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Abstract

We study a search-based paraphrase genera-
tion scheme where candidate paraphrases are
generated by iterated transformations from the
original sentence and evaluated in terms of
syntax quality, semantic distance, and lexical
distance. The semantic distance is derived
from BERT, and the lexical quality is based on
GPT2 perplexity. To solve this multi-objective
search problem, we propose two algorithms:
Monte-Carlo Tree Search For Paraphrase Gen-
eration (MCPG) and Pareto Tree Search (PTS).
We provide an extensive set of experiments
on 5 datasets with a rigorous reproduction
and validation for several state-of-the-art para-
phrase generation algorithms. These experi-
ments show that, although being non explic-
itly supervised, our algorithms perform well
against these baselines.

1 Introduction

Paraphrase generation, i.e. the transformation of
a sentence into a well-formed but lexically differ-
ent one while preserving its original meaning, is
a fundamental task of NLP. Its ability to provide
diversity and coverage finds applications in several
domains like question answering (McKeown, 1979;
Harabagiu and Hickl, 2006), machine-translation
(Callison-Burch et al., 2006), dialog systems (Yan
et al., 2016), privacy (Gröndahl and Asokan, 2019a)
or adversarial learning (Iyyer et al., 2018).

The formal definition of paraphrase may vary
according to the targeted application and the tol-
erance we set along several axes, including the
semantic distance from the source that we want to
minimize, the quality of the syntax, and the lexical
distance from the source that we want to maximize
to ensure diversity.

The available aligned paraphrase corpora are of-
ten biased toward specific problems like question
answering or image captioning. For instance, a

transformer or a seq2seq model trained on a ques-
tion answering corpus will typically turn any input
sentence into a question. With the lack of generic
aligned datasets, it remains challenging to train
generic paraphrase models in a supervised manner.

On the other hand, with the availability of large-
scale non-supervised language models like BERT
and GPT2, the assessment of a given candidate
paraphrase in terms of semantic distance from its
source and lexical quality has become much more
tractable.

Leveraging from these metrics, we propose to
cast the paraphrase generation task as a multi-
criteria search problem. We use PPDB 2.0 (Pavlick
et al., 2015), a large-scale database of rewriting
rules derived from bilingual corpora, to poten-
tially generate billions of ’naive’ candidate para-
phrases by edition from the source sentence. To
sort the good candidates efficiently from the others,
we experiment with two search algorithms. The
first one, called Monte-Carlo Paraphrase Genera-
tion (MCPG), is a variant of the Monte-Carlo Tree
Search algorithm (MCTS) (Kocsis and Szepesvári,
2006; Gelly and Silver, 2007; Chevelu et al., 2009).
The MCTS algorithm is famous for its successes on
mastering the – highly combinatorial – game of Go
(Gelly and Silver, 2007; Silver et al., 2016).

The second one is a novel search algorithm that
we call Pareto Tree Search (PTS). In contrast to
MCTS which is a single-criterion search algorithm,
we designed PTS to retrieve an approximation of
the whole Pareto optimal set. This allows for more
flexibility on paraphrase generation where the bal-
ance between semantic distance, syntax quality,
and lexical distance is hard to tune a priori. An-
other difference between MCPG and PTS is that PTS

uses a randomized breadth-first exploration policy
which proves to be more efficient on this problem.

The main contribution of this article is a study
on search-based paraphrase generation through the
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Source sentence : he is speaking on june 14 .
PPDB rule Edited sentence
is→ is found he is found speaking on june 14 .
is speaking→ ’s talking he ’s talking on june 14 .
speaking→ speak now he is speak now on june 14 .
14→ 14th he is speaking on june 14th .

Table 1: PPDB rules applied to a source sentence

sieve of three criteria: semantic similarity, syntax
quality, and lexical distance. We propose and eval-
uate two search algorithms: MCPG and PTS. We
also provide an extensive set of experiments on
English datasets with a rigorous reproduction and
validation methodology for several state-of-the-art
paraphrase generation algorithms.

This article is organized as follows: The can-
didate paraphrase generation scheme is presented
in Section 2. In Section 3, we develop the differ-
ent criteria we use to qualify correct paraphrases.
The two search algorithms (MCPG and PTS) are
described in Section 4. Section 5 gives a survey
on other state-of-the-art paraphrase generation al-
gorithms. The comparisons with non-supervised
and supervised baselines are presented in Section 6
where the methodology is discussed in Section 6.3.
We conclude by a data-augmentation experiment
in Section 6.6.

