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Abstract

Recent work in multilingual translation ad-
vances translation quality surpassing bilin-
gual baselines using deep transformer mod-
els with increased capacity. However, the ex-
tra latency and memory costs introduced by
this approach may make it unacceptable for
efficiency-constrained applications. It has re-
cently been shown for bilingual translation
that using a deep encoder and shallow decoder
(DESD) can reduce inference latency while
maintaining translation quality, so we study
similar speed-accuracy trade-offs for multilin-
gual translation. We find that for many-to-
one translation we can indeed increase de-
coder speed without sacrificing quality us-
ing this approach, but for one-to-many trans-
lation, shallow decoders cause a clear qual-
ity drop. To ameliorate this drop, we pro-
pose a deep encoder with multiple shallow de-
coders (DEMSD) where each shallow decoder
is responsible for a disjoint subset of target
languages. Specifically, the DEMSD model
with 2-layer decoders is able to obtain a 1.8x
speedup on average compared to a standard
transformer model with no drop in translation
quality.

1 Introduction

Encoder-decoder based neural machine translation
(NMT) systems have achieved great success on
bilingual translation tasks (Sutskever et al., 2014;
Cho et al., 2014; Bahdanau et al., 2014; Gehring
et al., 2017; Vaswani et al., 2017). Recently, mul-
tilingual neural machine translation (MNMT) has
also attracted much attention because of its ease
of deployment, knowledge transfer among lan-
guages and the potential to enable zero-shot trans-
lation (Dong et al., 2015; Firat et al., 2016; Ha
et al., 2016; Johnson et al., 2017; Arivazhagan et al.,
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2019; Zhang et al., 2020). While MNMT can sup-
port translations in several directions, not all of
them have better performance when compared to
their corresponding bilingual models. Suspecting
that poor performance in some directions is due to
the limited model capacity, many prior works adopt
deeper encoder and decoder (Zhang et al., 2019;
Wang et al., 2019; Zhang et al., 2020). However,
increasing the number of layers, especially in the
decoder, deteriorates the latency of translation and
memory costs. Recently, Kasai et al. (2020) show
that given a fixed capacity budget, as measured by
the number of layers, models with a deep encoder
and a shallow decoder (DESD) are faster at infer-
ence time when compared to standard models with
an equal number of encoder and decoder layers
while maintaining translation quality.

Inspired by findings from Kasai et al. (2020), in
this work, we explore the speed-accuracy trade-off
in multilingual machine translation systems. Given
the same model capacity budget, we experiment
various layer allocation strategies. We analyze mul-
tilingual models in the one-to-many (O2M) setting
and many-to-one (M2O) setting. In the one-to-
many setting, there are numerous target languages
from a single source language (limited to English in
this study); and in the many-to-one setting, several
possible source languages are translated into a sin-
gle target language (again, English in this study).

In the many-to-one scenario, we find that allo-
cating more capacity to the encoder reduces the
latency while achieving comparable performance.
We hypothesize that a deeper encoder helps the
model accommodate multiple source languages,
while a shallow decoder is sufficient to support a
single target language.

However, in the one-to-many translation setting,
speed-accuracy trade-off is complicated. We ob-
serve a performance drop as the decoder depth is
reduced. We hypothesize that the shallow decoder
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can no longer model several different target lan-
guages adequately. With the goal of obtaining low
latency while maintaining translation quality, we
propose using multiple shallow decoders where
each decoder is responsible for a subset of the tar-
get languages. Clearly, the introduction of mul-
tiple shallow decoders increases the size of our
model. However, at inference time only one shal-
low decoder will be used, thus not adding latency
or memory costs. With multiple target languages
and decoders, one natural question is how to assign
each target language to one of these decoders. We
investigate several methods to assign each target
language to one of these shallow decoders. More
details are in the Section 3. Experimental results
on three multilingual translation corpora show the
effectiveness of our method to improve translation
accuracy with lower latency at the same time.

