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Abstract

Sequence-to-sequence based models have re-
cently shown promising results in generating
high-quality questions. However, these mod-
els are also known to have main drawbacks
such as lack of diversity and bad sentence
structures. In this paper, we focus on ques-
tion generation over SQL database and pro-
pose a novel framework by expanding, re-
trieving, and infilling that first incorporates
flexible templates with a neural-based model
to generate diverse expressions of questions
with guidance of sentence structure. Further-
more, a new activation/deactivation mecha-
nism is proposed for template-based sequence-
to-sequence generation, which learns to dis-
criminate template patterns and content pat-
terns, thus further improves generation qual-
ity. We conduct experiments on two large-
scale cross-domain datasets. The experiments
show that the superiority of our question gener-
ation method in producing more diverse ques-
tions while maintaining high quality and con-
sistency under both automatic evaluation and
human evaluation.

1 Introduction

With a growing demand for natural language inter-
faces for databases, automatic question generation
from structured query language(SQL) query has
been of special interest (Xu et al., 2018). Recently,
diversity-aware question generation has shown its
effectiveness in improving down-stream applica-
tions such as semantic parsing and question an-
swering tasks (Guo et al., 2018; Sultan et al., 2020).
Although neural sequence-to-sequence based gen-
eration has been a dominant approach and is able to
produce a meaningful description for SQL queries,
existing methods still suffer from the lack of diver-
sity as well as bad sentence structures (Gao et al.,
2019).

In the neural-based approaches, conventional
ways of generating diverse sentences focus on

approximate decoding techniques such as beam
search (Li et al., 2016a,b; Iyyer et al., 2018) and
temperature sweep (Caccia et al., 2018). Those
decoding strategies generate diverse samples while
sacrificing the quality of sentences. Variational
auto-encoders (VAEs) have been used to generate
various sentences by applying additional informa-
tion as latent variables (Hu et al., 2017; Guo et al.,
2018; Chen et al., 2019; Shao et al., 2019; Ye et al.,
2020). However, implicit latent representation pro-
vides limited controllability over sentence structure
and can be difficult to adapt to a new domain. Para-
phrase (Fader et al., 2013; Berant and Liang, 2014)
and syntactic-based methods (Dhole and Manning,
2020) have also been studied. However, learning
a paraphrasing model relies on a large number of
domain-specific paraphrase pairs, which is difficult
to obtain for target databases. Besides, syntactic-
based approaches apply syntactic parsers or seman-
tic rules to the natural language utterance, thus are
not applicable to SQL-to-question generation.

In the rule-based generation systems, the tem-
plates work as essential prior knowledge that con-
tains the structural information of sentences (Wang
et al., 2015; Song and Zhao, 2016; Krishna and
Iyyer, 2019). This ensures the generation contains
fewer grammatical errors and performs better with
extractive metrics (Wiseman et al., 2017; Puzikov
and Gurevych, 2018). However, their template for-
mats are mostly strict and the valid content for each
chunk should be pre-defined, which makes large
set of templates difficult to obtain.

In this paper, we propose a novel method that in-
corporates template-based generation with a neural
sequence-to-sequence model for diversity-aware
question generation. Instead of applying strict tem-
plates, we use flexible templates that can be col-
lected efficiently with less expense. These flexible
templates provide high-level guidance of sentence
structure while also enable sufficient flexibility for
a neural-based model to fill chunks with content de-
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tails. We present our method as a three-stage frame-
work including expanding, retrieving, and infilling.
In the expanding stage, we take advantage of exist-
ing large-scale cross-domain text-to-SQL datasets
to extract and collect the flexible template set au-
tomatically. In the retrieving stage, given a SQL
query, the best templates are retrieved from the
collected template set by measuring the semantic
distance of SQL and templates in a joint template-
SQL semantic space. In the filling stage, we treat
each template as a masked sequence and explic-
itly force the generator to learn question generation
with the constraint of the template. In order to
help the generator to discriminate template patterns
and content patterns, a unique activate/deactivation
mechanism is designed for the generator to learn
when to switch between template-copying state and
content-filling state.