2 Paraphrase generation scheme

We model paraphrase generation as a sequence of
editions and transformations from a source sen-
tence into its paraphrase. In this work, we only
consider local transformations, i.e. replacement
of certain words or group of words by others that
have the same or similar meanings, but the method
we propose should work with more sophisticated
transformations as well.

The Paraphrase Database (PPDB) (Ganitkevitch
et al., 2013; Pavlick et al., 2015) is a large collec-
tion of scored paraphrase rules that was automat-
ically constructed from various bilingual corpora
using a pivot alignment method (Callison-Burch,
2008). The database is divided into increasingly
large and decreasingly accurate subsets1. We used
the XL subset, and we removed the rules labeled
as “Independent”. This left us with a set of 5.5
million rewriting rules. We give some examples of
these rules in Table 1.

1PPDB is available on http://paraphrase.org,
and a python interface is available here https://github.
com/erickrf/ppdb

By iteratively applying the rules from a source
sentence like the one in Table 1, we obtain a vast
lattice of candidate paraphrases. Some of these
candidates like “he’s talking on june 14” are well-
formed, but many are syntactically broken, like “he
is speak now on june 14”.

The number of rules that apply depends on the
source sentence’s size and the words it contains.
For instance, on the MSRPARAPHRASE dataset (see
section 6.2), sentences are quite long and the me-
dian number of PPDB-XL rules that apply is around
450. After two rewriting steps, the median num-
ber of candidates is around 105, and by iterative
rewriting, we quickly reach a number of paraphrase
candidates that is greater than 108.

3 Paraphrase selection criteria

As it depends on the type of text we consider that
may be spoken or written, casual or formal; it is
not easy to define a universal semantic distance or
a universal scale of well formed syntax. However,
recent advances in NLP with neural networks like
BERT and GPT2 trained on huge corpora have
led to the development of metrics that can act as
good proxies for these ideal notions.

For the semantic distance, a quick experiment
confirms that the BERT score (Zhang et al., 2019a)
performs well on difficult paraphrase identification
tasks. The BERT score is an F1-measure over
an alignment of the BERT contextual word em-
beddings of each of the sentences. To assess the
sensitivity of this score, we computed the Area Un-
der the ROC curve (AUC) on QQP and PAWS, two
difficult paraphrase identification corpora (Kornél
Csernai, 2017; Zhang et al., 2019b). On QQP, we
obtained 75.2% and on PAWS, we obtained 67.0%.
The PAWS corpus being designed to trick para-
phrase identification classifiers, 67.0% is a reason-
able performance. We hence opted for the BERT

score between the source sentence and paraphrase
candidate (denoted BERTS ) as our semantic score.

Regarding the syntax quality, the perplexity of
GPT2 (Radford et al., 2019) is a good ranking cri-
terion. Although, as illustrated in Table 2, in some
cases, a rule-based spell-checker may detect errors
that GPT2 would miss (but the reverse is also true).
We hence opted for GPT2 as a primary criterion
for syntax quality, combined with the LANGUAGE-
TOOL spell-checker (Naber, 2003) that we only
used on a second stage for performance reasons.

The lexical distance is important to ensure the

http://paraphrase.org
https://github.com/erickrf/ppdb
https://github.com/erickrf/ppdb
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diversity of the produced paraphrases. It is however
simple to handle. Some authors use the BLEU sur-
face metric (Miao et al., 2018a), we opted here for
the normalized character-level Levenshtein edition
distance.

The balance between these criteria is difficult
to obtain. Table 2 illustrates their impact on a sen-
tence taken from the train set of MSRPARAPHRASE.
The candidate examples in this table underline the
tough dilemma between maximizing the semantic
similarity (safe and conservative policy) and maxi-
mizing the lexical distance (risk-prone). The third
and fourth examples underline the utility of the
spell-checker: some low-perplexity examples are
ill-formed. On the second part of the table, we
printed the sentences chosen by our two models:
MCPG and PTS.

4 Searching algorithms

Searching for good paraphrases in the large lat-
tice of candidates generated by PPDB is a costly
task. We propose two algorithms that share a simi-
lar structure: an outer loop explores the lattice at
different depths, while an inner loop explores the
candidates at each depth. Both algorithms are any-
time: they return the best solutions found so far
when the time or space budget is depleted.

