can be performed more efficiently (Rosen,
2000).

3 Algorithm: Vec2int

First, we must determine a minimum floating point
precision (¢) the values within our word embed-
dings must have. Since the CRT only works with
positive integers (and polynomials), we will mul-
tiply each value in the word embeddings (a;) by
10 and truncate (or round) the result, then add
the lowest possible integer value that can be found
within our word embeddings (s). Before running
the CRT algorithm, we must pre-compute a vec-
tor m of moduli, each of which are coprime and
strictly greater than any possible value of a;. a
and m can then be input into the CRT algorithm
in order to produce an integer X. Since we know
the values of m, we can easily perform a “reverse
CRT” by calculating a; < X (mod m;).

Algorithm 1 Vector To Integer

1: procedure VEC2INT(a, ¢, m, s)

2 fori <+ 1tordo

3: a; + truncate(a; * 10®) + s
4: end for
5

6
7:

X < CRT(a,m)
return X
end procedure

When two CRT-encoded vectors (say X; and
Xo) are added together, their sum at index ¢ can
still be decoded by calculating (X7 + X3) (mod
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m;), provided that either X; + Xy < my, or
(Xl + X2) (mod Qmi), when X7 + X9 > m;.
The same property holds for multiplication; i.e.,
(X1 * X3) (mod (m;)?), when X7 * X5 > m.
In other words, this representation supports vector
addition, multiplication and, in a more restricted
range, subtraction, through executing those opera-
tions directly on integers.

Addition and multiplication are fundamental to
most compositional semantics approaches, begin-
ning with Mitchell and Lapata (2008, 2010). Ad-
dition is also central to measuring the relationship
between word pairs, particularly when using the
L1-norm as a metric, which is less sensitive to out-
liers than the L2-norm (Stratos, 2017). Word anal-
ogy is an example of such a task. Of course, the
these operations can also be applied to measuring
the relationship between sentence pairs and docu-
ment pairs.

4 Reasoning about Precision using
Numerical Analysis

One might assume that we have to perform exten-
sive empirical analysis to determine the minimum
floating point precision necessary for the inputs of
a particular NLP algorithm. However, there are
generalizations we can make based on concepts as
simple as the absolute error and relative error of
components of the operations, described in Heath
(2018) as:

Absolute error = approx. value — true value (1)

. absolute error
Relative error = ——— )
true value

For our operations, the vectors truncated or
rounded at precision ¢ within a dataset |Dg| are
denoted vg;, while the vectors of the original
dataset are denoted v;. If we want to refer to index
k of vector vi, we write it as v;[k|, where |vy]| is
the size of the embeddings we are working with.
The average absolute error between the vectors of
the two datasets of size |D| is computed as fol-
lows:

22 2 [Veilk] — vilk]|
D] * [v1]

We calculate the average absolute error of addi-
tion as follows:

221 205 2 | (VailK] + vas[K]) — (Vilk] + vj[k])]

3)

(191) # val

4)

S Experimentation & Analysis

5.1 Arithmetic

200 = 300d (vec)
: 300d (int)
= 200d (vec)
150 200d (
(vec)
100d (int)
100 50d (vec)
50d (int)

50

Figure 1: Milliseconds (y-axis) it takes to run 100000
element-wise additions over vectors of (*d) dimensions
at ¢ precision (z-axis).

We have tested the efficiency of adding and
multiplying integer representations of word em-
beddings compared to adding and multiplying
their original vectors. On a 1.9GHz Intel i7-8650U
with a 2.11 GHz burst rate, 1024MB L2 cache
and 8192MB L3 cache, 100K additions (Figure 1)
generally take 3x longer to perform on vectors
than their integer encodings, regardless of preci-
sion and dimensionality, while the results for mul-
tiplication (Figure 2) are profound and negative at
larger precisions and dimensionalities.

We may then theoretically expect the CRT-
encoding of vectors as integers to result in a signif-
icant performance gain in the case of addition, but
for the most part a significant performance loss in
the case of multiplication. Nevertheless, in com-
paring the various pairs of rows in Tables 1 and 2,
we notice that the computational gains made from
adding CRT representations rather than word vec-

8000 = 300d (vec)
300d (int)
= 200d (vec)

6000 200d (int)
= 100d (vec)

100d (int)

4000 50d (vec)

50d (int)

2000

Figure 2: Milliseconds (y-axis) it takes to run 100000
element-wise multiplications over vectors of (*d) di-
mensions as ¢ precision (x-axis).
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100000 1000000 10000000
50d1(int) 15 156 1548
50d1(vec) 57 572 5764
50d2(int) 18 172 1716
50d2(vec) 57 572 5711
50d3(int) 18 174 1746
50d3(vec) 57 570 5712
50d4(int) 18 184 1835
50d4(vec) 58 570 5718
50d5(int) 27 174 1719
50d5(vec) 57 572 5712

Table 1: Milliseconds it takes to run 100000, 1000000,
and 10000000 many additions over vectors of (*d) di-
mensions at (d*) precision.