Our main contributions are summarized as fol-
lows:

• We extend the speed-accuracy trade-off study
of DESD models from bilingual to multilin-
gual machine translation tasks with various
layer allocations.

• We show that on many-to-one translation, mul-
tilingual DESD models enable 1.8x speedup
on average without sacrificing performance
comparing to the baseline (equal model capac-
ity).

• We further proposed shared encoder and mul-
tiple shallow decoders (DEMSD) for one-to-
many setting again achieving 1.8x speed-up in
decoding while preserving high-quality trans-
lations at the same time.

2 Deep encoder and shallow decoder
(DESD) for multilingual NMT

Background The transformer-based NMT
model (Vaswani et al., 2017) achieves state-of-
the-art performance on many translation tasks.
It consists of an encoder and a decoder, each of
which contains several stacked layers. Since the
transformer relies entirely on the attention mech-
anism, it allows more parallelization compared
to recurrent neural networks. Specifically, at
training time, the computation can be parallelized
both in the encoder and decoder. At inference
time, due to the auto-regressive property, the
decoder needs to generate tokens one by one.

However, the computation in the encoder is still
parallelized given the source sentence. Therefore,
the main latency of the transformer at inference
time happens in the decoder, especially translating
long sentences. Recently, Kasai et al. (2020) find
that on bilingual machine translation tasks, putting
more capacity of the transformer model to the
encoder substantially reduces the decoding time
and maintain the performance at the same time.

Because this deep encoder and shallow decoder
model achieves a superior speed-accuracy trade-off
on bilingual translation tasks, in this section, we try
to understand the layer allocations of transformer
on the multilingual neural machine translation task
given the same capacity budget which is measured
by the number of layers in the encoder and decoder.
We first experiment with three multilingual transla-
tion corpora.

• ML50 (Tang et al., 2020): a large-scale multi-
lingual translation dataset which contains 49
languages↔English and more than 200 mil-
lion training sentence pairs in total. All data
are collected from open-resource data such as
WMT, IWSLT, WAT, TED, etc.

• TED8-Related (Wang et al., 2020): 4 low re-
source languages (Azerbaijani: az, Belarusian:
be, Glacian: gl, Slovak: sk) and 4 relevant
high resource languages (Turkish: tr, Russian:
ru, Portuguese: pt, Czech: cs)

• TED8-Diverse (Wang et al., 2020): 8 lan-
guages without consideration for relatedness
(Bosnian: bs, Marathi: hr, Hindi: hi, Macedo-
nian: mk, Greek: el, Bulgarian: bg, French:
fr, Korean: ko)

Instead of just trying the shallowest possible
decoder (1-layer), we train models with various
configurations on each of these three corpora.
Other than the layer allocation, all the other hyper-
parameters and model configurations are the same
among these models and the same training proce-
dure is applied to these models (odel and training
details are listed in Appendix A.). To understand
the speed and accuracy trade-off of the layer allo-
cation, two metrics are reported:

• BLEU: the average tokenized BLEU
score (Papineni et al., 2002) over all
directions.

• DS: the decoding speed. It is measured by
the number of tokens per second the system
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Figure 1: Speed and accuracy trade-off of various layer allocations for O2M and M2O translations on ML50,
TED8-Related and TED8-Diverse corpora. X-Y denotes X and Y layers in the encoder and decoder respectively.
Best viewed in color.

translates given one sentence at a time on a
single GPU.

The results are shown in Figure 1. Models with
fewer decoder layers obtain higher decoding speed.

2.1 Many-to-one translation

In the M2O translation, there is no significant per-
formance difference among these layer allocations.
We hypothesize that this is because the deeper en-
coder learns better representations from a large
number of source languages while on the decoder
side only one language needs to be modeled. There-
fore, given a more robust representation of source
languages, the shallow decoder is able to generate
high-quality translations. For example, the model
with 10 encoder layers and 2 decoder layers obtain
slightly better performance and a 1.8x speedup at
the same time.

