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Abstract

Question answering over knowledge bases
(KBQA) usually involves three sub-tasks,
namely topic entity detection, entity linking
and relation detection. Due to the large num-
ber of entities and relations inside knowledge
bases (KB), previous work usually utilized so-
phisticated rules to narrow down the search
space and managed only a subset of KBs in
memory. In this work, we leverage a retrieve-
and-rerank framework to access KBs via tradi-
tional information retrieval (IR) method, and
re-rank retrieved candidates with more pow-
erful neural networks such as the pre-trained
BERT model. Considering the fact that di-
rectly assigning a different BERT model for
each sub-task may incur prohibitive costs, we
propose to share a BERT encoder across all
three sub-tasks and define task-specific layers
on top of the shared layer. The unified model is
then trained under a multi-task learning frame-
work. Experiments show that: (1) Our IR-
based retrieval method is able to collect high-
quality candidates efficiently, thus enables our
method adapt to large-scale KBs easily; (2) the
BERT model improves the accuracy across all
three sub-tasks; and (3) benefiting from multi-
task learning, the unified model obtains fur-
ther improvements with only 1/3 of the origi-
nal parameters. Our final model achieves com-
petitive results on the SimpleQuestions dataset
and superior performance on the FreebaseQA
dataset.

1 Introduction

Answering natural language questions by search-
ing over large-scale knowledge bases (KBQA) is
highly demanded by real-life applications, such
as Google Assistant, Siri, and Alexa. Owing to
the availability of large-scale KBs, significant ad-
vancements have been made over the years. One
main research direction views KBQA as a seman-
tic matching task (Bordes et al., 2014; Dong et al.,
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2015; Daietal., 2016; Hao et al., 2017; Mohammed
et al., 2018; Yu et al., 2018; Wu et al., 2019; Chen
et al., 2019a; Petrochuk and Zettlemoyer, 2018),
and finds a relation-chain within KBs that is most
similar to the question in a common semantic space,
where the relation-chain can be 1-hop, 2-hop or
multi-hop (Chen et al., 2019b). Another research
direction formulates KBQA as a semantic parsing
task (Berant et al., 2013; Bao et al., 2016; Luo et al.,
2018), and tackles questions that involve complex
reasoning, such as ordinal (e.g. What is the sec-
ond largest fulfillment center of Amazon?), and
aggregation (e.g. How many fulfillment centers
does Amazon have?). Most recently, some stud-
ies proposed to derive answers from both KBs and
free-text corpus to deal with the low-coverage issue
of KBs (Xu et al., 2016; Sun et al., 2018; Xiong
et al., 2019; Sun et al., 2019). In this paper, we
follow the first research direction since the relation-
chain type of questions counts the vast majority
of real-life questions (Berant et al., 2013; Bordes
et al., 2015; Jiang et al., 2019).

Previous semantic matching methods for KBQA
usually decompose the task into sequential sub-
tasks consisting of topic entity detection, entity
linking, and relation detection. For example in Fig-
ure 1, given the question “Who wrote the book
Beau Geste?”, a KBQA system first identifies
the topic entity “Beau Geste” from the question,
then the topic entity is linked to an entity node
(m.04wxy8) from a list of candidate nodes, and
finally the relation book.written_work.author is se-
lected as the relation-chain leading to the final an-
swer. Previous methods usually worked on a subset
of KB in order to fit KB into memory. For entity
linking, some sophisticated heuristics were com-
monly used to collect entity candidates. For rela-
tion detection, previous work usually enumerated
all possible 1-hop and 2-hop relation-chains (start-
ing from linked entity nodes) as candidates. All
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Who wrote the book/Beau Geste|?

i
m.04wxy8 Beau Geste book
m.0dl_h4 Beau Geste film
m.051vvdc  Beau Geste music

Node candidates for entity linking.

oo MID

book.written_work.author m.05f834
book.written_work.subjects m.0322m
book.book.genre m.05hgj

Relation-chain candidates for relation detection.

