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Abstract

Effective representation of biomedical names
for downstream NLP tasks requires the encod-
ing of both lexical as well as domain-specific
semantic information. Ideally, the synonymy
and semantic relatedness of names should be
consistently reflected by their closeness in an
embedding space. To achieve such robustness,
prior research has considered multi-task objec-
tives when training neural encoders. In this pa-
per, we take a next step towards truly robust
representations, which capture more domain-
specific semantics while remaining universally
applicable across different biomedical corpora
and domains. To this end, we use conceptual
grounding constraints which more effectively
align encoded names to pretrained embed-
dings of their concept identifiers. These con-
straints are effective even when using a Deep
Averaging Network, a simple feedforward en-
coding architecture that allows for scaling to
large corpora while remaining sufficiently ex-
pressive. We empirically validate our ap-
proach using multiple tasks and benchmarks,
which assess both literal synonymy as well as
more general semantic relatedness. Our code
is open-source and available at www.github.
com/clips/conceptualgrounding.

1 Introduction

Biomedical and clinical free-text contain mentions
of biomedical terms which can provide valuable
information for text mining applications. Such tex-
tual mentions, as well as their corresponding ref-
erence names in biomedical ontologies, can often
be expressed in various synonymous surface forms
(e.g. pleuritic pain vs. pain breathing), which is
challenging for downstream applications. Effective
dense representation of these biomedical names

ICD-10 SNOMED-CT
C0564504

schizoid fantasy
schizoid fantasy - mental defense mechanism

F60.1
C0338969

introverted personality disorder
introverted personality

C0036339
schizoid personality disorder

unspecified schizoid personality disorder

Table 1: Example of SNOMED-to-ICD-10 mappings.
The synonym sets for the SNOMED-CT concepts
C0564504, C0338969, and C0036339, are fused into
one large set of semantically related names for the ICD-
10 code F60.1.

has been mainly investigated through the normal-
ization task of disorder linking, which consists of
matching disease mentions to reference terms of
concept identifiers in ontologies (e.g. matching
the mention myocardial depression to the refer-
ence term Myocardial Dysfunction) (Leaman et al.,
2015). While past research has gradually shifted its
focus from lexical representations (Leaman et al.,
2013; D’Souza and Ng, 2015) to dense distributed
representations (Limsopatham and Collier, 2016;
Li et al., 2017; Phan et al., 2019; Sung et al., 2020),
encoders are still typically optimized towards nor-
malization tasks, which are focused on resolving
word-level analogies between synonymous biomed-
ical names.

Recent research has focused more explicitly on
encoding domain-specific biomedical semantics by
training biomedical name representations that are
robust, i.e., reflecting the synonymy and seman-
tic relatedness of names by their closeness in the
embedding space, preferably in a consistent way

www.github.com/clips/conceptualgrounding
www.github.com/clips/conceptualgrounding
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that generalizes across different biomedical sub-
domains and corpora. To date, the most effective
approaches have applied some form of conceptual
grounding: minimizing the distance between on the
one hand representations of names, and on the other
hand pretrained embeddings of their concept iden-
tifiers. These concept embeddings are supposed
to reflect domain-specific semantics, and are con-
structed using a variety of different techniques, in-
cluding distributional similarity of graph relations
and distributional similarity of textual occurrences
in large-scale free-text, as well as combinations
thereof (Kartsaklis et al., 2018; Phan et al., 2019).

While knowledge graph embeddings of biomed-
ical concepts can encode a variety of semantic rela-
tions, Kartsaklis et al. (2018) show that such graph
embeddings need to incorporate textual features to
make them effective targets for conceptual ground-
ing. Such features help to translate textual repre-
sentations of names to the topology of the concept
embedding space, which otherwise reflects only
ontological information. In other words, concept
embeddings are mostly useful targets for ground-
ing to the extent that name representations can be
efficiently mapped to them by the encoder archi-
tecture. This raises the question whether we can
increase the effectiveness of conceptual grounding
by better aligning the topology of the created name
embedding space and the pretrained concept em-
bedding space. In this paper, we investigate how to
maximally exploit low-cost concept embeddings,
which can be constructed using only pretrained
word embeddings and sets of biomedical synonyms
or semantically related names.