2.2 One-to-many translation

However, in the O2M translation setting, although
models with the shallower decoder have lower la-
tency compared to the standard transformer (6-6),
there is a clear performance drop in terms of trans-
lation accuracy, especially for models with just 1
or 2 decoder layers. We attribute this to the shal-
low decoder not having enough capacity to model
a large number of target languages.

3 Deep Encoder and Multiple Shallow
Decoders (DEMSD)

We have seen that in one-to-many translation,
DESD models have a performance drop compared
to the standard transformer. In order to preserve
translation quality and low latency at the same time,

we propose a model with a shared encoder and mul-
tiple shallow decoders (DEMSD), each of which
is used to decode a subset of target languages. Al-
though this will introduce more parameters, at in-
ference time only one shallow decoder is needed
for a given translation (since the output language
is fixed) thus the model incurs no extra latency or
memory costs. One natural question that arises
when using this multiple-decoder approach is how
to assign output languages to each of the decoders.
In this section, we explore several language assign-
ment methods to assign each target language (or
language group) to one of these multiple decoders.
As a result, each decoder only needs to handle a
disjoint subset of target languages.

3.1 One language per decoder (EACH)

The simplest way is to use a separate decoder for
each output language. As a result, we will have as
many decoders as the number of target languages
and each decoder only needs to model one lan-
guage.

3.2 Random language set per decoder
(RAND)

In this method, we assign a random set of languages
to a single decoder. As the performance of the
model will vary significantly based on the random
assignment, we repeat this scheme with three dif-
ferent random assignments and report the average
results. Instead of completely random grouping
languages, we let each decoder handle a same num-
ber of languages but languages in one decoder are
randomly grouped.
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Language Family Languages

TURKIC az, tr
SLAVIC be, ru

ROMANCE gl, pt
CZECH–SLOVAK sk, cs

Table 1: Language families in the TED8-Related cor-
pus.

3.3 One language family per decoder (FAM)
Another intuitive way for language assignment is
to use linguistic features (Comrie, 1989; Lewis,
2009; Dryer and Haspelmath, 2013), such as lan-
guage family, typology, etc. In this method, we
are guided by the intuition that languages from the
same linguistic family share similar features which
might be captured by a single decoder resulting in
better performance. Thus, we group languages into
several sets based on their linguistic families, and
assign a family of languages to each decoder. As a
result, we will have as many decoders as the num-
ber of language families in the target languages.
We expect that in the same decoder, a better knowl-
edge transfer will happen among languages in the
same language family. For example, in the TED8-
Related corpus, 8 target languages are split into
4 languages families which are TURKIC, SLAVIC,
ROMANCE and CZECH–SLOVAK. The details are
shown in Table 1. The language family-based as-
signment results on other corpora are shown in
Appendix B.

3.4 Pre-trained language embedding based
assignment (EMB)

From Johnson et al. (2017), a common way to in-
dicate the target language is prepending a target
language token to the source sentence. With the
goal of capturing the information of languages they
represent, their embeddings are trained end-to-end
with source-target sentence pairs. We call these
embeddings as the language embeddings here. Ac-
cording to Johnson et al. (2017), these language
embeddings are able to capture target language
features in their training data. Therefore, we first
extract them from a well-trained model and group
target languages according to them. Finally, each
group are assigned to one of these decoders.

3.5 Self-taught assignment (ST)
One disadvantage of the pre-trained language em-
bedding based grouping method is the need of a
pre-trained machine translation model. It would

be better if the model assign each target languages
to one of these multiple shallow decoders during
the training automatically. We expect that given a
fixed number of decoders and target languages, the
model is capable of choosing the most appropriate
decoders for each language.

Specifically, our model consists of a shared
encoder, E, and N multiple decoders, D =
[D1, D2, ..., DN ]. Given a language L, the model
will choose a decoder, Di for training and transla-
tion so that the log probability of output sequence
y given the input sequence x is log p(y|x,E,Di)
where i=argmaxj p(j|Le) and p(·|Le) is the prob-
ability of each decoder being chosen given the
language L and its language embedding vector
Le. Intuitively, our model will learn the distri-
bution of each decoder being chosen given a lan-
guage and choose the one with the highest prob-
ability. However, the argmax operation here is
non-differenetiable thus during trainiing we con-
sider the Gumbel-Softmax (Jang et al., 2016), a
differentiable approximation of the argmax opera-
tion.