4.1 MCPG: Monte-Carlo tree search for
Paraphrase Generation

Following the idea of Chevelu et al. (2009), we
used Monte-Carlo Tree Search (MCTS) to explore
the PPDB lattice. The three key ingredients of MCTS

are: a bandit policy at each node of a search-tree to
select the most promising paths, randomized roll-
outs to estimate the quality of these paths, and back-
propagation of rewards along the paths to update
the bandit. We opted here for a randomized bandit
policy called EXP3 (Auer et al., 2002). The MCTS

algorithm being not designed for multi-objective
problems, we needed to combine semantic similar-
ity BERTS, syntax correctness GPT2 and surface
diversity LevS into a single criterion. We opted
for the following polynomial:

α ·BERTS + β ·LevS ·BERTS− γ ·GPT2 (1)

where the product LevS · BERTS is intended to
avoid a trivial maximization of the score by apply-
ing a lot of editions to the source sentence. After a
few experiments on train sets, we tuned empirically
the weights to α = 3, β = 0.5 and γ = 0.025 in

order to obtain a balance as the one described in
Table 2.

4.2 PTS: Pareto Tree Search in the
paraphrase lattice

We observed two drawbacks for MCTS.
First, it was designed for combinatorial prob-

lems like Go where the evaluation is only possible
on the leaves of the search tree. This is not the
case for paraphrase generation where the neural
models can evaluate any rewriting step and where
rewriting from good candidates is more likely to
provide good paraphrases than rewriting from bad
ones. Secondly, it has been designed for single
criterion search which requires fixing the balance
between criteria definitively before any paraphrase
search begins. This is not very flexible, and it be-
comes painful when we want to generate sets of
candidates.

By plotting the distributions of the scores like
on Figure 1, we noticed that most of the candidates
were dominated in the Pareto sense: it was possible
to eliminate most of the candidates without any
hyper-parameter tuning. Hence, we adapted MCPG

to explore the paraphrase lattice and recover an ap-
proximation of the Pareto front, postponing the bal-
ance between criteria as a quick post-optimization
stage. This led us to the PTS algorithm described
as pseudo-code in Table 3.
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Figure 1: The cloud of candidates generated from the
sample of Table 2. The optima of any positive combi-
nation of BERT score, normalized Levenshtein distance,
and GPT2 perplexity belong to the Pareto front (orange
dots). We plotted the projections of MCPG combined
score (1) with dashed isolines. The BERT score and
Levenshtein distance being clearly anti-correlated, the
balance between these two criteria is difficult to tune.
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Source the agency could not say when the tape was made , though the voice says he is speaking on june 14 .
Policy Candidate Sentence BERTS GPT2 LevS Errs
high BERT
conservative

the agency could not say when the tape was made , though
the voice says he is talking on june 14 . 0.99 4.23 0.04 0

high Lev
risk prone

the organizations and agencies could just ’m saying when-
ever the tape-based was provided presentation there are ,
however the express opinions informed that he was found
talking pertaining end-june fourteen .

0.60 7.83 1.0 0

high GPT2
bad syntax

the agencies was not able say when the tape been given
currently undertaking though the voice indicated he
talking on june 14 .

0.82 7.10 0.55 2

spell & grammar
errors

the organisation are incapable of ’re saying when the tape
is set out , despite the fact that the voice just said he have
a conversation on june 14 .

0.73 5.49 0.79 2

balanced the organization could not say when the tape was made ,
although the voice indicates that he is talking on june 14 . 0.95 4.34 0.28 0

MCPG output the organization could not say when the tape was made ,
though the voice indicates that he is talking on june 14 . 0.96 4.36 0.26 0

PTS output the agency could not say when the tape was made ,
although the voice says he is speaking on june 14 . 1.00 4.17 0.02 0

Target the agency could put no exact date on the tape , though
the voice says he is speaking on june 14 . 0.87 4.77 0.22 0

Table 2: An example of a source sentence sampled from the MSRPARAPHRASE train set with some representative
candidates from its PPDB rewriting graph. For each of the candidates, we computed the BERT score with respect
to the source (BERTS), the normalized GPT2 perplexity (GPT2), the Levenshtein distance from the source
sentence (LevS), and the number of spell and grammar errors detected (Errs). The PPDB editions are highlighted
in green. The detected spell and grammar errors are highlighted in purple. The first candidate maximizes the
semantic similarity (BERT score) and is very conservative. The second one maximizes the surface diversity (LevS)
and takes a lot of risks. The third one shows an ill-formed paraphrase candidate. The fourth candidate emphasizes
the utility of the spell-checker. The last candidate, on the fifth row, achieves our equilibrium goal. We show on
a second part, the paraphrases generated by our models MCPG an PTS, and on a third part, we give the reference
paraphrase from the dataset.