To this end, we enrich a siamese neural network
encoder for biomedical names with 2 novel con-
straints which are meant to effectively map encoded
names to pretrained concept embeddings. The first
constraint, which we call the linear constraint, ap-
plies canonical correlation analysis (CCA) to pre-
trained embeddings of names and their concepts
to project them into a space which improves their
linear mapping. These transformed embeddings
are then used as input representations for the neu-
ral encoder. The second constraint adds a training
objective which we call prototypical grounding:
minimizing the distance between a pretrained con-
cept embedding and the average of all the encoded
names belonging to that concept. This average is
an approximation of the prototypical representation
of a concept in the name embedding space.

While the linear constraint involves a simple
preprocessing step, the prototypical grounding con-
straint can be computationally expensive for large-
scale corpora. Therefore, we use a simple Deep
Averaging Network (DAN) (Iyyer et al., 2015) as
encoder to prove the effectiveness and scalability
of our approach, even for a neural architecture that
has no access to word order like LSTMs have or
cannot apply attention over specific word combi-
nations like Transformers can. We train and eval-
uate our encoder on different categorizations of
biomedical names. For instance, Table 1 shows
how concepts from the SNOMED-CT ontology
capture literal synonymy, while these concepts can
also be grouped into the ICD-10 coding system
which reflects more general semantic relatedness.
Our experimental results show that our approach is
effective for both types of categorizations, as well
as for various ontologies and benchmarks.

2 Related work

Biomedical name encoders A variety of neu-
ral architectures have been proposed for encoding
biomedical names. Kartsaklis et al. (2018) use a
multi-sense LSTM with attention over different
word senses. This attention is conditioned on the
context of the biomedical name. Phan et al. (2019)
include a character-level Bidirectional LSTM in a
word-level Bidirectional LSTM which extracts a
fixed-size representation using max pooling over
all dimensions, followed by a linear transformation.
Sung et al. (2020) finetunes pretrained context-
sensitive BioBERT (Lee et al., 2019) representa-
tions and uses them in tandem with lexical TF-IDF
representations. While past research has explic-
itly investigated the role of various training objec-
tives, even jointly in multi-task training regimes,
the specific impact of encoder architectures has not
received much attention or comparison.

Averaging networks Research on sentence em-
beddings and paraphrasing has consistently found
that simple encoding procedures such as averaging
of word embeddings can rival or even outperform
complex neural architectures on tasks for which
those are finetuned (Wieting et al., 2016; Shen
et al., 2018; Wieting and Kiela, 2019). Moreover,
research on Deep Averaging Networks (Iyyer et al.,
2015) has found that feedforward neural networks
that use averaged word embeddings as input can
be tuned to textual classification tasks such as sen-
timent analysis if the network is sufficiently large
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and/or deep. This way, small differences in the
input can be magnified by the network where rele-
vant.

Prototypical networks While successful ap-
proaches to few-shot learning such as Matching
Networks (Vinyals et al., 2016) optimize repre-
sentation models on the level of single instances,
follow-up work has shown the benefits of simulta-
neously learning class representations using those
same models. For instance, prototypical networks
(Snell et al., 2017) train a neural encoder with ob-
jectives that involve class prototypes, which are
created by averaging the encodings of all instances
that belong to a single class. In this paper, we in-
clude a training objective for our encoder which
forces synonymous or semantically related biomed-
ical names to form class prototypes that approx-
imate the pretrained embedding of their concept
identifier.

3 Encoding model

3.1 Encoder architecture
Our encoder is a Deep Averaging Network (DAN)
(Iyyer et al., 2015) which extracts a fixed-size rep-
resentation for an input name n:

un =
1

|Nt|
∑
t∈Nt

ut

f(n) = enc(un)

(1)

where Nt is the bag of tokens from a name, ut
is a pretrained word embedding of a token, un is
a name embedding created by averaging all the
pretrained word embeddings of all tokens, and
enc is a feedforward neural network with Recti-
fied Linear Unit (ReLU) as non-linear activation
function. As pretrained word embeddings we use
300-dimensional fastText (Bojanowski et al., 2017)
representations which we train on 76M sentences
of preprocessed MEDLINE articles released by
Hakala et al. (2016). This fastText model also al-
lows for constructing word embeddings for out-of-
vocabulary tokens by composing character n-gram
embeddings.