In Gumbel-Softmax, it models the p(j|Le) as:

p(j|Le) =
exp(lj + gj)/τ∑N
k=1 exp(lk + gk)/τ

(1)

where l is the logit and g=− log(− log(u)) and
u ∼ U(0, 1). In the forward pass, the differen-
tiable approximation of the argmax operation is
used to choose the decoder for the input language
and during the backward, the true gradient of the
Straight-Through Gumbel-Softmax outputs is used.
In our experiments, the temperature τ is linearly
reduced from 5 to 0.5. Finally, during training,
the probability of the target sequence y given the
source sentence x and multiple decoders D is:

p(y|x) =
N∑

n=1

p(n|Le)pn(y|x) (2)

where pn(y|x) is the probability of y given x in the
n-th decoder and p(n|Le) is the probability of the n-
th decoder being sampled given the embedding of
the language L. During inference, only the decoder
with the highest probability will be used to decode
the input sentences.

4 Experiments

4.1 Experimental setup
We conduct experiments on ML50, TED8-Related,
TED8-Diverse multilingual machine translation
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Method Abbrev.

One language per decoder EACH
Random language set RAND
One language family per decoder FAM
Pre-trained Language embedding EMB
Self-taught ST

(a) The abbreviations of language assignment methods.

Metric Abbrev.

# parameters at training time #TP
# parameters at inference time #DP
Decoding speed DS
# decoders #DEC

(b) The abbreviations of metrics.

Table 2: The abbreviations of language assignment
methods and metrics.

corpora. ML50 (Tang et al., 2020) is an English-
central translation benchmark of 50 languages with
publicly available training and evaluation sets, in-
cluding high, mid, and extremely low resource di-
rections. Following Tang et al. (2020), we adopt
the 250k SentencePiece model (Kudo and Richard-
son, 2018) used in XLM-R (Conneau et al., 2019)
to tokenize the dataset so that all languages share
the same vocabulary. For TED8-Related, TED8-
Diverse corpora, we follow the preprocessing steps
in Wang et al. (2020).

Hyperparameters On ML50, we follow most of
the standard hyperparameters in the transformer-
base (Vaswani et al., 2017): 8 attention heads per
layer, 512 model dimensions, 2048 hidden dimen-
sions and 0.1 dropout. We train batches of 64k
tokens using Adam (Kingma and Ba, 2014) with
β = (0.9, 0.98) and ε = 10−6 and 0.1 label smooth-
ing. The learning rate goes to 1e−3 within 4,000
steps, and then decays with the inverse square-root
schedule. All models are trained for 100,000 steps.
Furthermore, to mitigate the training data imbal-
ance issue, the temperature sampling method is
adopted (Arivazhagan et al., 2019) which is set as
5 in all experiments.

On TED8 corpora, a smaller transformer model
with 512 model dimensions, 1024 hidden dimen-
sions and 0.3 dropout is adopted. All models are
trained for 40k steps with batches of 16k tokens
with a smaller learning rate 2e−4. The other train-
ing procedure is the same as the ML50.

languages
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Figure 2: The BLEU score difference between
models 10-2-EACH and 10-2 on TED8-Related
(BLEU10-2-EACH−BLEU10-2). (Left four languages are
low-resourced and the right four are high-resourced.)

Evaluation metrics For all models, we evaluate
on the checkpoint with the best validation loss and
use beam size 5 and length penalty 1.0 in decoding.
Besides reporting the average BLEU score over all
languages, on ML50, we predefine high (> 1M),
mid (100K, 1M]) and low (< 100K) resource lan-
guages according to their data sizes and average
BLEU scores on each of them are also computed.
For the evaluation speed, DS, it is measured by the
number of tokens the system translates per second
given one sentence at a time on a single GPU.