Figure 1: A typical workflow for KBQA. Given a question “Who wrote the book Beau Geste?”, the topic entity
detection model first identifies a topic entity “Beau Geste” from the question. Then, the entity linking model
links the topic entity into an entity node (m.04wxy8) in the KB. Finally, the relation book.written_work.author is
selected as the relation-chain leading to the final answer node (m.05f834).

these workarounds may prevent their methods from
generalizing well to other datasets, and scaling up
to bigger KBs.

To tackle these issues, we leverage a retrieve-
and-rerank strategy to access KBs. In the retrieval
step, we ingest KBs into two inverted indices: one
that stores all entity nodes for entity linking, and
the other one that stores all subject-predicate-object
triples for relation detection. Then, we use TF-IDF
algorithm to retrieve candidates for both entity link-
ing and relation detection sub-tasks. This method
naturally overcomes the memory overhead when
dealing with large-scale KBs, therefore makes our
method easily scale up to large-scale tasks. In the
re-ranking step, we leverage the advanced BERT
model to re-rank all candidates by fine-grained se-
mantic matching. For the topic entity detection
sub-task, we utilize another BERT model to predict
the start and end positions of a topic entity within a
question. Since assigning a different BERT model
for each sub-task may incur prohibitive costs, we
therefore propose to share a BERT encoder across
sub-tasks and define task-specific layers for each
individual sub-task on top of the shared layer. This
unified BERT model is then trained under the multi-
task learning framework. Experiments on two stan-
dard benchmarks show that: (1) Our IR-based re-
trieval method is able to collect high-quality candi-
dates efficiently; (2) the BERT model improves the
accuracy across all three sub-tasks; and (3) bene-
fiting from multi-task learning, the unified model
obtains further improvements with only 1/3 of the
original parameters. Our final model achieves com-
petitive results on the SimpleQuestions dataset and
superior performance on the FreebaseQA dataset.
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2 Task Definition

Knowledge-base question answering (KBQA) aims
to find answers for natural language questions from
structural knowledge bases (KB). We assume a
KB K is a collection of subject-predicate-object
triples (e1,p, e2), where e, ea € & are entities,
and p € P is a relation type between two entities,
£ is the set of all entities, and P is the set of all
relation types. Given a question (), the goal of
KBQA is to find an entity node a € £ from the KB
as the final answer, thus can be formulated as

a = arg max Pr(a|Q, K) (D
acé

where Pr(a|@, ) is the probability of a to be
the answer for (). A general purpose KB usually
contains millions of entities in £ and billions of
relations in /C (Bollacker et al., 2008), therefore
directly modeling Pr(a|@, K) is challenging. Pre-
vious studies usually factorize this model in dif-
ferent ways. One line of research forms KBQA
as a semantic parsing task Pr(q|Q, K) to parse a
question () directly into a logical form query ¢,
and execute the query g over KB to derive the final
answer. Another line of studies views KBQA as a
semantic matching task, and finds a relation-chain
within KB that is similar to the question in a com-
mon semantic space. Then the trailing entity of the
relation-chain is taken as the final answer. Follow-
ing this direction, we decompose the KBQA task
into three stages: (1) identify a topic entity ¢ from
the question ), where ¢ is a sub-string of Q; (2)
link the topic entity ¢ to a topic node e € £ in KB;
and (3) detect a relation-chain r € K starting from
the topic node e, where r can be 1-hop, 2-hop or
multi-hop relation-chains within KB. Correspond-



ingly, we factorize the model as

Pr(alQ,K) = Pr(t,e,r|Q, K)
= Pt(ﬂQvlC)Pl(e’t?Q)K)
PT(r’evtaQaK) (2)

where P, (t|Q, K) is the model for topic entity de-
tection, P;(e|t, @, K) models the entity linking pro-
cess, and P, (r|e,t, @, K) is the component for re-
lation detection stage. We will discuss how to pa-
rameterize these components in Section 4.