3.2 Training objectives
Our training objectives optimize the mapping be-
tween an encoded name f(n) and the pretrained
embedding of its concept up. While in principle
any type of pretrained concept embeddings could
be used, our experiments use concept embeddings

which are simply the average of all pretrained name
embeddings belonging to the concept:

up =
1

|Cn|
∑
n∈Cn

un (2)

These concept embeddings can be constructed en-
tirely from synonym sets only, and have been
proven effective in experiments by Phan et al.
(2019).

Linear constraint: CCA We apply canonical
correlation analysis (CCA) to find the best linear
combination between pretrained name embeddings
and the pretrained embeddings of their concept
identifiers that maximizes their correlation. We
can then project both the name embeddings and
the concept embeddings to this new space for train-
ing objectives that use them as input. In order to
not lose any information for further training, the
projected embedding space has the same dimen-
sionality as the original embedding space.

Siamese triplet loss To enforce embedding simi-
larity between names that are synonyms or semanti-
cally related, we use a siamese triplet loss (Chechik
et al., 2010). This loss forces the encoding of a
biomedical name to be closer to the encoding of a
true synonym than that of a negative sample name,
within a specified (possibly tuned) margin:

pos = d(f(CCA(n)), f(CCA(npos)))

neg = d(f(CCA(n)), f(CCA(nneg)))

Lsyn = max(pos− neg +margin, 0)

(3)

where CCA denotes that the pretrained name em-
bedding used as input for the DAN has first been
transformed by the CCA constraint. We take cosine
distance as distance function d. To select negative
names during training we apply distance-weighted
negative sampling (Wu et al., 2017) over all train-
ing names.

Prototypical grounding constraint To enforce
prototypical grounding, we average the name en-
codings of all synonyms or semantically related
terms belonging to a concept identifier, in order to
approximate a prototypical representation of the
concept in the name embedding space. We then
minimize the cosine distance between this proto-
typical concept representation and the pretrained
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embedding of the concept:

f(p) =
1

|Cn|
∑
n∈Cn

f(CCA(n))

Lproto = d(f(p), CCA(up))

(4)

To avoid overfitting, we enforce this objective using
a random dropout of synonyms from Cn, in order to
stochastically approximate prototypical similarity
to the concept embedding.

This constraint implies that the dimensionality
of the encoder output should be the same as the di-
mensionality of the pretrained concept embeddings.
However, if the dimensionality of the concept em-
beddings is smaller than the desired output dimen-
sionality, this could be solved using e.g. random
projections, which work well for increasing the di-
mensionality of neural encoder inputs (Wieting and
Kiela, 2019).

Multi-task setup Our multi-task setup simply
sums the siamese triplet losses and prototypical
grounding:

L = Lsyn + Lproto (5)

where both losses use either the original pretrained
name and concept embeddings, or their CCA pro-
jections. While the proportion of both losses could
be tuned using coefficients, our experiments prove
this to be redundant, since both losses systemat-
ically converge to zero or near-zero values in all
experiments.

4 Data

4.1 Disorder names
4.1.1 SNOMED-CT
Following Kartsaklis et al. (2018) and Phan et al.
(2019), we use SNOMED-CT1 disorder names as
biomedical synonym sets. However, since this data
is of a diverse nature and quality, we try to select
the most natural and coherent data by matching
it with a large target domain of processed MED-
LINE articles released by Hakala et al. (2016) con-
taining 76M sentences with 120M unique noun
phrases scraped from 4K articles. We match disor-
der names with our target domain in 4 consecutive
steps. Firstly, we only retain disorder names of
which all tokens appear in the vocabulary of our tar-
get domain. Secondly, many disorder names have
duplicates with a small set of redundant metatags

1https://www.snomed.org

such as (disorder) and (finding) added to the name,
which very rarely appear as natural language in our
target domain (we list these metatags in Appendix
A). Since they do not reflect relevant synonymy,
we leave out such duplicates. Thirdly, we only re-
tain disorder names of up to 6 tokens, since this
is the maximum length of the 20K disorder names
which directly match noun phrases from our target
domain. This is also similar to the length distribu-
tion in disorder normalization benchmarks as the
NCBI Disease corpus (Doğan et al., 2014) and the
ShARe/CLEF eHealth 2013 corpus (Pradhan et al.,
2015). Lastly, we leave out all disorder names
which belong to more than one concept identifier.