We conduct experiments on two large-scale
cross-domain text-to-SQL datasets. Compared
to existing approaches, our method achieves the
best diversity result for both datasets with both au-
tomatic evaluation and human evaluation, while
maintaining competitive quality and high consis-
tency with SQL queries. We further demonstrate
that the designed modules each contribute to a per-
formance gain through an ablation study.

2 Related Work

2.1 Diverse Text Generation

In order to generate diverse expressions automati-
cally, paraphrase-based methods (Qian et al., 2019;
Fader et al., 2013; Berant and Liang, 2014; Dong
et al., 2017; Su and Yan, 2017) have been stud-
ied. Wang et al. (2015) proposes to iteratively ex-
pand the template set and lexicons given a small
number of template seeds and a large paraphrase
corpus. Syntactic-based generation (Iyyer et al.,
2018; Dhole and Manning, 2020) processes the
given text with natural language processing tech-
niques to produce high-quality and diverse sen-
tences with pre-defined templates. However, the
methods are not designed to deal with SQL queries
and noisy table content. In recent years, neural
network-based models have been widely used in
text generation (Pan et al., 2019). Many studies
attempt to diversify text generation by tuning latent
variables of different properties, such as topic, style,
and content (Fang et al., 2019; Ficler and Gold-
berg, 2017; Shen et al., 2019), while our method
focuses on explicitly changing the sentence struc-

ture. In exemplar-based systems (Cao et al., 2018;
Peng et al., 2019; Chen et al., 2019), the exemplar
works as a soft constraint to guide the sequence-
to-sequence generation and realize controllable di-
verse generation. Wiseman et al. (2018) proposes
to learn a hidden semi-Markov model decoder for
template-based generation for knowledge records.
Most existing work requires either paraphrase pairs
of the same input, reference sentences of similar
content, or work effectively only in a single do-
main. Unlike existing works, our method only
takes advantage of the large-scale cross-domain
SQL-to-text datasets to collect a large number of
templates. We extract templates from the datasets
directly to maintain the quality of the templates.
In order to find proper templates for a given SQL
query, we learn a joint semantic space by instance
learning and retrieve the best templates with closest
semantic distance.

2.2 Question Generation

The question generation task relates to many ap-
plications such as question generation over knowl-
edge base records (Wang et al., 2015), data-to-text
generation (Wiseman et al., 2017) and question gen-
eration for question answering(QA) systems (Tang
et al., 2017; Sun et al., 2019). SQL-to-question task
differs from the other tasks in that SQL queries typ-
ically include new entities over different databases,
which makes cross-domain generation a significant
challenge. Xu et al. (2018) explores the graph-
structured information in a SQL query and pro-
poses a graph-to-sequence approach for generation.
Guo et al. (2018) proposes to apply a copy mech-
anism and latent variables to map low-frequency
entities from SQL queries to questions and gener-
ate diverse questions in an uncontrolled way. Exist-
ing SQL-to-question approaches aim at generating
high-quality questions, while the diversity of the
generation is less explored. In this work, we fo-
cus on generating diversified questions with the
guidance of templates from cross-domain datasets.

3 Problem Formulation

Given a SQL query as the input sequence, ques-
tion generation over database aims to generate a
natural language question as an output sequence
that accurately reflects the same meaning as the
given SQL query. In this work, we generate the
question by introducing an intermediate template
in the generation process. Therefore, by applying
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Figure 1: Architecture of our Framework.

different templates, we can generate diverse expres-
sions of questions. Let x = [x1, x2, ..., x|x|] denote
the given SQL query, y = [y1, y2, ..., y|y|] denote
the gold-standard question, and t = [t1, t2, ..., t|t|]
denote the corresponding template. Given a neural-
based system with a set of learnable parameters θ∗t
and θ∗q , the two-stage objective in this work can be
formulated as follows:

θ∗t = argmax
θt

P (t|x)

θ∗q = argmax
θq

P (y|x, t)

4 Methodology

In this section, we introduce our framework, which
learns question generation from SQL queries with
the guidance of various templates, so as to increase
the diversity of generation.