3 Background

We briefly introduce some background required by
the following sections.

BERT: BERT model (Devlin et al., 2019) fol-
lows the multi-head self-attention architecture
(Vaswani et al., 2017), and is pre-trained with a
masked language modeling objective on a large-
scale text corpus. It has achieved state-of-the-art
performance on a bunch of textual tasks. Specif-
ically, for semantic matching tasks, BERT sim-
ply concatenates two textual sequences together,
and encodes the new sequence with multiple self-
attention layers. Then, the output vector of the
first token is fed into a linear layer to compute
the similarity score between the two input textual
sequences.

Freebase: We take Freebase (Bollacker et al.,
2008) as our back-end KB to answer questions. It
contains more than 46 million topic entities and
2.6 billion triples. Each entity has an internal ma-
chine identifier (MID) and a set of aliases. Some
entities also have properties such as entity types
and detailed descriptions. Freebase contains a spe-
cial entity category called Compound Value Type
(CVT), which does not have a name or alias, and is
only used to collect multiple fields of an event or a
special relationship. In the official Freebase dump
I all facts are formulated as the unified subject-
predicate-object triples, and there is no explicit
split for entities and relations. We partition facts
in Freebase into a set of entities £ and a set of re-
lations C by following the pre-processing steps in
Chah (2017).

Inverted Index and TF-IDF: Inverted index is
an optimized data structure of finding documents
(from a large document collection) where a query
word X occurs. It is commonly used for fast free-
text searches. Term Frequency-Inverse Document

'https://developers.google.com/freebase
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Frequency (TF-IDF) is a ranking function usually
used together with an inverted index to estimate
the relevance of documents to a given search query
(Schiitze et al., 2008).

4 Retrieval and Re-ranking for KBQA

In this section, we describe how to parameterize
P, P, and P, in Equation (2).

4.1 Topic Entity Detection Model P;

The goal of a topic entity detection model
P,(t|Q, K) is to identify a topic entity ¢ that the
question () is asking about, where t is usually a sub-
string of (). Previous approaches for this task can
be categorized into two types: (1) rule-based and
(2) sequence labeling. The rule-based approaches
take all entity names and their alias from a KB
as a gazetteer, and n-grams of the question that
exactly match with an entry in the gazetteer are
taken as topic entities (Yih et al., 2015; Yao, 2015;
He and Golub, 2016; Yu et al., 2017). The advan-
tage of this method is that no machine learning
models need to be involved. However, the draw-
backs include: (1) topic entities need to have the
exact same surface strings as they occur in KB, and
(2) memory-efficient data structures need to be de-
signed to load the massive gazetteer into memory
(Yao, 2015). Other approaches leverage a sequence
labeling model to tag consecutive tokens in the
question () as topic entities (Dai et al., 2016; Bor-
des et al., 2015; Mohammed et al., 2018; Wu et al.,
2019). This approach is able to predict more pre-
cise topic entities, thus prunes some unimportant
matched entities.

Inspired from the Start/End prediction method
commonly utilized for machine reading compre-
hension tasks (Wang and Jiang, 2016; Seo et al.,
2016), we cast the topic entity detection task into
predicting the start and end positions of the topic
entity ¢ in the question (). Formally, we denote
ts and t. as the start and end positions for a topic
entity ¢, and assume this process is independent of
KB. Thus the model can be further decomposed as
P(t|Q,K) = Ps(ts|Q)P.(t|Q), where Ps(ts|Q)
and P,(t.|Q) are the probabilities of ¢s and ¢, to
be the start and end positions. This formulation di-
rectly models the goal of the topic entity detection
task, i.e. finding the best topic entity within a ques-
tion, therefore can give a more precise estimation.

We leverage the advanced BERT model to pa-
rameterize Ps(t5|Q) and Pe(t.|Q). Concretely, we



first leverage BERT encoder to encode the input
question @, then apply two independent linear lay-
ers (with one output neuron) on top of BERT’s
output for each token. The start/end scores are
normalized across all tokens with the softmax
function to estimate the probabilities of each token
position to be the start/end of the topic entity.