4.1.2 ICD-10
The SNOMED-to-ICD-10 mapping, which has
been officially provided by the U.S. National Li-
brary of Medicine2, groups multiple SNOMED-CT
concepts together under more coarse-grained ICD-
10 codes, using concept unique identifiers (CUIs)
from the UMLS3 ontology which encompass those
SNOMED-CT concepts. We fuse the synonym sets
of SNOMED-CT concepts belonging to the same
ICD-10 concept into a single set of semantically
related terms. Table 1 gives some examples of the
SNOMED-to-ICD-10 mappings. These examples
show how ICD-10 concepts introduce a broader
range of synonymy. While many of the SNOMED-
CT synonyms can be resolved using word-level
analogies (e.g. myocardial depression vs. myocar-
dial dysfunction), the ICD-10 related terms that
bridge different SNOMED-CT concepts require
more domain-specific semantics to be linked (e.g.
for matching myocardial dysfunction with muscu-
lar degeneration of heart).

4.2 Heterogeneous names: MedMentions

The recently released MedMentions corpus (Mo-
han and Li, 2019) enables training and testing of
biomedical name encoders on a larger scale and
over a wider variety of semantic types than previous
benchmarks. It maps a vast amount of biomedical
names mentioned in PubMed abstracts to their cor-
responding concept unique identifier (CUI) in the
UMLS ontology. The annotated subcorpus Med-
Mentions ST21pv annotates names belonging to
UMLS concepts covering 21 different semantic

2https://www.nlm.nih.gov/research/
umls/mapping_projects/snomedct_to_
icd10cm.html

3https://uts.nlm.nih.gov/

https://www.snomed.org
https://www.nlm.nih.gov/research/umls/mapping_projects/snomedct_to_icd10cm.html
https://www.nlm.nih.gov/research/umls/mapping_projects/snomedct_to_icd10cm.html
https://www.nlm.nih.gov/research/umls/mapping_projects/snomedct_to_icd10cm.html
https://uts.nlm.nih.gov/
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Disorder Heterogeneous
ICD-10 SNOMED-CT MedMentions

train concepts 5,136 20,140 18,417
train mentions 31,610 29,517 38,445

train synonym pairs 120,768 26,214 118,300
validation mentions 4,802 1,355 42,924

test mentions 7,142 2,752 43,544
zero-shot concepts 1,000 1,485 1,098
zero-shot mentions 6,490 4,199 4,705

Table 2: An overview of all the data used in our experi-
ments.

types. We fuse these textual mentions of names
into synonym sets. Since they are all verified to
occur in existing biomedical free-text, we don’t
perform any preselection at all. This also means
that there are words which are out-of-vocabulary
for our fastText model: 10% of the MedMentions
names contain such words, which constitute 15%
of the total MedMentions vocabulary. As a result,
the MedMentions data can show how reliable our
approach is in cases where the vocabulary of the
word embeddings does not perfectly overlap with
the target domain.

5 Experiments and results

5.1 Ranking tasks and data distributions

Ranking tasks We evaluate the usefulness of
biomedical name representations for synonym re-
trieval and concept mapping by applying 3 different
performance metrics to a single ranking task. Given
a mention m of a biomedical name which belongs
to the concept identifier c, we have to rank a set
of biomedical names S which includes Csyn ⊂ S,
a set of names which belong to the same concept
identifier c as the mention m. To rank the biomedi-
cal names according to their similarity to the men-
tion, we first encode both the mention m as well
as every name n ∈ S, and then rank every name
n using the cosine similarity between the encoded
mention f(m) and the encoded name f(n).