4.1 Framework Overview

We illustrate the framework that models the gener-
ation process in Figure 1. In brief, it includes three
main stages: expanding, retrieving, and infilling.

Dataset Expansion The purpose of this step is
to acquire a training dataset consisting of triplets
<query, question, template>. Previ-
ous methods usually require a large corpus con-
taining paraphrased questions to learn template
structures; meanwhile, for existing text-to-SQL

datasets, only <query, question> pairs are
provided instead. To tackle those challenges, we
design the longest common subsequence (LCS)
based algorithm to automatically extract templates
for each <query, question> pair without re-
quiring the paraphrase pairs. Details of the algo-
rithm are introduced in Section 4.2.

Template Retrieval After obtaining the ex-
panded training set, all templates are gathered
to form a large template set to generate diverse
questions. To improve the quality and ratio-
nality of the generation, it is essential to re-
trieve suitable templates for it. A proper tem-
plate should be consistent with the content infor-
mation in a specific SQL query. For example,
when the given query is SELECT Population
WHERE ( City = New York), the template
When is the <ph> of <ph> ? should not
be selected. For that purpose, we propose a soft
classifier to learn a joint SQL-template space. In
this way, the semantic distance can be measured
between the two modalities, so that we can select
proper templates by the closest semantic distance.
Besides, since templates show higher inter-class
similarity with the same SQL pattern, we also ap-
ply a hard filter to exclude the templates paired
with different SQL patterns. Details of the soft
classifier are introduced in Section 4.3.

Text Infilling With a encoder-decoder model



3205

based on gated recurrent unit (GRU), we conduct
question generation in the way of text infilling. The
query x and template t are encoded into vectors sep-
arately by the bi-directional GRU encoder (Cho
et al., 2014). Following the work of Gu et al.
(2016) and Guo et al. (2018), we leverage the
soft-attention and copy mechanism in the decoder
construction. A Gaussian latent variable is adopted
to capture the query and template variations. In
the decoding process, a template t is fed into the
decoder as a supervised signal to generate ques-
tions dynamically and sequentially. We propose an
activation/deactivation mechanism to enforce the
decoder to differentiate between the template pat-
terns and the content patterns instead of randomly
masking slots. In this way, the decoder can learn
when to switch between the template reading and
the content filling during generation. Details of the
activation/deactivation mechanism are illustrated
in Section 4.4.
4.2 Flexible Template as LCS
Consider a SQL query as a combination of a SQL
pattern (i.e., the query with its content words re-
moved) and the table information as follows:

SELECT COUNT( PLAYER ) WHERE
(STATE = ‘Texas’)

where the underlined tokens are content from
the table and SELECT COUNT(<ph>) WHERE
(<ph> = <ph>) is a typical SQL pattern. Simi-
larly, questions are composed of content words and
template words. Since template words are often
reused more frequently than content words, we de-
sign an effective method to extract most template
words for each question in the training set. For
the i-th question Qi, we record its longest com-
mon sub-sequence (LCS) with each other question
as a candidate template and construct a candidate-
template dictionary di. The keys in di are the can-
didate sequences, and the corresponding values are
the lengths of the sequences. After that, we choose
the longest candidate from di as the template for
the i-th question. The pseudo-code is described in
Algorithm 1.

The candidate templates should satisfy the fol-
lowing rules:
• Each template should appear over 20 times.
• Each template should includes at least one of

the keywords: where, what, which, when, why,
who, how, name, tell .