100000 1000000 10000000

50d1(int) 37 371 3711
50d1(vec) 57 574 5701

50d2(int) 54 539 5385
50d2(vec) 57 571 5690
50d3(int) 72 719 7203

50d3(vec) 60 571 5698
50d4(int) 102 1026 10261
50d4(vec) | 57 570 5698
50d5(int) 131 1310 13107
50d5(vec) | 57 571 5700

Table 2: Milliseconds it takes to run 100000, 1000000,
and 10000000 many element-wise multiplication over
vectors of (*d) dimensions at (d*) precision.

tors can considerably outweigh the losses from
multiplying integer representations when the num-
ber of additions is greater or equal to the num-
ber of multiplications. In practice, as illustrated
in several use cases below, the number of addi-
tions can be far greater in many important tasks.
Recall also the findings of Ling et al. (2016), who
did not observe a significant decrease in perfor-
mance when using an 8-bit fixed-point value for
word embeddings in word and phrase similarity
and dependency parsing tasks. This implies that
there is some room for compromise on precision
practical NLP tasks as well.

5.2 Use Case 1: Compositional Semantics

A prime example of the significant performance
improvements brought on by integer addition of
word embeddings in the area of compositional
semantics can be found in Salton and McGill
(1986). It was demonstrated that vector addi-
tion is more effective than other proposed un-
supervised compositional models (multiplication
(Mitchell and Lapata, 2010), tensor product with
convolution (Widdows and Ferraro, 2008), and
dilation (Mitchell and Lapata, 2010)) for deter-
mining semantic relatedness between bigrams and

other bigrams or unigrams (Asaadi et al., 2019).

Dataset and previous results. In Asaadi et al.
(2019), the authors introduce BIRD, a bigram
relatedness dataset created using the Best-Worst
Scaling annotation method. To accomplish this
task, annotators are provided with n sample,
where n is often 4, and are asked which of the
samples best represent the a given property and
which one represents it the worst (Kiritchenko
and Mohammad, 2016, 2017). Asaadi et al.
(2019) compute bigram semantic relatedness us-
ing three different kinds of word embeddings;
namely, pre-trained GloVe vectors®, pre-trained
fastText word embeddings*, and word-context co-
occurrence vectors extracted from a corpus of uni-
versity websites (Turney et al., 2011)>. Specifi-
cally, the authors compute the relatedness score
for the vectors representing the term pair AB-X,
where AB is a bigram and X can be either a bi-
gram or a unigram. The results of four unsuper-
vised compositional models were compared:

* Weighted addition (Salton and McGill,
1986);

* Multiplication (Mitchell and Lapata, 2010);

* Tensor product with convolution (Widdows
and Ferraro, 2008);

* Dilation (Mitchell and Lapata, 2010).

They then used Pearson correlation to compare
the semantic relatedness scores, computed using
these unsupervised compositional models, with
the gold-standard in the BiRD. Addition turns out
to be the composition method that results in the
highest Pearson correlation scores.

Integrating vec2int The task introduced by
Asaadi et al. (2019) is a prime candidate for us-
ing vec2int to speed up computations and reduce
space: vast numbers of additions need to be per-
formed in order to compute bigram relatedness
in large datasets. These datasets often occupy a
large amount of space and would also benefit from
a compression method that can support addition
in the compressed domain. The catch is that, in

3Originally obtained at: https://nlp.stanford.
edu/projects/glove

*Originally obtained at: https://fasttext.cc/
docs/en/crawl-vectors.html

5Code and data can be found at: https://github.
com/sasaadi/BiRD
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order to convert from a vector to an integer, we
must limit the precision of each of the entries of
the vector. Clearly, this can lead to concerns re-
garding the levels of accuracy that can be guar-
anteed by functions taking these precision-limited
vectors as inputs. For our calculations, we forego
any comparisons with floating point precision be-
low 8 digits (other than the original number of dig-
its®), since we want to maximize computational ef-
ficiency and minimize storage size. Recall that ¢
is the number of digits we keep after the decimal
point.