The aim of this task is to rank every correct syn-
onym or semantically related name syn ∈ Csyn

as high as possible. We measure the synonym re-
trieval and concept mapping performance for this
task using different metrics. For synonym retrieval,
we report Mean average precision (mAP) over
all synonyms. For concept mapping, we report Ac-
curacy (Acc), the proportion of instances where
the highest ranked name n is a correct synonym
syn ∈ Csyn, and Mean reciprocal rank (MRR)
of the highest ranked correct synonym.

Data distributions Table 2 gives an overview of
the data distributions after splitting. For MedMen-
tions, we take our train, validation, test, and zero-
shot data from the data splits provided by MedMen-
tions ST21pv. For SNOMED-CT and ICD-10, we
devise our own sampling method. Firstly, we ran-
domly divide the synonym sets in training concepts
and zero-shot test concepts. Secondly, to hold out
test mentions from the training data, we randomly
sample a single name from each concept which
has at least two names (as to avoid empty training
concepts), and repeat this procedure to get more
test data. We then carry out the same procedure to
sample validation data which we use to calculate
the stopping criterion during training.

We calculate synonym retrieval and concept
mapping performance for the test and validation
mentions by ranking for a test mention m all names
S present in the training data, including the syn-
onyms Csyn which are present in the training data
for the concept identifier c of the test mention. The
performance of the encoders for the training data
is calculated by treating a single training name at a
time as test item.

The zero-shot test concepts are used to observe
how well our encoders can extrapolate to previ-
ously unobserved concepts, for which the encoder
has not specifically learned conceptual grounding.
We frame the zero-shot setup as a way of testing
transfer learning within the same domain, by not
including any training names at all. This setup can
show that our encodings are robust enough to be
used out-of-the-box in entirely novel settings. For
this setup, we treat a single zero-shot name at a
time as test item, and rank all correct synonyms
Csyn present in the zero-shot data among all names
S from the zero-shot data.

5.2 Reference model and baselines

Reference model: BNE We compare our DAN
model against the Biomedical Name Encoder
(BNE) by Phan et al. (2019), which we train using
the exact same data. To have a direct compari-
son with their model, we leave out the character
embeddings from their encoder architecture and
only use our fastText word embeddings as input
embeddings. This results in a bidirectional LSTM
(BiLSTM) (Graves and Schmidhuber, 2005) with
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Train Test Zero-shot
mAP Acc MRR mAP Acc MRR mAP Acc MRR

Sent2Vec 0.27 0.42 0.51 0.30 0.47 0.56 0.43 0.67 0.74
BioBERT 0.35 0.51 0.60 0.39 0.60 0.68 0.52 0.78 0.83
fastText 0.38 0.56 0.65 0.43 0.66 0.74 0.56 0.83 0.87

CCA fastText 0.42 0.59 0.68 0.47 0.70 0.76 0.61 0.85 0.89
CCA+DAN 0.99 0.99 0.99 0.79 0.77 0.80 0.67 0.87 0.90

DAN 0.98 0.97 0.98 0.76 0.75 0.79 0.65 0.86 0.89
BNE 0.77 0.81 0.86 0.63 0.75 0.80 0.65 0.87 0.90

Table 3: Synonym retrieval and concept mapping scores for the ICD-10 encoders. The highest score is denoted in
bold, the second highest is underlined.

Train Test Zero-shot
mAP Acc MRR mAP Acc MRR mAP Acc MRR

Sent2Vec 0.41 0.35 0.45 0.38 0.44 0.54 0.55 0.57 0.67
BioBERT 0.49 0.41 0.53 0.49 0.58 0.68 0.62 0.65 0.74
fastText 0.59 0.55 0.64 0.56 0.68 0.76 0.71 0.75 0.82

CCA fastText 0.62 0.57 0.67 0.59 0.70 0.78 0.73 0.76 0.83
CCA+DAN 0.99 0.99 0.99 0.84 0.81 0.85 0.81 0.85 0.89