When applying LCS, we mark the possi-
ble positions for content insertion between tem-

Algorithm 1 LCS-based Template Extraction

Input: question set Q = [q1, q2..., qM ]; keyword
set W

Output: Template set: Tlen
1: for all qi ∈ Q do
2: Initialize dictionary di
3: for all qj ∈ Q do
4: c = LCS(qi, qj)
5: if c

⋂
W 6= ∅ then

6: if c /∈ di.keys then
7: di[c] = 0
8: end if
9: di[c]+ = 1

10: Record position index for content
11: end if
12: end for
13: for all c ∈ di.keys do
14: if di[c] < 20 then
15: delete di[c] from di
16: end if
17: end for
18: tlen = argmaxc(length(di.keys))
19: Update Tlen by adding tlen
20: end for
21: return Tlen

plate words by placeholder <ph>, and format
the templates like this instance: Which <ph>
has the largest <ph> ? By ignoring the
lengths of content word sequences, the templates
become more flexible and can adapt to more sce-
narios.

4.3 Learning Joint SQL-Template Space
As a sub-sequence of a question, a template should
be close to the query in the semantic space if it is
from the corresponding question, and be far away
from the query if it is from an irrelevant question.
Based on this intuition, we propose a soft classifier
to learn a joint SQL-template space.

Soft Classifier. Classification models have been
widely used in visual/textual applications. In a
retrieval task, the classification model can learn
feature embedding for the input, and its best match-
ing counterpart can be found from a database
by measuring the cosine distance between their
embeddings. Inspired by this, we consider ev-
ery <SQL query, template> pair in train-
ing set S as a distinct class, and learn the fea-
ture embeddings by instance-level classification.
We represent each <SQL query, template,
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class> triplet by < x, t, n >. Considering SQL
queries and templates as objects constructed with
different syntax, we encode them with two separate
GRU encoders:

ex = GRUx(x)

et = GRUt(t)

where ex, et are query embedding and template
embedding, respectively. In order to map SQL
queries and templates to a joint feature space, we
add a share-weight fully-connected layer Ws with
softmax as the final classifier. The predicted proba-
bilities over all instances are calculated as follows:

P (·|x) = Softmax(W T
s tanh(ex))

P (·|t) = Softmax(W T
s tanh(et))

We jointly train the encoder and the classification
layer with the following loss function:

Lt = −
∑

(x,t,n)∈S

(logP (n|x) + logP (n|t))

Inference. To enable efficient retrieval of tem-
plates, we store the template embeddings in a dic-
tionary. In the inference phase, we can feed any
SQL query into GRUx to produce the query em-
bedding, then remove the improper templates by
a hard filter. We calculate the cosine distances be-
tween the query and the remaining templates, and
sort them in descending order. The top-k nearest
templates are selected for question generation.

D(ex, et) =
ex
‖ex‖2

× et
‖et‖2

Avoid Overfitting. Since each class includes
only one instance, we cannot use the classification
loss of the validation set V to detect overfitting.
Instead, we detect the overfitting by computing the
average rank error R for the validation set:

R =
1

|V |2

|V |∑
i=1

(|rai − r
p
i |)

where rp and ra are the predicted rank and actual
rank, respectively. We stop training when R keeps
increasing.

4.4 Decoding with A/D mechanism
The key idea of the proposed decoding method is
that the generation process can be decomposed into
a series of sub-generation tasks that are spaced by

tokens in the template. During each sub-generation,
the model can generate tokens of variable lengths.
Since the decoder generates text word-by-word,
it should determine where to switch between a
content-filling state and a template-copying state,
namely the activation or deactivation state, re-
spectively. To achieve this, we require the decoder
to activate/deactivate (A/D) generation with special
switch symbols <A> and <D>. Therefore, when
the decoder generates a symbol <A>, it changes the
template-copying state to the content-filling state;
when the decoder generates a <D>, it terminates the
content-filling state and switches to the template-
copying state. We also set a maximum length for
each sub-generation to avoid the generation of un-
bounded sequences. In practice, before we train
the question generator, we rewrite the question and
template as follows (as an instance):

Template: <BEG> Which <A> has the
largest <A> ? <END>

Question: <BEG> Which <A> one <D>
has the largest <A> population
among U.S. cities <D> ? <END>

We apply a pointer p to point to the current tem-
plate token. With a simple GRU decoder, the state
s and the generated token ŷi at the i-th step can be
determined as follows:

si =


1, ŷi−1 =< A >,

0, ŷi−1 =< D >,

si−1; otherwise.