Figure 3 and Figure 4 display the effects of trun-
cating and rounding floating point numbers at vari-
ous precisions then converting them to integers for
determining bigram relatedness through the com-
position of fastText and GloVe vectors, respec-
tively’. Interestingly, even sticking to a floating
point precision of 1 or 2 can lead to results which
are just as good as with the original precision.

Figure 5 shows the average absolute error (see
Equation 3) and Figure 6, the average relative error
(see Equation 4), for each possible sum of two vec-
tors within the term context, fastText, and GloVe
datasets. We can see that an increase in aver-
age absolute and relative errors lines up with the
decrease in correlation score, and so we can de-
termine at which point bigram relatedness would
start to falter without computing Pearson or Spear-
man correlations. In fact, it appears to suffice only
to calculate the average (Figure 9) and relative
(Figure 10) errors of the truncated and rounded
word vectors themselves (see Equations 1 and 2,
respectively).

For interest, we show the average absolute error
(Figure 7) and average relative error (Figure 8) for
composition through multiplying fastText vectors
at various precisions. fastText exhibits the most
dramatic difference in performance between com-
position by addition and composition by multipli-
cation at lower precisions.

SThe largest precision within the term context vector is
¢ = 20, within fastText is ¢ = 12, and within GloVe is
¢ =8.

"We would like to thank Shima Asaadi, Saif M. Moham-
mad, and Svetlana Kiritchenko for providing the code and
data they used for the their Big BiRD paper. The correlation
scores for term context vectors are nearly the same as those
for GloVe at untruncated precision, but remain stable down
to ¢ = 2.

5.3 Compression

We test the utility of the CRT as a method of com-
pressing word embeddings. The results are shown
in Table 3, reaching up to a 25.85% space reduc-
tion for GloVe vectors. We also calculate an up-
per bound of how large a dataset of word embed-
dings can get when compressed using CRT rep-
resentations using the same relative primes m as
the ones used to calculate the results displayed
on Tables 3. Calculating the upper bound essen-
tially comes down to associating each word in the
dataset to the largest possible number [NV given m:

N:Hmi 5)

To demonstrate that, no matter what the vectors
were the compression would work, we show the
upper bounds compared to the size of the original
dataset of 50-dimensional GloVe embeddings and
the true CRT-compressed dataset of those embed-
dings on Table 4.

5.4 Use Case 2: Data Preprocessing for
Private and Secure Computing

Another potential use case is if one wants to con-
vert a text to its corresponding word embeddings
directly on device, before being sent for cloud
processing through homomorphic encryption or
secure multiparty computation algorithms, which
compute on precision-limited obfuscated data.

Arora et al. (2020) shows that pre-trained
embeddings perform within 5-10% accuracy
of benchmark tasks (NER, Sentiment analysis,
GLUE) compared to contextual embeddings (e.g.,
BERT) and can even regularly match their perfor-
mance when using industrial-level data.

Directly converting the words to their respective
word embeddings on device is particularly use-
ful for those algorithms, where table lookup over
large amounts of data can be a fairly expensive op-
eration. Not only can CRT representations com-
press the word embeddings to save valuable space
on edge devices, but they can be selectively de-
compressed, unlike zip files, as needed. If you
want to only convert the words in a user query to
embeddings, there is no need to decompress the
entire dataset!

We compare the results of CNN-based
sentence-level sentiment analysis using GloVe
vectors as input (Kim, 2014)® with those using

$https://github.com/yoonkim/CNN_
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FastText, Truncated (Pearson) FastText, Rounded (Pearson)

0.7 0.7
06 06 \
0.5 0.5
0.4 0.4 \
0.3 0.3 \
0.2 0.2
0.1 0.1
0 0
original *1.0e8 *1.0e7 *1.0e6 *1.0e5 *1.0e4 *1.0e3 *1.0e2 original  *1.0e8 *1.0e7 *1.0e6 *1.0e5 *1.0e4  *1.0e3  *1.0e2  *1.0el
—e—Addition —s—Multiplication Convolution Dilation —e—Head Only —s~Modifer Only ~e—Addition —=—Multiplication Convolution Dilation —e—~Head Only —=—Modifer Only

Figure 3: Pearson correlation results for determining bigram relatedness using addition of FastText vectors. *1.0e¢
means we are approximating at precision ¢. The trends are analogus with Spearman correlations.