Lfunction PTS(input sentence)
candidates← REWRITE(input sentence)
depth← 1
while time/space < budget do

while time/space < layer-budget do
batch← SAMPLE(candidates)
scored← scored ∪ NN.SCORES(batch)

end while
layer front set← PARETO-FRONT(scored)
candidates← REWRITE(layer front set)
depth← depth + 1

end while
return PARETO-FRONT(all scored nodes)

end function

Table 3: Pareto Tree Search (PTS) algorithm

5 Related work

Rule-based and statistical approaches Follow-
ing the path of machine translation, the para-
phrase generation literature first evolved from la-
boriously handcrafted linguistic rules (McKeown,
1979; Meteer and Shaked, 1988; Chandrasekar and
Srinivas, 1997; Carroll et al., 1999) to more au-
tomatic and data-driven rules extraction methods
(Callison-Burch et al., 2006; Madnani and Dorr,
2010). Like in machine translation, phrase-level

substitution rules can be extracted by sub-sentence
alignment algorithms from parallel corpora (Brown
et al., 1993). Building such a dedicated corpus
being a long and costly task, one usually trans-
forms other corpora through a “pivot represen-
tation” (Barzilay and McKeown, 2001; Callison-
Burch et al., 2006; Ganitkevitch et al., 2013; Chen
et al., 2015). The weakness of these approaches is
that phrase-level rewriting rules alone are not able
to build coherent sentences. A typical data-driven
paraphrase generator used to be a mixture of poten-
tially noisy handcrafted and data-driven rewriting
rules coupled with a score that had to be optimized
in real-time through dynamic programming. How-
ever, dynamic programming methods like Viterbi
are constrained by the requirement of a score that
decomposes into a sum of word-level or phrase-
level criteria (Xu et al., 2016). Some attempts were
made to relax this constraint with search-based ap-
proaches (Chevelu et al., 2009; Daumé et al., 2009),
but the global optimized criteria were simplistic,
and the obtained solutions were not suitable for
practical deployment.
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Supervised encoder-decoder approaches Like
machine translation, paraphrase generation bene-
fited from deep neural networks and evolved to effi-
cient end-to-end architectures that can both learn to
align and translate (Bahdanau et al., 2016; Vaswani
et al., 2017). Several papers like (Prakash et al.,
2016a; Cao et al., 2017) set the paraphrase gener-
ation task as a supervised sequence-to-sequence
problem. As confirmed by our experiments in Sec-
tion 6.4, this approach is efficient for specific types
of paraphrases. It is also able to produce relatively
long-range transformations, but it requires huge
and high-quality sentence-level aligned datasets for
training.

The paraphrase generation literature mostly re-
ports results on MSCOCO (Chen et al., 2015) and
QQP (Kornél Csernai, 2017) datasets which are
built respectively from image captions and semi-
duplicate questions. These datasets are very spe-
cific: MSCOCO is strongly biased toward image
description sentences, and QQP is dedicated to ques-
tions. The Transformer model we trained on QQP

typically transforms any input into a question. For
instance, from “He is speaking on june 14.” it gives
“Who is speaking on june 14?”.

Generative and hybrid approaches Recent ap-
proaches rely on conditional generative models like
CVAE to allow the generation of paraphrase sets and
palliate the lack of supervision data (Gupta et al.,
2018; Yang et al., 2019a; Roy and Grangier, 2019;
An and Liu, 2019). Others make use of CGANs
combined with reinforcement learning (Li et al.,
2018; Wang and Lee, 2018). Witteveen and An-
drews (2019) propose to simply fine-tune a large
non-supervised model like GPT2.

Recent text-generation architectures like the one
proposed in (Moryossef et al., 2019; Fu et al., 2019)
make a clear separation between a rule-based plan-
ning phase and the neural realization. A similar
idea was tested by Huang et al. (2019) where PPDB

rules are used to control the decoder of a CVAE.

Search-based approaches Search-based meth-
ods regained interest in the text generation commu-
nity for several reasons, including the need for flex-
ibility and the fact that with deep neural-networks,
the search evaluation criteria have become more
reliable. These methods are often slower than auto-
regressive text generation methods, but it is always
possible to distillate the models into faster ones like
we do in Section 6.6. In (Gröndahl and Asokan,

2019b) they deployed a search-based policy for
style imitation, Schwartz and Wolter (2018) and
Kumagai et al. (2016) both used MCTS for text
generation. Following the same trend, Miao et al.
(2018a) proposed to use Metropolis-Hasting sam-
pling (Metropolis et al., 2004) for constrained sen-
tence generation in an algorithm called CGMH.