ŷi =

{
Softmax(GRU(ŷi−1, h

dec
i−1)), si = 1,

t′p, si = 0.

where hdeci−1 is the hidden state of the (i − 1)-th
step, and t′p is the current token of the template-
copy operation, which should be updated after each
copy. ŷ = [ŷ1, ŷ2, ...ŷ|y|] is the generated sequence.
y′ and t′ are the rewritten question and template1.
We apply teacher forcing during training, and feed
the rewritten question y′ as input to the decoder.
During inference, we feed the rewritten template t′

as input to the decoder. The training objective for
generator Gq can be factorize as follows:

max
θt

E<x,y>∼D[Pθq(y
′|x, t′)]

=max
θt

E<x,y′>∼D[
∏
i∈1:N

Pθq(y
′
i|x, t′, y′i−1)]

1Code implementation is available at https://
github.com/xiaojingyu92/ERIQG

https://github.com/xiaojingyu92/ERIQG
https://github.com/xiaojingyu92/ERIQG
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In order to further diversify the expression of
content, we introduce a latent variable z to the
model. z relies on both SQL query x and template
t′. We make Q a posterior distribution of z given
x, t′. Then the evidence lower bound(ELBO) loss
for it is:

Lq = −Ez∼Q(
∑
i=1:N

log(Pθq(yi|x, t′, z, y1:i−1)))

+DKL(Q(z|x, t′)||Pθq(z))

where Qq(z|x, t′) ∼ N(µ, σ). We apply a re-
parameterization trick, making z ∼ N(0, I) and
µ, σ learnable deterministic functions.

Note that the function of the template and latent
variable do not overlap with each other. A large
number of templates ensures the diverse sentence
structure in generated questions, while the latent
variable produces various expression of the content
in the slots. As a part of the sentence, the <A>
and <D> symbols join the back-propagation com-
putation for optimizing the decoder’s parameters.
They work as additional information that guides
the decoder to discriminate templates and content
patterns, and learn when to terminate infilling and
switch to template-copying state at each slot.

5 Experiment

Dataset To validate our framework’s capability
in generating diverse and controllable questions,
we conduct experiments on two large-scale cross-
domain text-to-SQL datasets: WikiSQL (Zhong
et al., 2017) and Spider (Yu et al., 2018). WikiSQL
contains 80654 query-question pairs derived from
24241 different schemas, with both validation set
and test set released. Spider contains 10181 query-
question pairs in 138 domains, with the validation
set published. We follow the provided split settings
for training and testing.

Setup We first construct the template set from
the training set using our expansion method. For
each SQL query in the test set, we retrieve the k−1
most relevant templates from the template set to
generate k− 1 different questions. We also include
one question with template <BEG> <A> <END>
to evaluate the model’s capability in generating
a complete sentence. Thus k questions for each
SQL query are provided for evaluation. For our
experiments, we set k = 5.

Baselines We compare our model(ERI)’s per-
formance to models based on the baseline ap-

proach QG (Guo et al., 2018) with different diverse-
sentence generation strategies. (1) Latent Vari-
able(QGLV): Guo et al. (2018) applies a sequence-
to-sequance network with a copy mechanism for
question generation from SQL. A latent variable is
introduced to generate diverse questions. (2) Tem-
perature Sweep(TEMPS): We apply temperature
sweep (ts) (Caccia et al., 2018) for decoding in
QG. (3) Beam Search(BEAMS): We further com-
bine QG with beam search (Li et al., 2016b) to
generate diverse questions. In practice, we set the
beam width to 5 and obtain sentences with top-5
highest probabilities for comparison. A Boltzmann
temperature parameter α is applied to modulate the
entropy of the generator. In practice, we set α =
0.7 as suggested and obtain 5 generated sentences
for each query.