4.2 Results

From Figure 1, we find that for O2M translation,
models with 1- or 2-layer decoders have a clear
performance drop compared to the standard trans-
former (6-6). Therefore, our main experiments
adopt multiple shallow decoders with 1 and 2 de-
coder layers. Results on ML50 and TED8 corpora
are shown in Table 3 and 4 respectively. For sim-
plicity, we introduce the abbreviation of each lan-
guage assignment method and evaluating metrics
in Table 2.

One language per decoder (EACH) With this
assignment method, models obtain superior per-
formance on high and mid resource languages but
poor results on low resource languages. On ML50,
if each language has its own decoder, we find that
it achieves great results on high resource languages
(BLEUH in rows 2 vs. 3 and 8 vs. 9 in Table 3). We
think that given enough training data, the shallow
decoder has enough ability to model one language.
However, it performs worse on the low resource
languages compared with the baseline (BLEUL be-
tween rows 2 vs. 3 and 8 vs. 9 in Table 3). To
further understand this assignment method, we also
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# Model BLEU BLEUH BLEUM BLEUL DS #TP (M) #DP (M) #Dec

1 6-6 19.68 19.60 18.99 20.34 1.0x 172 172 1

2 11-1 17.65 16.93 17.02 18.70 1.8x 167 167 1
3 11-1-EACH 17.83 19.18 18.32 16.47 1.8x 368 167 49
4 11-1-RAND 17.96 17.96 17.54 18.17 1.8x 230 167 15
5 11-1-FAM 18.34 18.25 17.92 18.79 1.8x 230 167 15
6 11-1-EMB 18.19 18.17 17.79 18.40 1.8x 230 167 15
7 11-1-ST 18.47 18.31 18.02 18.79 1.8x 230 167 15

8 10-2 18.99 18.50 18.41 19.72 1.6x 168 168 1
9 10-2-EACH 18.93 21.45 19.42 16.78 1.6x 572 168 49
10 10-2-RAND 19.24 19.64 18.76 19.24 1.6x 294 168 15
11 10-2-FAM 19.70 20.01 19.31 19.81 1.6x 294 168 15
12 10-2-EMB 19.64 20.08 19.01 19.94 1.6x 294 168 15
13 10-2-ST 19.71 20.03 19.36 19.98 1.6x 294 168 15

Table 3: Comparison among various models on ML50. BLEUH, BLEUM and BLEUL denote the average BLEU
score over high, mid and low resource languages respectively. More notation information can be found in Table 2

# Model Related Diverse
#TP (M) #DP (M) #Dec DS BLEU #TP (M) #DP (M) #Dec DS BLEU

1 6-6 64 64 1 1.0x 16.75 66 66 1 1.0x 20.60

2 11-1 58 58 1 2.3x 14.51 61 61 1 2.6x 17.94
3 11-1-EACH 80 58 8 2.3x 14.81 83 61 8 2.6x 18.68
4 11-1-RAND 58 58 4 2.3x 14.69 74 61 5 2.6x 18.37
5 11-1-FAM 68 58 4 2.3x 15.20 74 61 5 2.6x 18.82
6 11-1-EMB 68 58 4 2.3x 15.20 74 61 5 2.6x 18.62
7 11-1-ST 65 58 3 2.3x 15.04 74 61 5 2.6x 18.64

8 10-2 59 59 1 1.9x 15.73 62 62 1 1.9x 18.91
9 10-2-EACH 104 59 8 1.9x 16.13 106 62 8 1.9x 19.60

10 10-2-RAND 78 59 4 1.9x 16.04 87 62 5 1.9x 19.23
11 10-2-FAM 78 59 4 1.9x 16.88 87 62 5 1.9x 20.25
12 10-2-EMB 78 59 4 1.9x 16.88 87 62 5 1.9x 19.98
13 10-2-ST 78 59 4 1.9x 16.71 87 62 5 1.9x 20.03