4.2 Entity Linking Model P,

The purpose of an entity linking model
P(e|t,@Q,K) is to link the recognized topic
entity ¢ to an entity node e € £ in KB. A general
purpose KB usually contains millions of nodes in
&, which makes it almost impossible to search over
the full space. Previous methods usually narrow
down the search space based on some heuristic
rules. For example, Yih et al. (2015) and Wu et al.
(2019) used keyword search to collect all nodes
that have one alias exactly matching the topic
entity, and Yin et al. (2016) collected all nodes that
have at least one word overlapping with the topic
entity. Once a smaller set of candidates is selected,
complicated neural networks can be utilized to
compute the similarity between a candidate node
and the topic entity in the question context.

Inspired from the recent success of question an-
swering over free-text corpus (Chen et al., 2017,
Wang et al., 2018, 2019), we propose a retrieve-
and-rerank method to solve the entity linking task
in two steps. In the first retrieval step, we create
an inverted index for all entity nodes, where each
node is represented with all tokens from its aliases
and description. Then, we use the topic entity ¢
as a query to retrieve top-K candidate nodes from
the index with the TF-IDF algorithm?. The similar
method is also used by Vakulenko et al. (2019) and
Nedelchev et al. (2020). This information retrieval
(IR) method is better than previous work in the
following ways. First, our method can find can-
didate nodes even if a topic entity does not have
an exactly matched entity node. Second, we do
not have to maintain all entity nodes inside CPU
memory, and can still query candidates efficiently,
which enables our method to be easily adapted to
large-scale KBs. Third, the relative importance of
various matched words is naturally considered in
the TF-IDF algorithm.

In the second re-ranking step, we leverage

Mohammed et al. (2018) also created an inverted index
for all nodes. However, they generated ngrams of each entity
name into several entries, and looked up exactly matched
ngram candidates by keyword searching.

BERT model to compute the similarity between
each candidate node and the topic entity in
the given question context. Concretely, we
represent each pair of a topic entity ¢ and
a candidate node e as a sequence of tokens
with the format “ [CLS] topic entity
[SEP] question pattern [SEP] node
name [SEP] node types [SEP] node
description [SEP]”, where topic
entity is the string for the topic entity ¢,
question pattern is the question string with
t being removed, node name, node types
and node description are the name, types
and description for the topic node e, and [SEP ]
is the delimiter used by BERT model. We encode
this sequence with BERT model, then feed the
hidden vector for the token [CLS] into a linear
layer (with one output neuron) to compute the
similarity score for each pair of £ and e.

4.3 Relation Detection Model P,

The relation detection model P, (rle, t,Q, K) tra-
verses relation-chains starting from a linked topic
node e, and attempts to detect the correct relation-
chain 7 that answers the question (). Previous work
usually enumerates all possible 1-hop and 2-hop
relation-chains starting from a linked topic node e,
and leverages deep neural networks to compute se-
mantic similarity between each candidate relation-
chain r and the question ) (Bordes et al., 2014;
Yih et al., 2015; Dong et al., 2015; Yu et al., 2017;
Wu et al., 2019). In real KBQA systems, usually, a
list of linked nodes from the entity linking step is
considered to retain high recall. If we enumerate
all relation-chains for all these linked topic nodes,
we will end up with a large collection of candidate
relation-chains. Furthermore, re-ranking so many
candidate relation-chains will add much run-time
latency, especially when a heavy model such as
BERT is utilized.