DAN 0.94 0.91 0.94 0.78 0.78 0.83 0.79 0.84 0.88
BNE 0.68 0.63 0.72 0.63 0.73 0.80 0.75 0.80 0.85

Table 4: Synonym retrieval and concept mapping scores for the SNOMED-CT encoders. The highest score is
denoted in bold, the second highest is underlined.

max pooling and a linear transformation:

hn = max(BiLSTM(ut1, .., utn))

f(n) = W (hn) + b
(6)

We also include the publicly released BNE model
with skipgram word embeddings, BNE + SGw, 4

which was trained on approximately 16K synonym
sets of disease concepts in the UMLS, containing
156K disease names. We don’t include this model
for the disorder data, since it was trained on at least
part of that data, and we want to avoid that data
leakage affects the fairness of the model compar-
isons.

Baselines As baseline encoder we use the 300-
dimensional fastText name embeddings which are
used as input for the DAN (defined in Equation
1 in Section 3.1). This encoder is an example of
a Simple Word-Embedding Model (SWEM) with
average pooling, which has been proven to be a
strong baseline for various NLP tasks (Shen et al.,
2018). We also include two other pretrained base-
lines among our comparison of encoders: 600-
dimensional Sent2Vec (Pagliardini et al., 2018)

4https://github.com/minhcp/BNE

embeddings with word unigram and bigram repre-
sentations, trained on the same MEDLINE data
as our fastText embeddings; and averaged 728-
dimensional context-specific token activations ex-
tracted from the publicly released BioBERT model
(Lee et al., 2019).

5.3 Training details

We fit the CCA for the linear constraint using
all training names and their corresponding con-
cept prototypes constructed from the same training
names. The encoder architectures of our own DAN
model and the BNE reference model are imple-
mented in PyTorch (Paszke et al., 2019). Both the
input and output dimensionality are 300 (which
is the dimensionality of the input fastText embed-
dings described in Section 3.1). All encoder archi-
tectures for which we report results performed best
with a single hidden layer.

We tuned the hidden size of the DAN to 38,400
dimensions using a grid search over 300×2n, with
n starting at 1 and being increased until perfor-
mance declined again. We tuned the BiLSTM
for the BNE model to 4,800 dimensions using the
same grid search, to make sure the architecture

https://github.com/minhcp/BNE
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Train Test Zero-shot
mAP Acc MRR mAP Acc MRR mAP Acc MRR

Sent2Vec 0.30 0.37 0.47 0.46 0.65 0.71 0.34 0.46 0.54
BioBERT 0.28 0.40 0.47 0.41 0.64 0.68 0.25 0.43 0.49
fastText 0.41 0.51 0.61 0.51 0.70 0.76 0.43 0.61 0.68

CCA fastText 0.44 0.53 0.63 0.53 0.72 0.77 0.45 0.62 0.70
CCA+DAN 0.88 0.89 0.93 0.70 0.73 0.77 0.45 0.60 0.67

DAN 0.83 0.85 0.90 0.67 0.71 0.76 0.43 0.59 0.67
BNE 0.71 0.74 0.81 0.64 0.72 0.77 0.45 0.62 0.70

BNE (Phan et al., 2019) 0.40 0.52 0.60 0.50 0.68 0.74 0.40 0.58 0.66

Table 5: Synonym retrieval and concept mapping scores for the MedMentions encoders. The highest score is
denoted in bold, the second highest is underlined.

ICD-10 code R07.1
Test mention pain provoked by breathing

Target synonyms anterior pleuritic pain / breathing painful / chest pain on breathing / pleural pain / pleuritic pain

CCA+DAN BNE fastText

Top 10 ranking

chest pain on breathing
anterior pleuritic pain

pleuritic pain
breathing painful

pleural pain
chest pain

chronic chest pain
pain in heart

upper chest pain
parasternal pain

chest pain on breathing
breathing painful

back pain worse on sneezing
disorder characterized by back pain
disorder characterised by back pain

anterior pleuritic pain
pain in heart
pleuritic pain

precordial pain
chronic chest pain

chest pain on breathing
breathing painful

disorder characterized by back pain
disorder characterised by back pain

back pain worse on sneezing
distress from pain in labor

persistent pain following procedure
chronic mouth breathing

chronic chest pain
dermatitis caused by sweating and friction

Table 6: A comparison of the synonym retrieval by various encoders for the ICD-10 test mention pain provoked
by breathing. While fastText is already good at matching a few semantically related terms at the top, it retrieves
no further names in its top ranks. The BNE ranking picks up on more specific biomedical semantics, but still has
a limited coverage. In contrast, the conceptually grounded CCA+DAN ranks all 5 target names at the top.