Table 4: Translation speed and accuracy trade-off on TED8-Related and TED8-Diverse corpora. Notation infor-
mation can be found in Table 2.

show the BLEU score differences between mod-
els 10-2 and 10-2-EACH on TED8-Related in Fig-
ure 2. The left three languages are relatively low
resourced and their performance is lower than the
baseline model in which all languages share one
decoder1. This also demonstrates that their de-
coders are not able to learn robust representations
given a limited amount of training data. And de-
coders trained with high resource languages gener-
ate higher quality translations and we attribute this
to the enough training data and no negative transfer
effect when trained without other languages (Ari-

1Note that although sk is defined as a low resourced lan-
guage in this dataset, the reason why language sk still have
slightly better result is that sk has 61.5k training data but the
other three low resource languages (az, be, gl) have less than
10k training sentence pairs.

vazhagan et al., 2019).

Random language set assignment (RAND)
We find that random language set assignment
slightly improve the performance over the base-
line due to the sub-optimal knowledge transfer
among languages in the same decoder. If each
decoder handles a similar number of languages, it
also slightly improve the performance compared to
the model with one shared decoder (BLEU scores
between rows 2 vs. 4 and 8 vs. 10 in Tables 3 and
4). We attribute this to that the shallow decoder
performs better given fewer languages. This also
demonstrates that one shallow decoder does not
have enough capacity to model a large number of
languages. However, compared to language family
and embedding assignment methods, the random
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Figure 3: The BLEU score difference between mod-
els 10-2-FAM and 10-2-EACH on TED8-Related
(BLEU10-2-FAM − BLEU10-2-EACH). (Left four lan-
guages are low-resourced and the right four are high-
resourced.)

language set method has lower translation quality,
showing that how to assign target languages into
these decoders is also crucial.

One language family per decoder (FAM) We
group all languages into several groups according
to their language families and assign each family
to one shallow decoder. As a result, we have 15,
4, 5 language families in ML50, TED8-Related
and TED8-Diverse corpora respectively. From the
comparison between rows 2 vs. 5 and 8 vs 11 in Ta-
bles 3 and 4. It is clear to find that language family-
based decoders achieves better accuracy and main-
tain the low latency at the same time. Furthermore,
for models with multiple 2-layer decoders, they
achieve comparable performance with the model
6-6 and obtain around a 1.8 times speedup at in-
ference time. We think the improvement is mainly
coming from the better knowledge transfer among
similar languages (in one language family). In or-
der to understand this further, we plot the BLEU
score difference between models 10-2-EACH and
10-2-FAM on TED8-Related in Figure 3.

We find that the major improvement of model
10-2-FAM over 10-2-EACH is from the low re-
source languages which means the high resource
languages help their relevant low resource lan-
guages effectively.

Language embedding-based assignment (EMB)
For the fair comparison, languages are also grouped
into the same number of language families accord-
ing to language embeddings from the well-trained
baseline model 6-6. Grouping results are listed
in the Appendix C. We first find that language

embedding-based grouping method is able to group
similar languages together, showing the ability of
language embeddings to effectively capture lan-
guage characteristics during training. For exam-
ple, on TED8-Related, the language embedding
achieve the same grouping result as the language
family-based one shown in Table 1. The language
embedding-based assignment method achieves sim-
ilar results compared to the language family-based
one and effectively improve the performance of the
baseline model.

Self-taught language assignment (ST) In this
method, the model tries to assign target languages
to multiple decoders automatically and there is
no need having any prior knowledge (linguistic
families) or well-trained models (language embed-
dings). From the rows 7 vs. 2 and 13 vs. 8 in
Tables 3 and 4, our self-taught method improves
around 1 BLEU score over the baseline. It also
achieves similar results compared with the lan-
guage family (embedding)-based language assign-
ment methods, demonstrating the effectiveness of
this method.