Starting from the source sentence, the CGMH

algorithm samples a sequence of sentences by us-
ing local editions: word replacement, deletion, and
insertion. For paraphrase generation, CGMH con-
straints the sentence generation using a matching
function that combines a measure of semantic simi-
larity and a measure of English fluency. This model
is therefore directly comparable with our MCPG and
PTS approaches.

6 Experiments

The evaluation metrics and datasets are described
respectively in Section 6.1 and 6.2. We paid at-
tention to set up a rigorous validation protocol for
our experiments. The reproducibility and method-
ology issues that we faced are discussed in Sec-
tion 6.3. We compare our model with state-of-the-
art supervised methods and with CGMH, another
search-based algorithm. The technical details on
these algorithms are developed in Section 6.4. The
results are detailed in Section 6.5.

6.1 Evaluation metrics

We rely on standard machine translation metrics
that compare the generated paraphrase to one or
several ground-truth references (Olive et al., 2011).
We report surface metrics BLEU and TER and se-
mantic metrics METEOR and BERT2, the average
BERT score of the generated sentence with respect
to the reference sentences3.

6.2 Evaluation datasets

Table 4 gives a summary of the datasets we used.
On one hand, we have large datasets like MSCOCO

or OPUSPARCUS (OPUSPAR.) that are noisy and
very specific. On the other hand, we have MSR-
PARAPHRASE (MSRPARA.), a high-quality but
small human-labeled dataset.

2This is the same metric, but this usage of BERT score
against reference must not be confused with the BERT score
against source (BERTS) that we use in (1).

3We used the scripts from github.com/jhclark/
multeval and github.com/Tiiiger/bert_score.
For the BERT score we used ’bert-base-uncased L8 no-
idf version=0.1.2’

github.com/jhclark/multeval
github.com/jhclark/multeval
github.com/Tiiiger/bert_score
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Corpus Size Len B>0.75 L<0.25 PPDB@1 PPDB@3
MSCOCO 2.4 · 106 11 13.6% 0.6% 119 7.4 · 104
MSRPARA. 7.8 · 103 23 81.8% 18.3% 454 7.0 · 106

OPUSPAR. 4.2 · 107 6 36.0% 0.5% 113 1.5 · 104
PAWS 3.6 · 105 20 100% 65.6% 289 1.3 · 106
QQP 1.5 · 105 10 64.1% 21.8% 141 1.3 · 105

Table 4: Datasets statistics. ’Size’ is the number of
instances. ’Len’ is the median number of words per
sentence. We also report a rough distribution of the
BERT score (B) and the Levenshtein distance (L) com-
puted on the corpora paraphrases pairs. The ’PPDB@x’
columns give the median number of candidates that
PPDB-XL generates from one sentence respectively at
one and three rewriting steps. The size of the PPDB
rewriting lattice is correlated to the length of sentences.

The MSCOCO-2017 set (Chen et al., 2015) con-
tains image captions, assuming that captions asso-
ciated with the same picture are paraphrases. The
strengths of MSCOCO are its size and the fact that
each source sentence is associated with four ref-
erence paraphrases. However, the sentences are
biased towards a descriptive style, and the quality
of the paraphrases is often questionable.

The OPUSPARCUS dataset (Creutz, 2018) has
been extracted from movies and TV shows subtitles.
It contains mostly informal dialogues.

Quora Question Pairs dataset (QQP) (Kornél
Csernai, 2017) is a paraphrase identification cor-
pus dedicated to question-answering systems. The
MSRPARAPHRASE dataset (Dolan and Brockett,
2005) is mostly build with pieces of news. The sen-
tences of this corpus are quite long. It is a small but
high-quality paraphrase identification corpus that
was labeled by humans. PAWSwiki (PAWS) (Zhang
et al., 2019b; Yang et al., 2019b) is a paraphrase
identification corpus that contains several lexically-
similar but hard-to-classify pairs like “Flights to
Florida from New York” and “Flights from Florida
to New York”.

6.3 Methodology and reproducibility issues
In the paraphrase generation literature, most of the
papers report results on MSCOCO and QQP cor-
pora. In table 5, we provide the BLEU scores as re-
ported in (Prakash et al., 2016b; Gupta et al., 2017;
Fu et al., 2019; Miao et al., 2018b) and (Egon-
mwan and Chali, 2019a). However, even if the
dataset names coincide, and even if each evaluation
methodology is correct on its own, the discrepan-
cies between methodologies render these values
impossible to compare with each other.