To address this issue, we propose to use the
retrieve-and-rerank method for the relation detec-
tion task, and deal with this task in two stages simi-
lar to what we did for the entity linking task. In the
first retrieval step, we create an inverted index for
all subject-predict-object triples, where each triple
is represented as all tokens from the name of the
subject entity, the name of the predicate, and types
of the object entity. Then, we use the question () as
a query to retrieve top-K 1-hop relation-chains with
the constraint that all subject nodes are from the list
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of linked entity nodes. If two-hop relation-chains
are required in a target dataset, we will do the same
querying step again, but with the constraint list be-
ing all object entities from the first retrieval step.
We acknowledge that this method does not consider
the already covered semantics in the first retrieval
step, when we do the second step retrieval. Since
the main goal of the retrieval step is to collect a list
of high-quality candidates, we will perform better
semantic matching in the re-ranking step with more
powerful neural networks. If multi-hop relation-
chains are needed, we can iterate this process until
reaching the maximum steps. Usually, the number
of max-hop is pre-computed on the target question
sets. Another way is to utilize a model to decide
when to stop (Chen et al., 2019b), however we will
leave this option in the future work.

After collecting a list of relation-chains, we
leverage another BERT model to compute the
similarity between a question () and each relation-
chain r. Each pair of () and r will be represented
as a sequence of tokens with the format “[CLS]
question [SEP] topic—-entity name
[SEP] relation chain [SEP] answer
name [SEP] answer types [SEP]”,
where topic-entity name is the name for
the linked entity node, relation chain is
the word sequence of a candidate relation-chain?,
answer name is the name of the trailing node
in the relation-chain, and answer types are all
types of the trailing node. The hidden vector for
the [CLS] token will be fed into a linear layer
(with one output neuron) to predict the similarity
between ) and r.

S Multi-Task Learning for KBQA

5.1 Training Objectives

For the topic entity detection model, we define
the objective function as the cross-entropy loss be-
tween true distributions and predicted distributions.
We sum up the cross-entropy losses for both start
and end models, and average over all IV training
instances:

N
1 . ,
L(0;) = N E log(Py) +log(P.)  (3)
i—1

where 6, is the trainable parameter for topic entity
detection model.

3 A relation-chain is split into a word sequence based on
delimiters such as periods, hyphens and underscores.
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Both entity linking and relation detection tasks
are ranking tasks, therefore we leverage a hinge
loss function for both tasks:

N

L(9) = —% Zmax((), 14+ 5(Q,c7) —s(Q,ch)
i=1

4)

Where 6 is the trainable parameter, [ is a margin,
5(Q, c) can be the model of P, or P,, c¢* is a correct
candidate, and ¢~ is an incorrect candidate. We set
{ = 1.0 in this work.

5.2 Multi-Task Learning

A naive approach would be to use three different
BERT encoders for the topic entity detection, entity
linking and relation detection sub-tasks individu-
ally. Since BERT model is a very large model, it
is expensive to host three BERT models in real ap-
plications. To address this, we propose to share a
BERT encoder across all three sub-tasks, and define
lean layers for each individual sub-task on top of
the shared layer. This unified model is then trained
under the multi-task learning framework proposed
by Liu et al. (2019). First, training instances for
each sub-tasks are packed into mini-batches sep-
arately. At the beginning of each training epoch,
mini-batches from all three sub-tasks are mixed
together and randomly shuffled. During training,
a mini-batch is selected, and the model is updated
according to the task-specific objective for the se-
lected mini-batch.

6 Experiments

We evaluate the effectiveness of our model on stan-
dard benchmarks in this section. We first conduct
experiments on each sub-task with a separate BERT
model in Section 6.2, 6.3 and 6.4, then evaluate the
influence of sharing a BERT encoder for all three
models in Section 6.5. Finally, we benchmark our
method on full Freebase in Section 6.6.

6.1 Datasets and Basic Settings

We evaluate our proposed model on two large-scale
benchmarks: SimpleQuestions and FreebaseQA.
Other existing datasets, such as WebQuestions (Be-
rant et al., 2013), Free917 (Cai and Yates, 2013)
and WebQSP (Yih et al., 2016), are not considered,
because they only contain few thousands of ques-
tions which is even less than the number of relation
types in Freebase.