5 Analysis and Discussion

5.1 Multiple decoders for various layer
allocations

In our main experiments, we use multiple very shal-
low decoders (i.e., 1 and 2-layer decoders) because
there is a clear performance drop when using a sin-
gle decoder with this configuration for one-to-many
translation compared with the standard transformer
(6-6), and compared to deeper decoders, employing
multiple 1- or 2-layer decoders keeps the number
of parameters manageable at training time. Never-
theless, it will be meaningful to explore the effect
of multiple decoders on various layer allocations.
Considering the model size and tractable training
time, we only conduct experiments on TED8 cor-
pora and the results are shown in Figure 4. On each
line (the same language assignment method), the
deeper decoders achieve better performance and
the shallower decoder has lower latency. Moreover,
if we compare language family-based assignment
and the baseline models, given the same decod-
ing speed at inference time, the former one con-
sistently improve the performance with the same
decoding speed at inference time. And with the
similar performance, e.g., 10-2-FAM and 6-6, our
best multiple shallow decoder models have much
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Figure 4: Multiple decoders with various layer allocations of Transformer on ML50, TED8-Related and TED8-
Diverse corpora. X-Y denotes X and Y layers in the encoder and decoder respectively. ’BASE’ denotes the shared
decoder model.

lower latency.

5.2 Speed-accuracy trade-off in multilingual
machine translation

From the above experiments and findings, in the
one-to-many translation, the DESD framework ob-
tains superior speed-accuracy trade-off. For ex-
ample, the model with 10 encoder layers and 2
decoder layers obtain slightly better accuracy and
a 1.8x speedup.

Under the one-to-many setting, multiple shallow
decoders are needed to mitigate the performance
drop of the DESD model. And the crucial part
is to group languages with similar features to one
decoder to obtain the better knowledge transfer
among languages (our FAM, EMB and ST meth-
ods). With this, our DEMSD model with multi-
ple 2-layer decoder is capable of achieving similar
performance and a 1.8x speedup compared to the
standard transformer.

6 Related Work

Speed and accuracy are two important metrics to
evaluate a machine translation system. In this
work, we mainly discuss the transformer architec-
ture (Vaswani et al., 2017). A number of works
have explored various ways to improve its infer-
ence speed. Kim et al. (2019) adopt shallow de-
coder and layer trying to speed up the inference on
CPUs. Shi and Knight (2017) and Senellart et al.
(2018) employee vocabulary reduction to speed up
the softmax layer. Li et al. (2020) employ a latent
depth transformer model which prune layers during
inference time to reduce the inference cost. There

are also some works optimizing attention computa-
tions to speed up the inference speed (Zhang et al.,
2018; Kitaev et al., 2020; Katharopoulos et al.,
2020; Chelba et al., 2020). Recently, Kasai et al.
(2020) places more capacity to the encoder side
and keep an extremely shallow (one-layer) decoder
to achieve a superior speed-accuracy trade-off.

Multilingual neural machine translation
(MNMT) is an attractive field recently (Firat
et al., 2016; Ha et al., 2016; Johnson et al., 2017)
because MNMT tries to employ one model to
translate more than one language pair, even
including ones unseen during training (zero-shot
translation). Knowledge transfer among languages
boosts the performance of low-resource languages.
However, many works (Arivazhagan et al., 2019;
Zhang et al., 2020; Aharoni et al., 2019) have
shown the capacity bottleneck of translation when
modeling many languages. Therefore, before
simply stacking more layers in the encoder and
decoder, it is crucial to first understand how to
balance the speed and accuracy given a fixed
capacity budget. Therefore, in this work, we try to
understand various capacity allocations to achieve
the best speed-accuracy trade-off.

7 Conclusion

In this work, we study speed-accuracy trade-offs
using various layer configurations for multilingual
neural machine translation. We find that for many-
to-one translation, deep encoder and shallow de-
coder (DESD) models improve decoding speed
while maintaining translation quality with the same
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model capacity. However, for one-to-many trans-
lation we do observe a drop in quality when the
decoder depth is reduced. To mitigate the per-
formance drop of DESD models in one-to-many
translation, we proposed using a shared encoder
and multiple shallow decoders (DEMSD). Our best
DEMSD models with 2-layer decoders are capa-
ble of speeding up decoding by 1.8 times while
achieving the same quality compared to a standard
transformer.