The strange gap between the residual LSTM per-
formance of (Prakash et al., 2016b) and the one

Model applied on MSCOCO BLEU ↑
RESIDUAL LSTM (Fu et al., 2020) 23.7
LBOW-TOPK (Fu et al., 2020) 25.3
RESIDUAL LSTM (Prakash et al., 2016a) 37.0
VAE-SVG-EQ (Gupta et al., 2017) 39.6
TRANSFORMER (Egonmwan and Chali, 2019b) 41.8
TRANSSEQ (Egonmwan and Chali, 2019b) 44.5

Model applied on QQP BLEU ↑
RESIDUAL LSTM (Fu et al., 2020) 24.9
CGMH (Miao et al., 2018a) - weakly-supervised 18.8
LBOW-TOPK (Fu et al., 2020) 26.2
VAE-SVG-EQ (Gupta et al., 2017) 37.1
TRANSFORMER (Egonmwan and Chali, 2019b) 39.0
TRANSSEQ (Egonmwan and Chali, 2019b) 39.8

Table 5: Inconsistent BLEU scores as reported in several
articles on paraphrase generation.

reported in (Fu et al., 2019) can be explained by
the fact that the first one is using the 2014 version
of MSCOCO while the other is using 2017 version.
But we also found several other issues: differences
in test sets splits, different strategies for sentence
length shrinking (or pruning), different vocabulary
size, and tokenization strategies.

Regarding the sentence lengths, Prakash et al.
(2016b) and Gupta et al. (2017) shrunk all sen-
tences to 15 words. Fu et al. (2019) set the max-
imum length to 16 while Egonmwan and Chali
(2019a) set it to 15 and 10 respectively for the in-
put and target sentences. Knowing that roughly
56% (resp. 5%) of MSCOCO target sentences are
strictly longer than 10 (resp. 15) words, these small
changes can have a great impact on the results.
The vocabulary considered also differs. Fu et al.
(2019) used a vocabulary of 8k and 11k tokens
from the train sets of QQP and MSCOCO respec-
tively, whereas Egonmwan and Chali (2019a) had
a vocabulary of approximately 15k words that was
constructed on both the train and test sets.

The scripts used to compute metrics did also
differ from one paper to another, and it is known
that BLEU scores can vary wildly with different
parameterizations (Post, 2018).

We used the code when available and otherwise,
we tried as much as possible to reproduce the mod-
els of the literature faithfully. This allowed us to
have the exact same preprocessing, training and
testing pipeline for all our experiments. As a side
effect, it gives a grounded benchmark between the
methods that we could test.
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6.4 Baseline systems implementation

In the next subsections, we present the re-
implemented encoder-decoder neural networks ar-
chitectures and the weakly-supervised paraphrase
generator used as baselines in our experiments.

Supervised paraphrase generators As super-
vised baselines, we trained three neural network ar-
chitectures that were previously reported to achieve
good results on MSCOCO and QQP, in particular, the
Seq2Seq architecture, a Residual LSTM architec-
ture (Prakash et al., 2016b) and a TRANSFORMER

model (Egonmwan and Chali, 2019a). We ex-
tended the experiments to the other aligned corpora:
MSRPARAPHRASE, OPUSPARCUS and PAWS.

To be more precise, we trained a 4-layers LSTM
Seq2Seq with a bidirectional encoder and decoder
using attention. This architecture is reported as
SEQ2SEQ in the results. We trained a 4-layer Resid-
ual LSTM Seq2Seq as introduced by Prakash et al.
(2016b) and reproduced by Fu et al. (2019). This
architecture is reported as RESIDUAL LSTM in the
results. The results we obtained with this model
are close to the ones reported by Fu et al. (2019).

Finally, we trained a TRANSFORMER using
the transformer base hyper-parameters set from
(Vaswani et al., 2017). This architecture is reported
as TRANSFORMER BASE in the results.

For all the encoder-decoder experiments, we
used the fairseq framework (Ott et al., 2019) that
implements the SEQ2SEQ and TRANSFORMER ar-
chitectures. We added our own implementation of
the RESIDUAL LSTM architecture.

For preprocessing, we used Moses tokenizer and
subword segmentation following Sennrich et al.
(2016b) and using the subword-nmt library . The
maximum sentence length is set to 1024 tokens
which the default setting in fairseq. For decoding,
we did a beam search with a beam of size 5.