SimpleQuestions: The SimpleQuestions
dataset (Bordes et al., 2015) is so far the largest



KBQA dataset. It consists of 108,442 English
questions written by human annotators, and all
questions can be answered by 1-hop relation
chains in Freebase. Each question is annotated
with a gold-standard subject-relation-object triple
from Freebase. We follow the official train/dev/test
split. To fairly compare with previous work, we
leverage the released FB2M subset of Freebase as
the back-end KB for this dataset. FB2M includes
2M entities and 5k relation types between these
entities.

FreebaseQA: FreebaseQA dataset (Jiang et al.,
2019) is a large-scale dataset with 28K unique open-
domain factoid questions which are collected from
triviaQA dataset (Joshi et al., 2017) and other trivia
websites. Each question can be answered by a 1-
hop or 2-hop relation-chain from Freebase. All
questions have been matched to subject-predicate-
object triples in Freebase, and verified by human
annotators. Comparing with other KBQA datasets,
FreebaseQA provides more linguistically sophisti-
cated questions, because all questions are created
independently from Freebase. FreebaseQA also
released a new subset of Freebase, which includes
16M unique entities, and 182M triples. We follow
the official train/dev/test split, and take the Free-
base subset as the back-end KB for this dataset.

Basic Settings: We leverage the pre-trained
BERT-base model with default hyper-parameters
in our experiments. We create inverted indices for
topic nodes and relations with Elasticsearch*, and
utilize the BM25 (a variance of TF-IDF) algorithm
to retrieve inverted indices.

6.2 Topic Entity Detection Experiments

In order to train and evaluate our topic entity de-
tection model, we annotate the ground-truth topic
entity for each question with the following steps.
First, for each question, all alias names for the
annotated topic entity MID are collected from Free-
base. Then, we match each alias against the ques-
tion string. If more than one alias occurs in the
question string, the longest matched string will be
annotated as the ground-truth. Otherwise, the span
with the minimum edit distance will be selected as
the ground-truth.

We implement a BERT-based sequence labeling
model as a baseline for our Start/End prediction
model described in Section 4.1. The baseline model
follows the same architecture for the named en-

*https://www.elastic.co/products/elasticsearch

SimpleQ.  FreebaseQA
Models EM F; EM F
BIO 949 973 651 752
Start/End P, 964 97.8 743 81.5
Multi-task P,  96.0 97.7 70.6 79.3

Table 1: Results for topic entity detection.

tity recognition (NER) task in Devlin et al. (2019),
where we use BIO schema to annotate each ques-
tion token. Since the sequence labeling method
may predict multiple spans to be topic entities, we
choose the span with the maximum average token
score as the final prediction.

We employ the metrics exact match (EM) and
F proposed in Rajpurkar et al. (2016) to evalu-
ate the identified topic entities. Experimental re-
sults are shown in Table 1. We can see that our
Start/End prediction model works better than the
BIO sequence labeling baseline. Specifically, in
FreebaseQA dataset, since the questions are longer
and more complicated, our Start/End model outper-
forms the BIO sequence labeling model by a large
margin.

6.3 Entity Linking Experiments

We retrieve a list of candidate nodes for each ques-
tion as follows. For questions in the training sets,
we use the ground-truth topic entity as the query
to retrieve top-100 candidate nodes. For questions
in the dev and testing sets, we use top-N predicted
topic entities as queries, and retrieve top-50 can-
didates for each topic entity. All candidates are
then sorted based on their popularity (number of
out-going triples). Based on the results on dev sets,
we set N=1 for the SimpleQuestions dataset, and
N=5 for the FreebaseQA dataset. We employ the
top-K accuracy to evaluate entity linking results,
where an instance is correct if there is at least one
correct candidate inside the top-K candidate list.
Retrieval step: We implement a Keyword-
search baseline for the retrieval step. In this base-
line, all nodes, having an alias exactly matching
with the topic entity, are collected as candidates.
All candidates are sorted based on their popularity,
i.e. the number of out-going triples. Table 2 lists
the results of the baseline as well as our IR-based
method proposed in Section 4.2. Our IR-based
method gets better results than the Keyword base-
line on both datasets. The main reason is that our
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SimpleQuestions FreebaseQA

Keyword IR  Keyword IR
Top-1 24.4 75.7 39.0 35.3
Top-5 55.0 86.7 70.1 72.7
Top-10 68.8 89.2 76.1 81.1
Top-50 89.3 93.7 81.8 89.4
Top-100 92.7 93.7 82.9 89.8

Table 2: Qualitative analysis on entity linking candi-
dates for the retrieval step.