Evaluation Metrics We adopt the following au-
tomatic metrics to measure the quality of generated
questions. (1) maxBLEU: The max BLEU-4 score
among 5 generated questions. (2) Coverage: (Shao
et al., 2019) This metrics measures the average pro-
portion of input query covered by the generated
questions. (3) ParseAcc: We use neural semantic
parsers SQLova (Hwang et al., 2019) and Global-
GNN (Bogin et al., 2019) to parse WikiSQL and
Spider respectively. The semantic parsers translate
the generated question into SQL query and calcu-
late the exact-match accuracy with the input SQL
query as the ground-truth. A higher accuracy score
means the generated questions are more natural and
consistent with the given SQL queries.

We adopt the following automatic metrics to
measure the diversity of generated questions. (1)
self-BLEU: (Zhu et al., 2018) The average BLEU-
4 of all pairs among the k questions). (2) self-
WER: (Goyal and Durrett, 2020) The average
word error rate of all pairs among the k questions.
A lower self-BLEU score and a higher self-WER
score indicate more diversity in the result. (3)
Distinct-4: (Li et al., 2016a) It measures the ra-
tio of distinct n-grams in generated questions.

5.1 Automatic Evaluation

The automatic evaluation results are reported in
Table 1 and 2. Our model ERI outperforms all
baseline models in terms of the three diversity met-
rics for both datasets, except the self-BLEU on
Spider. This shows the effectiveness of ERI in im-
proving the diversity of its generation. Note that
TEMPS performs less favorably in terms of qual-
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Models Quality Diversity
Coverage ↑ ParseAcc ↑ maxBLEU ↑ Self-BLEU ↓ Self-WER ↑ Distinct-4 ↑

QGLV 70.50 73.89 37.75 92.86 17.39 33.46
TEMPS 11.34 3.38 5.36 84.50 36.49 59.34
BEAMS 71.49 68.09 42.17 79.80 37.39 54.97

ERIT(ours.) 72.44 72.79 28.43 56.30 67.00 78.73
w/o lv 70.28 69.53 24.30 57.96 64.39 75.31

Table 1: Automatic evaluation for diverse question generation on WikiSQL. w/o lv refers to our model without incorporating
the latent variable.

Models Quality Diversity
Coverage ↑ ParseAcc ↑ maxBLEU ↑ Self-BLEU ↓ Self-WER ↑ Distinct-4 ↑

QGLV 13.76 3.97 14.45 96.90 11.73 38.16
TEMPS 6.58 3.87 4.00 59.25 7.59 19.73
BEAMS 13.68 4.16 15.68 89.39 21.12 50.17

ERI(ours.) 15.89 18.09 14.42 67.41 53.23 66.96
w/o lv 12.67 16.70 12.62 62.25 55.58 64.51

Table 2: Automatic evaluation for diverse question generation on Spider. w/o lv refers to our model without incorporating the
latent variable.

Models Fluency ↑ Consistency ↑ Diversity
QGLV 4.56 4.64 1.63

TEMPS 1.13 1.31 1.81
BEAMS 4.16 4.25 2.34

ERI 4.56 3.68 4.31

Table 3: Human evaluation results.

ity and diversity, as the temperature parameter α
is a sensitive factor for the generation and needs
tuning further. The expanded template set provides
various valid sentence structures for expressing the
same question which significantly contributes to
the diversity expressions. But it also decreases
the word-level overlapping, which leads to a rela-
tively low maxBLEU score on WikiSQL. However,
BLEU score may not be a suitable measurement for
diversity-aware generation (Su et al., 2020; Shao
et al., 2019). As the BLEU calculates the over-
lapping of n-grams, it does not necessarily reflect
the quality of template-based generation. We illus-
trate that by an example of our model in Table 4.
Although the BLEU scores are low, the generated
questions are fluent and consistent with the SQL
query with diversified structures.