was compared fairly to our model. At that point,
the DAN has ±23M trainable parameters, whereas
the BiLSTM already has ±200M trainable param-
eters. This allows us to empirically confirm that
our proposed DAN model is more computationally
efficient than the BNE BiLSTM.

Adam optimization (Kingma and Ba, 2015) is
performed on a batch size of 64, using a learn-
ing rate of 0.001 and a dropout rate of 0.5. Input
strings are first tokenized using the Pattern tok-
enizer (Smedt and Daelemans, 2012) and then low-
ercased. We use a triplet margin of 0.1 for the
siamese triplet loss Lsyn defined in Equation 3.
For the prototypical constraint Lproto defined in
Equation 4, we use a synonym dropout rate of 0.5.
As stopping criterion we use the mAP of synonym
retrieval for held-out validation names: we stop
training once this score for the current epoch is
worse than for the previous epoch.

5.4 Results and discussion
We compare the 3 baselines and the BNE reference
model against 3 variants of our model. The CCA
fastText model only applies the learned CCA map-
ping to the pretrained fastText embeddings. The
CCA+DAN model applies the linear CCA con-
straint before training, while the DAN model leaves
out the linear constraint.

ICD-10 & SNOMED-CT Table 3 and 4 show
the concept mapping and synonym retrieval perfor-
mance of the different encoders for the ICD-10 and
SNOMED-CT data. We see that the fastText base-
line consistently outperforms the other baselines.
Applying the CCA transformation to the fastText
baseline improves performance for every metric,
including zero-shot cases. In other words, apply-
ing this linear constraint for conceptual grounding
already leads to better extrapolation. The DAN
model, which combines the siamese triplet loss
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MedMentions CUI C0870951
Test mention cariogenesis

Target synonyms caries / cavities / dental caries / mod cavities / tooth decay

CCA+DAN BNE fastText

Top 10 ranking

dental caries
caries

mod cavities
tooth decay

preventive treatment for dental caries
streptococcus mutans

pellicle formation
cavities

bottle tooth decay
biofilm formation

caries
biofilm formation

formation of these biofilms
dental caries

formation of biofilms
caries prevention

biofilm
biofilm forming

biofilm community
pellicle formation

caries
caries prevention

preventive treatment for dental caries
dental caries

biofilm formation
formation of biofilms
streptococcus mutans

anti-staphylococcal biofilm agents
formation of these biofilms

dental plaque

Table 7: A comparison of the synonym retrieval by various encoders for the MedMentions test mention cariogen-
esis. While the BNE model does not improve over the fastText baseline, the conceptually grounded CCA+DAN
already has complete coverage of all 5 target synonyms at rank 8.

with only the prototypical grounding loss, is able to
fit the training data to near perfection without over-
fitting, since it generalizes well across both test and
zero-shot data. Applying the CCA constraint be-
fore training increases the performance even more.
These observations support the hypothesis of this
paper that increasing the effectiveness of concep-
tual grounding can improve trained encoders.

The results also clearly confirm the robustness of
our approach: synonym retrieval is dramatically im-
proved for the test data, without any performance
loss for concept mapping. In other words, the rep-
resentations have encoded more domain-specific
semantics while retaining the relevant lexical infor-
mation. Table 6 gives an example of the impact
of our conceptual grounding constraints for ICD-
10 test data: the model is able to encode domain-
specific semantics beyond word-level analogies for
the semantically related names of the test men-
tion pain provoked by breathing. Not only does
the CCA+DAN model rank all semantically re-
lated names at the top: all the following top-ranked
names, such as chest pain, also have clear semantic
links to the mention. In contrast, the BNE model
ranks less related names such as back pain worse
on sneezing and disorder characterized by back
pain higher than correct synonyms such as pleu-
ritic pain.