Our work can be combined with techniques men-
tioned in Section 6 such as optimized attention
computation, vocabulary reduction, knowledge dis-
tillation, etc. We expect that these combinations
will further improve the decoding speed and obtain
a better speed-accuracy trade-off. This work can
also be extended to other encoder-decoder applica-
tions beyond translation, such as question answer-
ing, dialogues, and so on. We will explore these
directions in the future work.
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Language Family Languages

INDO-IRANIAN hi, hr
SLAVIC mk, bs, bg

KOREAN ko
HELLENIC el
ROMANCE fr

Table 5: Language families in the TED8-Related cor-
pus.

A Training details of DESD model

In order to explore how DESD models work on mul-
tilingual machine translation, we train transformer-
based models with various layer allocations on
three multilingual machine translation corpora,
ML50, TED8-Related and TED8-Diverse. For the
fair comparison, the training process is the same
across all models.

On ML50, we employ the standard transformer-
base model: 8 attention heads per layer, 512
model dimensions, 2048 hidden dimensions and
0.1 dropout. All models are trained for 100,000
with batches of 64k tokens using Adam and 0.1
label smoothing. The learning rate goes to 1e−3
within 4,000 steps,and then decays with the inverse
square-root schedule.

On TED8 corpora, following (Wang et al., 2020),
a smaller transformer model is adopted, i.e., 4 atten-
tion heads per layer, 512 model dimensions, 1024
hidden dimensions and 0.3 dropout. All models are
trained for 40,000 with batches of 16k tokens using
Adam and 0.1 label smoothing. The learning rate
goes to 2e−4 within 4,000 steps, and then decays
with the inverse square-root schedule.

B Language family assignment results

In Table 5, we show the language family-based
assignment result on TED8-Diverse. Since this cor-
pus is collected without considering relatedness,
some groups just have one language. But its multi-
ple decoders model improves the accuracy, show-
ing the effectiveness of this method.

The language families in ML50 is shown in Ta-
ble 6.

C Language embedding assignment
results

On TED8-Related, we obtain the same language as-
signment results as the language family-based one.

Language Family Languages

DRAVIDIAN ta, ml, te, vi
GERMANIC de, nl, sv, af

INDO-ARYAN hi, si, ne, ar, ur, mr, gu, bn
IRANIAN ps, fa
CHINESE zh
BALTIC lv

AUSTROASIATIC km, id, xh, he
JAPONIC ja

KOREANIC ko
KRA-DAI th, my
POLLSH pl

ROMANCE fr, es, lt, ro, it, pt, gl
SLAVIC ka, mn, cs, ru, hr, uk, mk, sl
TURKIC tr, kk, az
URALIC fi, et

Table 6: Language families in the TED8-Related cor-
pus.

On TED8-Diverse, the result of language embed-
ding assignment is pretty similar to the language
family assignment result (Table 7. The only differ-
ence is that language bg is grouped with language
mk. We think this is because the language embed-
ding not only contains the linguistic feature but the
data feature as well.

Group Id Languages

0 hi, ko
1 mk, bg
2 ko, bs
3 el
4 fr

Table 7: Language embedding-based language assign-
ment result on the ML50 corpus.
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Group Id Languages

0 ta, ml, te
1 de, nl, af
2 hi, si, ne, ur, mr, gu, bn
3 ps, fa
4 zh
5 lv
6 km, id, xh, he
7 ja
8 ko
9 th, my, vi
10 pl, sv, ar
11 fr, es, lt, ro, it, pt, gl
12 ka, mn, cs, ru, hr, uk, mk, sl
13 tr, kk, az
14 fi, et

Table 8: Language embedding-based grouping results
on ML50.