To further measure the question quality and con-
sistency in the semantic parsing task, we calculate
the ParseAcc score. Our model performs competi-
tively with QGLV on WikiSQL and shows a sub-
stantial improvement on Spider. The ParseAcc
scores with ground-truth questions are 81.60% and
65.96% on WikiSQL and Spider, respectively. Our

model also outperforms the baselines in the cov-
erage of field names and values in the SQL query,
indicating that essential terms from input are learnt
and translated to questions. We also show the re-
sult of our model without the latent variable. In
this setting, diversity of generated questions solely
depends on selected templates. Without the latent
variable, the proposed framework still outperforms
the baselines in diversity metrics while maintains
a good quality, which also supports that template
contributes the most to the diversity of generation.

5.2 Manual Evaluation

To evaluate the quality of the generation, we run
a manual evaluation to measure the quality and
diversity for 800 SQL-question pairs from Wik-
iSQL test set, produced by baseline models and
our model (with k = 5). Each rater gives a 5-
point scale for each SQL-question pair regarding
the (1) Fluency: grammatical correctness, (2) Con-
sistency: the semantic alignment with the corre-
sponding SQL query, and (3) Diversity: the di-
verse expression of the generated questions.

We employ Fleiss’ Kappa for inter-rater relia-
bility measurement. The Kappa scores are 0.77,
0.60, 0.75 for fluency, consistency, and diversity,
respectively, which indicates a good agreement on
the scores. The results are presented in Table 3.
Our model outperforms the baseline models in di-
versity and fluency. It can achieve the best trade-off
for the three measurements. Although QGLV and
BEAMS show the best performance in generating
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SQL query SELECT COUNT ( rd # ) WHERE pick # < 5
Ground-truth how many rounds exist for picks under 5 ?
Q1 (BLEU=2.79) : what is the number of rd when the pick number is less than 5 ?
Q2 (BLEU=11.73):how many rounds have a pick # less than 5 ?
Q3 (BLEU=2.79) : what is the total number of rd where the pick is less than 5 ?
Q4 (BLEU=2.02) : tell me the total number of rd for pick less than 5
Q5 (BLEU=1.51) : for the pick less than 5 , what was the total number of rd # ?

Table 4: Examples of high-quality generation with low BLEU score. Template tokens are in bold font.

Models BLEU↑ NIST↑ ROUGH↑ METEOR↑
QGLV 32.19 4.74 64.02 64.25

*Graph2Seq 38.97 - - -
ERI 48.12 5.24 76.52 75.76

w/o A/D 43.30 4.85 72.41 73.76
w T 31.42 4.18 63.44 63.94

w/o T 29.76 4.05 62.37 63.17

Table 5: Performance on different sub-module combinations
on WikiSQL. *: the value is cited from Xu et al. (2018)

Models BLEU↑ NIST↑ ROUGH↑ METEOR↑
QGLV 12.60 2.39 44.37 38.74

ERI 21.30 3.11 53.83 51.04
w/o A/D 19.02 2.93 52.45 50.41

w T 12.40 2.41 45.8 39.99
w/o T 13.36 2.35 45.05 40.27

Table 6: Performance on different sub-module combinations
on Spider.

high-quality sentences, they tend to create ques-
tions of fixed structures with only minor changes
in expressions. With our method, the templates
provide substantial changes in sentences’ struc-
tures, which validates the benefit of the proposed
template-extraction method. Examples from our
model and the baselines are given in Table 8.

5.3 Ablation Study

For the ablation study, we present experimental
results to verify performance in two aspects: (1)
whether the generator in our model benefits from
learning with the activation/deactivation mecha-
nism; (2) whether our model maintains the consis-
tency by selecting suitable templates in the joint
semantic space.