IR-based method does not require exact matches
between predicted topic entities and entity nodes
within KB, therefore is more robust to prediction er-
rors or entity name variances from the up-streaming
topic entity detection model.

Re-ranking step: We feed top-100 candidate
nodes from the retrieval step into our entity link-
ing model P, to re-rank all candidates. Table 3
shows results on the SimpleQuestions dataset. The
first group of numbers in Table 3 are results from
previous state-of-the-art models. We can see that
our entity linking model P, outperforms previous
models in terms of Top-1 accuracy, and achieves
competitive results in terms of Top-10 and Top-20
accuracy. Table 4 lists the results of our model and
previous work on the FreebaseQA dataset. Our
entity linking model P, improves accuracy over
previous work (Wu et al., 2019) by a large margin.
Since top-5 predicted topic entities are used for the
FreebaseQA dataset, we create another ranker to
multiply together scores from both the topic entity
detection model and entity linking model, and list
the results in the row P, P, in Table 4°. The PP,
ranker gets even better Top-1 accuracy than our
entity linking model P, alone, which verifies that
our factorization in Equation (2) is reasonable.

6.4 Relation Detection Experiments

We retrieve a list of relation-chain candidates for
each question as follows. For questions in the train-
ing sets, we use the correct entity node as the start
point to search top-100 candidates. For questions
in the dev and testing sets, we use the top-N entity
nodes predicted by our entity linking model as start
points to retrieve top-100 candidates. For candi-
dates with the same subject and relation type, we

> Accuracy of the P; P, model is not given in Table 3, be-
cause only the best (top-1) topic entity is used for retrieving
entity candidates in the SimpleQuestions dataset.

Models Top-1 Top-10 Top-20
Yin et al. (2016)  72.7 86.9 88.4
Yuetal. (2017)  79.0 89.5 90.9
Qiuetal. (2018)  81.1 91.7 93.4
Wuetal. (2019) 82.2 92.5 93.6
P 84.2 92.1 93.1
Multi-task P 84.3 92.1 93.1
Full Freebase 79.0 88.9 90.3

Table 3: Entity linking results on SimpleQuestions.

Models Top-1 Top-3 Top-5
Wuetal. (2019) 524  79.6  85.7
P, 694 848 86.6
PP 719 846 863
Multi-task P 68.1 84.2 858
Multi-task PP, 717 847 864
Full Freebase 68.1 81.6 83.8

Table 4: Entity linking results on FreebaseQA.

sort them based on the popularity of the trailing ob-
ject node (number of in-coming triples), and only
keep top-4 relation-chains in the final list. Based on
the results on the dev set, we set N=30 for the Sim-
pleQuetions dataset and N=10 for the FreebaseQA
dataset. For the SimpleQuestions dataset, since
all questions can be answered with 1-hop relation-
chains, we only retrieve 1-hop candidates. For the
FreebaseQA dataset, following the method in Jiang
et al. (2019), we only expand 1-hop relation-chain
candidates into 2-hop candidates if the object node
of a 1-hop relation-chain is a CVT node. For the
SimpleQuetions dataset, a prediction is correct if
both the subject and relation are correctly retrieved.
For the FreebaseQA dataset, a prediction is correct
if the final answer matches with the ground-truth
answer.