GloVe, Truncated (Pearson) GloVe, Rounded (Pearson)

0.7 0.7
0.6 0.6
0.5 0.5 \
0.4 0.4 \
0.3 0.3 \
02 0.2 —
0.1 0.1

0 0

original *1.0e8 *1.0e7 *1.0e6 *1.0e5 *1.0e4 *1.0e3 *1.0e2 *1.0el *1.0e0 original *1.0e8 *1.0e7 *1.0e6 *1.0e5 *1.0e4 *1.0e3 *1.0e2 *1.0el *1.0e0

—e—Addition —s—Multiplication Convolution Dilation —e—Head Only —e—Modifer Only —e—Addition —=—Multiplication Convolution Dilation —e—Head Only —s—Modifer Only

Figure 4: Pearson correlation results for determining bigram relatedness using addition of GloVe vectors. *1.0e¢
means we are approximating at precision ¢. The trends are analogus with Spearman correlations.

Addition Average Absolute Error Addition Average Relative Error

6.00E-01 1.20E+00
5.00E-01 1.00E+00
4.00E-01 8.00E-01
3.00E-01 6.00E-01
2.00E-01 4.00E-01
1.00E-01 2.00E-01
I
0.00E+00 0.00E+00
8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0

—Term Context (truncated)—Term Context (rounded)
FastText (truncated) FastText (rounded)
——GloVe (truncated) ——GloVe (rounded)

—Term Context (truncated)—Term Context (rounded)
FastText (truncated) FastText (rounded)
——GloVe (truncated) ——GloVe (rounded)

Figure 5: Average Absolute Error (y-axis) of Addition
Composition at various precisions ¢ (x-axis).

Figure 6: Average Relative Error (y-axis) of Addition
Composition at various precisions ¢ (z-axis).

3517



P 50d (vec) 50d (int) | % comp. | 300d (vec) | 300d (int) | % comp.

1 72370294 | 53660860 25.85 409761382 | 362331318 11.58

2 93553333 | 70375007 24.78 541234251 | 421515395 22.12

3 113672109 | 89863047 20.95 662404899 | 522909838 21.06

4 133684216 | 109772868 17.89 782523349 | 640203015 18.19

5 153685462 | 129763285 15.57 902535343 | 759975428 15.80

6 173685641 | 149762224 13.77 1022536755 | 879944768 13.94

7 193685703 | 169762728 12.35 1142537169 | 999941457 12.48
original | 171350515 - - 1037965801 - -
zipped | 69182687 - - 394362421 - -

Table 3: Size (in bytes) of 50-dimensional (50d) and 300-dimensional (300d) GloVe dataset (400k terms) at var-
ious precisions, stored as integer vectors (vec) and their CRT representations (int). % comp. shows the level of

compression obtained.

FastText Average Absolute Error
1.00E-01
9.00E-02
8.00E-02
7.00E-02
6.00E-02
5.00E-02
4.00E-02
3.00E-02
2.00E-02
1.00E-02
0.00E+00 St
8 7 6 5 4 3 2 1 0
——Multiplication (truncated) Multiplication (rounded)
Addition (truncated) Addition (rounded)
Unigram vectors (truncated)——Unigram vectors (rounded)

Figure 7: Average Absolute Error (y-axis) for fastText
at various precisions ¢ (z-axis).

FastText Average Relative Error

1.20E+00
1.00E+00
8.00E-01
6.00E-01
4.00E-01
2.00E-01

0.00E+00 -
8 7 6 5 4 3 2 1 0

——Multiplication (truncated)
Addition (truncated)
Unigram vectors (truncated)

Multiplication (rounded)
Addition (rounded)
Unigram vectors (rounded)

Figure 8: Average Relative Error (y-axis) for fastText
at various precisions ¢ (z-axis).

Unigram Average Absolute Error

3.00E-01
2.50E-01
2.00E-01
1.50E-01
1.00E-01

5.00E-02

//

8 7 6 5 4 3 2 1 0

0.00E+00

—Term Context (truncated)—Term Context (rounded)
FastText (rounded)
GloVe (rounded)

FastText (truncated)
GloVe (truncated)

Figure 9: Average Absolute Error (y-axis) for unigram
vectors at various precisions ¢ (z-axis).