Weakly-supervised paraphrase generator For
the weakly-supervised strategy CGMH introduced
by Miao et al. (2018b) we used the official code.
We managed to reproduce their results on QQP.
On our test set we achieve a BLEU score of 22.5
while they reported 18.8. We then extended the
experiment to other datasets and metrics.

6.5 Results

Table 6 summarizes the results of the comparison
of our models, supervised encoder-decoder neu-
ral networks and the weakly-supervised method

CGMH. Overall, these results are mixed: it is how-
ever important to keep in mind that contrary to the
supervised baselines which are retrained for each
dataset, the parameters of the CGMH, MCPG and
PTS models are left unchanged.

On the MSCOCO and QQP datasets, the super-
vised baselines achieve clearly better results, but
MCPG and PTS achieve better results on OPUSPAR-
CUS and PAWS except with the BERT score for
which the TRANSFORMER model achieves simi-
lar results. On MSRPARAPHRASE, the encoder-
decoder neural networks models perform poorly.
This result can be explained by the small number
of training examples available on this corpus (See
Table 4). On the weakly-supervised side, MCPG

and PTS models outperform the CGMH baseline on
all corpora except on the MSCOCO dataset where
the results are similar.

These results prove that even without a special-
ized training sets, generic search-based methods
are competitive for paraphrase generation. How-
ever, it is a fact that encoder-decoder networks have
excellent performances for text generation and have
the potential to generate more complex paraphrases
than those obtained by simple local transformations
as in our models.

Training a general – all-purpose – paraphrase
generation network would require a huge volume
of data. And there is yet much less aligned corpora
available for paraphrase than for translation.

6.6 Data-augmentation experiment

In order to get the best of both worlds, one option
is to enrich the training set of a TRANSFORMER

with the results of a search-based method.
To test this idea, we used our models to aug-

ment the MSRPARAPHRASE training set. For that
purpose we created new pairs of paraphrases from
unused sentences of MSRPARAPHRASE (the pairs
labeled as “not paraphrases”) using MCPG and PTS.
We then trained a new supervised TRANSFORMER

models on the augmented training sets.
Having no guarantee that our models generate

syntactically perfect sentences, we inverted the
pairs, thus taking the generated paraphrases as in-
put and the dataset’s sentences as output. This trick,
called back-translation, forces the target model to
generate correct sentences (Sennrich et al., 2016a;
Edunov et al., 2018).

We report the results of this experiment in Ta-
ble 7. The models trained with the augmented
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Corpus Model BLEU ↑ TER ↓ METEOR ↑ BERT ↑

MSCOCO

SEQ2SEQ 27.5 62.3 24.3 0.76
RESIDUAL LSTM 26.9 63.3 24.2 0.76
TRANSFORMER BASE 26.9 63.3 24.2 0.76
CGMH 17.3 72.6 21.9 0.7
MCPG 16.5 73.5 23.2 0.71
PTS 17.0 69.9 22.8 0.64

QQP

SEQ2SEQ 29.2 60.3 30.7 0.8
RESIDUAL LSTM 28.4 59.1 30.2 0.8
TRANSFORMER BASE 29.1 59.5 30.5 0.8
CGMH 22.5 65.0 27.0 0.72
MCPG 24.1 64.5 31.8 0.78
PTS 25.6 58.7 31.4 0.78

OPUSPARCUS

SEQ2SEQ 8.4 79.3 13.8 0.69
RESIDUAL LSTM 8.1 78.6 14.3 0.7
TRANSFORMER BASE 8.1 84.3 13.9 0.7
CGMH 7.6 78.9 16.8 0.58
MCPG 9.6 78.6 23.3 0.67
PTS 9.1 70.2 22.1 0.66

PAWS

SEQ2SEQ 44.0 36.8 39.2 0.92
RESIDUAL LSTM 43.6 37.1 38.9 0.92
TRANSFORMER BASE 42.4 37.6 38.9 0.92
CGMH 15.4 58.1 20.7 0.61
MCPG 55.5 24.3 49.2 0.93
PTS 57.9 21.9 48.5 0.92

MSRPARAPHRASE

SEQ2SEQ 11.6 89.5 12.6 0.53
RESIDUAL LSTM 10.5 93.7 11.2 0.52
TRANSFORMER BASE 20.7 76.7 21.6 0.65
CGMH 9.7 72.9 15.4 0.48
MCPG 39.3 52.4 37.2 0.81
PTS 40.3 48.4 36.1 0.80

Table 6: Experiments summary. Symbol ’↑’ means that higher value is better. Significantly best values are
marked in bold. MCPG and PTS outperform state-of-the-art models on OPUSPAR., PAWS and MSRPARA.. Contrary
to the supervised baselines, the parameters of the MCPG and PTS models are left unchanged for each dataset.