Retrieval step: We implement a baseline to col-
lect all relation-chains starting from entity nodes,
and sort all relation-chains based on their popu-
larity, i.e. the in-coming triples for the trailing
object. Retrieval results from the baseline are listed
in the “All” columns in Table 5. The results from
our IR based method (proposed in Section 4.3) are
shown in the “IR” columns in Table 5. The last
row “Rel/Q” in Table 5 gives the average number
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SimpleQuestions FreebaseQA Models SimpleQ. FreebaseQA
All IR Al IR Dai et al. (2016) 75.7 N/A
Top-1 16.5 52.8 03 109 Yin et al. (2016) 76.4 N/A
Top-5 53.5 80.8 1.4 203 Yu et al. (2017) 77.0 N/A
Top-10  65.6 86.1 34 266 Wu et al. (2019) 77.3 37.0
Top-50 819 91.7 22.8 498 Hao et al. (2018) 80.2 N/A
Top-100 87.6 92.5 319 62.6 Petrochuk (2018) 78.1 N/A
Rel/Q 772 100 3021 100 P, 79.4 454
PP P, 79.4 49.1
Table 5: Qualitative analysis for relation-chain candi- Multi-task P, 797 47.9
dates in the retrieval step, where “Rel/Q” is the average Multi-task P, P, P, 79.7 51.7

number of relation-chains per question. !

Full Freebase 74.1 35.4

of relation-chains per question. Comparing the “IR”
columns with “All” columns, our IR-based method
retrieves fewer relation-chains but maintains better
recall.

Re-ranking step: We feed top-100 relation-
chain candidates from the retrieval step into our
relation detection model P, to re-rank all candi-
dates. Table 6 shows the results from previous
state-of-the-art models as well as our relation de-
tection model P.. We can see that our P, model
obtains very competitive results on the SimpleQues-
tions dataset, and outperforms previous models by
a large margin in the FreebaseQA dataset. We also
create a model P, P, P, to multiply scores from our
topic entity detection model, entity linking model
and relation detection model. By considering the in-
fluence of all three components, our P, P, P, model
achieves even better accuracy on the FreebaseQA
dataset.

6.5 Multi-task Learning Experiments

Our method achieves very strong performance by
leveraging three BERT encoders for each model
component. In this section, we share a BERT en-
coder for all three models, and jointly train the
unified model with the multi-task learning method
described in Section 5.2. Experimental results from
this model are shown in rows with the prefix “Multi-
task” in Table 1, 3, 4, and 6. Although the multi-
task model only has about 1/3 of the original pa-
rameters, it is able to achieve better end-to-end
accuracy in Table 6, and retain similar performance
as before on the other two sub-tasks.

6.6 KBQA over Full Freebase

Most of the previous studies conducted KBQA ex-
periments with a subset of Freebase, because it is

Table 6: Relation detection accuracy in the end-to-end
manner.

hard to fit the full Freebase into memory (Bordes
etal., 2014; Dong et al., 2015). Our method ingests
Freebase into inverted indices on hard disk storage,
thus naturally overcomes the memory overhead.
This advantage enables us to evaluate our method
on the full Freebase. The last rows of Table 3, 4,
and 6 show the results of running our “Multi-task™
model over the full Freebase. Significant degra-
dations are observed in entity linking and relation
detection tasks on both datasets. This phenomenon
reveals that previous studies may overestimate the
capacity of their KBQA models. We suggest that
researchers evaluate their models on the full Free-
base in the future.

7 Conclusion

In this work, we proposed a retrieve-and-rerank
strategy to access large-scale KBs in two steps.
First, we leveraged traditional IR methods to col-
lect high-quality candidates from KBs for entity
linking and relation detection. Second, we utilized
the advanced BERT model to re-rank candidates by
fine-grained semantic matching. We also employed
a BERT model to predict the start and end posi-
tions of the topic entity in a question. To reduce
the model size, we proposed a joint model to share
BERT encoder across all three sub-tasks, and create
task-specific layers on the top. We then trained this
joint model with multi-task learning. Experimental
results show that our method achieves superior re-
sults on standard benchmarks, and is able to scale
up to large-scale KBs.
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