Unigram Average Relative Error

1.20E+00
1.00E+00
8.00E-01
6.00E-01
4.00E-01
2.00E-01

0.00E+00
8 7 6 5 4 3 2 1 0
—Term Context (truncated)—Term Context (rounded)
FastText (rounded)
GloVe (rounded)

FastText (truncated)
GloVe (truncated)

Figure 10: Average Relative Error (y-axis) for unigram
vectors at various precisions ¢ (z-axis).
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® | 50d (vec) 50d (int) | 50d Up. Bd. P 50d 300d

1| 72370294 | 53660860 53756606 -1 | 0.4908 | 0.5001
2 | 93553333 | 70375007 | 138556818 0 | 0.7571 | 0.7320
3 | 113672109 | 89863047 90156697 1 | 0.7730 | 0.7902
4 | 133684216 | 109772868 | 110156747 2 | 0.7745 | 0.7900
5 | 153685462 | 129763285 | 130156797 5 | 0.7730 -

6 | 173685641 | 149762224 | 150156847 full | 0.769 | 0.7942
7 | 193685703 | 169762728 | 170156897

Table 4: Size in bytes of 50-dimensional GloVe em-
beddings dataset, their CRT-compression and the upper
bound size of that CRT-compression for any possible
50-dimensional vectors, at various precisions P.

BERT. Kim (2014) is the same work that Arora
et al. (2020) used to compare with BERT over 6
different datasets. Of those datasets, we choose to
analyze the variation in performance on the MR
dataset (movie reviews — one sentence per review)
Pang and Lee (2005) and on the opinion polarity
detection subtask of the MPQA dataset (Wiebe
et al., 2005).

In addition to comparing BERT-based senti-
ment analysis results with CNNs that take full-
precision 300-dimensional GloVe vectors as in-
puts (which Arora et al. (2020) does), we ver-
ify the feasibility of this use case, by conduct-
ing experiments with varying precisions of 50-
dimensional and 300-dimensional GloVe embed-
dings. Table 5 shows that sentence-based senti-
ment analysis with GloVe embeddings remains al-
most unchanged even at ® = 1 on the MR dataset,
on which Arora et al. (2020) shows that BERT
outperforms CNNs by 6.9. BERT therefore out-
performs the CNN with 50d GloVe embeddings at
precision ¢ = 1 (which achieves a performance
of 77.3) by 8.9. However, GloVe often matches
BERT in this task when the BERT embeddings are
trained on 16 times less data. Arora et al. (2020)
also show that BERT outperforms GloVe on the
MPQA dataset by a measly 0.9. We determine
that BERT outperforms the CNN with 50d GloVe
embeddings at precision ¢ = 1 (which achieves a
performance of 88.46) by only 1.14.

As is mentioned in Arora et al. (2020), it
takes “440MB to store BERTpasg parameters,
and on the order of 5-10 GB to store activa-
tions[, while pJretrained non-contextual embed-
dings (e.g., GloVe) require O(nd) to store a n-
by-d e-bedding matrix (e.g., 480 MB to store

sentence

Table 5: Performance when varying the precision ®
of input GloVe embeddings to sentence-level sentiment
analysis using a CNN.

a 400k by 300 GloVe embedding matrix).” Our
method manages to reduce this embedding ma-
trix size by 25%. MobileBERT uncased, which
is made up of 23.21% of the number of parame-
ters of BERTgasE, ends up with a storage size of
139 MB (compare with 421 MB for BERTgasE
uncased). That resource-constrained model is still
2.62x larger than our 53.66MB compressed GloVe
embedding matrix, and without the benefit of our
significant performance gain. Indeed it is difficult
to imagine how a method that manipulates 512-bit
vectors could compete with adding integers. Mo-
bileBERT’s performance scores are within a cou-
ple of percentage points from those of BERTgasE.

6 Discussion and Future Work

These preliminary results suggest that the vec2int
algorithm would be an efficient way of encoding
word vectors for specific NLP tasks, namely those
which would benefit from arithmetic-supporting
vector compression (which tar and zip are not).
They also suggest that analysis of average rela-
tive and absolute error can be used to tune these
representations. We have yet to test the effective-
ness of using integer representations of word2vec
(Mikolov et al., 2013) and BERT (Devlin et al.,
2018), but expect the outcomes to be similar to
the results for term context vectors, fastText, and
GloVe. It would also be particularly interesting to
see what kind of performance improvements can
be obtained by applying the CRT to sentence- as
well as document-level embeddings.

Relevant to privacy concerns, some constraints
on homomorphic encryption schemes include lim-
iting the number of possible multiplications and
also limiting the precision of the values being
computed upon. The same sort of numerical pre-
cision analysis and computational limitations that
we have done in this paper can inform how we as
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NLP scientists think of how our methods are in-
tegrable into certain privacy technology. Average
relative and absolute error might be useful for cre-
ating better encrypted NLP algorithms using ho-
momorphic encryption, since many homomorphic
encryption schemes tend to require integer inputs
or limited-precision inputs.
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