Evaluation on Generator To analyze the abil-
ity of generating high-quality questions from the
given templates, we extract the templates from the
test set and use the corresponding template to guide
the question generation. We measure the genera-
tion quality by BLEU, NIST, ROUGE, and ME-
TEOR. In order to analyze the impact of various
modules in our generator, we evaluate the follow-
ing versions of our framework: (1) ERI w/o T

Models WikiSQL Dev WikiSQL Test Spider Dev
Random 0.1 0.07 0.80

Hard Filter 16.7 13.4 30.8
Ours. 21.1 14.0 32.6

Table 7: MAP results of template retrieval methods.

SQL query SELECT attendance WHERE week < 16 and date = bye
Ground-truth what is the attendance for a week earlier than 16 , and a

date of bye ?
ERI(ours.):
Q1: what is attendance , when week is less than 16 , and when date is bye ?
Q2: which attendance has a week smaller than 16 and a date of bye ?
Q3: what is the attendance for the week earlier than 16 and is dated bye ?
Q4: attendance before week 16 on what bye was the date ?
Q5: how many people attended the game before week 16 on bye ?
QGLV:
Q1: what was the attendance for the bye game before week 16 ?
Q2 (= Q3,Q4,Q5:) what is the attendance for the bye game before week 16 ?
BEAMS:
Q1: what was the attendance for the bye week before week 16 ?
Q2: which attendance has a week smaller than 16 and a date of bye ?
Q3: which attendance has a week smaller than 16 , and an date of bye ?
Q4: what is the attendance of the game with a week less than 16 and bye ?
Q5: what is the attendance of the game with a week less than 16 and a bye date ?
TEMPS:
Q1: where week date
Q2: where week date
Q3: where week week week week bye and week
Q4: where week and week date bye and attendance where week
Q5: where week bye and week attendance

Table 8: Question generation example on WikiSQL.

model that does not use templates for encoding and
decoding. (2) ERI w T model where templates are
encoded but not used as the input for decoding. (3)
ERI w/o A/D model that applies the generator with
the decoding strategy similar to a seq2seq model
in Zhu et al. (2019). It treats each slot as a seg-
ment, and predicts each segment as an independent
sentence. (4) ERI model that has all designed mod-
ules, including the A/D mechanism. The results are
presented in Table 5 and 6. Our model outperforms
existing methods in four metrics. Using template
information improves our model on both datasets.
The segmented-based infilling method gains fur-
ther improvement, which shows the effectiveness
of providing templates as hard constraints. By in-
troducing the A/D mechanism to decoding, our
model has seen further boosts, which demonstrates
that the A/D mechanism enhances the learning of
generation from the templates.

SQL-Template Consistency To validate the im-
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Figure 2: Average rank error in training phase.

Figure 3: Visualization of the template features by
tSNE.

pact of our template retrieval method, we show the
average rank error of soft classifier during the train-
ing phase in Figure 2. For both datasets, the rank
error decreases during training, which indicates the
soft classifier can capture the semantic relation be-
tween SQL queries and templates. To observe if the
soft classifier affects the performance by selecting
the proper template, we also compare our 2-stage
template retrieval to random strategies and hard
filter in mean average precision (MAP). The result
is presented in Table 7. Compared to hard filter, the
soft classifier improves the MAP by 4.4%, which
validates the effectiveness of the proposed template
retrieval method.

Visualization of Joint Space To visualize the
similarity of templates, we map feature samples
to 2-dimensional space by t-Distributed Stochas-

tic Neighbor Embedding(t-SNE) in Figure 3. The
features from similar SQL-template pairs preserve
closer distances, which shows the effectiveness of
our instance-level classification in learning the se-
mantic meaning in the joint feature space.

6 Conclusion

In this paper, we present a novel framework for
question generation over SQL database to produce
more diversified questions by manipulating the tem-
plates. We expand the template set from cross-
domain SQL-to-text datasets, and retrieve proper
templates from a template set by measuring the
distance between the templates and the SQL query
in a joint semantic space. We propose an activa-
tion/deactivation mechanism to make full use of
templates to guide the question generation process.
Experimental results have shown that the presented
model can generate various questions while main-
tains their high quality. The model has also im-
proved the matching between the templates and the
content information of SQL queries.
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