MedMentions Table 5 shows the performance
of the different encoders for the MedMentions data.
Table 7 gives an example of how, similar to the
disorder data, our CCA+DAN encoder is able to
encode specific semantics that the BNE model is
lacking: the conceptual grounding constraints have

allowed our encoder to represent the semantic sim-
ilarity between cariogenesis, tooth decay and cavi-
ties, while the BNE model does not improve over
the fastText baseline.

Despite showing similar trends to the disorder
data, the relative improvements of our CCA+DAN
encoder over the reference BNE model are less
dramatic. Interestingly, the publicly released BNE
+ SGw model trained by Phan et al. (2019) per-
forms worse out-of-the-box than our pretrained
fastText embeddings. This highlights the difficulty
of achieving true robustness of biomedical name
encoding.

5.5 Semantic relatedness benchmarks

We also evaluate our name encoders on two biomed-
ical benchmarks of semantic similarity, which al-
low to compare cosine similarity between name
embeddings with human judgments of relatedness.
MayoSRS (Pakhomov et al., 2011) contains multi-
word name pairs of related but different concepts,
and can indicate how much generalized domain
knowledge has been captured by our conceptual
grounding constraints. UMNSRS (Pakhomov et al.,
2016) contains only single-word pairs, which also
stem from different concepts. This benchmark
makes a distinction between similarity and related-
ness.

The correlations in Table 8 confirm the robust-
ness of our conceptually grounded biomedical
name representations. While the correlations for
the BNE models barely improve over those of the
fastText embeddings, our CCA+DAN encoder im-
proves substantially over all 3 benchmarks, regard-
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MayoSRS
(rel)

UMNSRS
(rel)

UMNSRS
(sim)

fastText 0.443 0.473 0.479
CCA+DAN, ICD-10 0.666 0.556 0.561

CCA+DAN, SNOMED-CT 0.648 0.537 0.540
CCA+DAN, MedMentions 0.600 0.526 0.543

Phan et al. (2019) 0.626 0.580 0.606
BNE, ICD-10 0.492 0.472 0.503

BNE, SNOMED-CT 0.415 0.510 0.527
BNE, MedMentions 0.506 0.467 0.500

Table 8: Spearman’s rank correlation coefficient be-
tween cosine similarly scores of name embeddings
and human judgments, reported on semantic similarity
(sim) and relatedness (rel) benchmarks. The highest
score is denoted in bold, the second highest is under-
lined.

less of the data source it was trained on. Remark-
ably, while the publicly released BNE model of
Phan et al. (2019) was trained on 156K disease
names, the CCA+DAN encoder already outper-
forms it on MayoSRS when trained on the ICD-
10 and SNOMED-CT subsets, which contain only
30K disease names. This proves that Deep Averag-
ing Networks can be effective even for large-scale
encoding of biomedical names. Moreover, this find-
ing suggests that future work on biomedical name
encoders should not take complex neural architec-
tures for granted. On the contrary, enforcing more
relevant constraints such as our conceptual ground-
ing constraints can boost even lightweight encoder
architectures.

6 Conclusion and future work

In this paper, we have shown how two concep-
tual grounding constraints for biomedical name en-
coders can infuse name representations with more
domain-specific semantics without losing robust-
ness. These representations can help with retriev-
ing literal synonyms as well as semantically related
terms, and can be sufficiently expressed by a Deep
Averaging Network, which is a feedforward neural
network that only takes averaged word embeddings
as input.

We believe future work can include a comparison
of neural encoding architectures with a wider range
of complexity. Decreasing the complexity of neural
architectures can allow for including more com-
prehensive training objectives which target more
effective encoding of domain-specific semantics.
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A Redundant metatags

In section 4.1.1, we mention that many names
from our SNOMED-CT data are duplicates of other
names, with the only difference being that they also
contain the following redundant metatags (in order
of frequency):

• (disorder)
• (finding)
• (nos)
• (morphologic abnormality)
• (situation)
• (event)
• (observable entity)
• (qualifier value)
• (context-dependent category)
• (procedure)
• (function)
• (attribute)
• (clinical)