Train set BLEU TER METEOR BERT
ORIG. 20.7 76.7 21.6 0.65
ORIG. + MCPG 25.3 69.6 24.5 0.63
ORIG. + PTS 25.3 71.1 24.6 0.63

Table 7: Data-augmentation experiment summary.
We trained a TRANSFORMER base model on three ver-
sions of the MSRPARAPHRASE set: the original train set
(ORIG) and the original train set extended by paraphras-
ing other sentences from the same distribution with the
MCPG (ORIG + MCPG) and PTS (ORIG + PTS) models.

training sets achieved a significant performance
gain on BLEU, TER and METEOR.

7 Conclusion

We experimented with two search-based ap-
proaches for paraphrase generation. These ap-
proaches are pragmatic and flexible. Being generic,
our approaches did not overfit on small datasets.
We performed extensive experiments with a rigor-
ous evaluation methodology that we applied both
on our algorithms and on the other related meth-
ods that we tried to reproduce faithfully. These
experiments confirm that our two methods, namely

MCPG and PTS, are comparable to supervised state-
of-the-art baselines despite being less tightly su-
pervised. When compared with CGMH, another
search-based and weakly-supervised method, our
algorithms proved to be faster and more efficient.

We plan to refine the scoring with deep reinforce-
ment learning techniques and enrich the edition
rules with more sophisticated patterns like phrase
permutations. Our search algorithms remain slow
for a real-time deployment: the current versions
are better suited as an offline model for data aug-
mentation. The experiment of Section 6.6 confirms
that this application of search-based methods is
a promising research avenue. A planning-then-
realization hybridization like the one proposed by
Moryossef et al. (2019) and Fu et al. (2019) could
also be considered for further works.
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Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and
Robert E. Schapire. 2002. The Nonstochastic Mul-
tiarmed Bandit Problem. SIAM Journal on Comput-
ing, 32(1):48–77.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv:1409.0473
[cs, stat]. ArXiv: 1409.0473.

Regina Barzilay and Kathleen R. McKeown. 2001. Ex-
tracting paraphrases from a parallel corpus. In Pro-
ceedings of the 39th Annual Meeting on Associa-
tion for Computational Linguistics - ACL ’01, pages
50–57, Toulouse, France. Association for Computa-
tional Linguistics.

Peter E Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The Mathemat-
ics of Statistical Machine Translation: Parameter Es-
timation. Computational Linguistics, 19(2):50.

Chris Callison-Burch. 2008. Syntactic Constraints on
Paraphrases Extracted from Parallel Corpora. In
Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages
196–205, Honolulu, Hawaii. Association for Com-
putational Linguistics.

Chris Callison-Burch, Philipp Koehn, and Miles Os-
borne. 2006. Improved Statistical Machine Trans-
lation Using Paraphrases. In Proceedings of the
Human Language Technology Conference of the
NAACL, Main Conference, pages 17–24, New York
City, USA. Association for Computational Linguis-
tics.

Ziqiang Cao, Chuwei Luo, Wenjie Li, and Sujian Li.
2017. Joint Copying and Restricted Generation for
Paraphrase. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, pages 3152–
3158.

John Carroll, Guido Minnen, Darren Pearce, Yvonne
Canning, Siobhan Devlin, and John Tait. 1999. Sim-
plifying text for language-impaired readers. In
Ninth Conference of the European Chapter of the
Association for Computational Linguistics, pages
269–270, Bergen, Norway. Association for Compu-
tational Linguistics.

R. Chandrasekar and B. Srinivas. 1997. Automatic in-
duction of rules for text simplification. Knowledge-
Based Systems, 10(3):183–190.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollar, and
C. Lawrence Zitnick. 2015. Microsoft COCO
Captions: Data Collection and Evaluation Server.
arXiv:1504.00325 [cs]. ArXiv: 1504.00325.

Jonathan Chevelu, Thomas Lavergne, Yves Lepage,
and Thierry Moudenc. 2009. Introduction of a new
paraphrase generation tool based on Monte-Carlo
sampling. In Proceedings of the ACL-IJCNLP 2009
Conference Short Papers, pages 249–252, Suntec,
Singapore. Association for Computational Linguis-
tics.

Mathias Creutz. 2018. Open Subtitles Paraphrase Cor-
pus for Six Languages. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).
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