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Abstract
We introduce NLQuAD, the first data set with
baseline methods for non-factoid long ques-
tion answering, a task requiring document-
level language understanding. In contrast
to existing span detection question answering
data sets, NLQuAD has non-factoid questions
that are not answerable by a short span of text
and demanding multiple-sentence descriptive
answers and opinions. We show the limitation
of the F1 score for evaluation of long answers
and introduce Intersection over Union (IoU),
which measures position-sensitive overlap be-
tween the predicted and the target answer
spans. To establish baseline performances, we
compare BERT, RoBERTa, and Longformer
models. Experimental results and human eval-
uations show that Longformer outperforms the
other architectures, but results are still far be-
hind a human upper bound, leaving substan-
tial room for improvements. NLQuAD’s sam-
ples exceed the input limitation of most pre-
trained Transformer-based models, encourag-
ing future research on long sequence language
models.1

1 Introduction

Over the last few years, there have been remark-
able improvements in the area of Machine Reading
Comprehension (MRC) and open-domain Question
Answering (QA) due to the availability of large
scale data sets such as SQuAD (Rajpurkar et al.,
2016) and pre-trained language models such as
BERT (Devlin et al., 2018). Although non-factoid
questions represent a large number of real-life ques-
tions, current QA data sets barely cover this area.
The reason is that context passages in existing QA
data sets are mostly very short and questions mostly
factoid, i.e., can be answered by simple facts or
entities such as a person name and location (Juraf-
sky and Martin, 2019). Little attention has been

1Dataset and Models: github.com/asoleimanib/NLQuAD

Question: How are people coping in the lockdown?

Headline: China coronavirus: Death toll rises as more
cities restrict travel

Document: China has widened its travel restrictions in
Hubei province - the centre of the coronavirus outbreak
- as the death toll climbed to 26. The restrictions will
affect at least 20 million people across 10 cities, includ-
ing the capital, Wuhan, where the virus emerged. On
Thursday, a coronavirus patient died in northern Hebei
province - making it the first death outside Hubei. [...]
We now know this is not a virus that will burn out on its
own and disappear. [...] And we still don’t know when
people are contagious. Is it before symptoms appear,
or only after severe symptoms emerge? One is signifi-
cantly harder to stop spreading than the other. [...] One
doctor, who requested anonymity, describes the con-
ditions at a hospital in Wuhan. [...] “I was planning
to stay in my apartment because I’m scared to go to
the gym, and I’m scared to go to out in public, and
not many people are willing to go out.” (141 words).
Vietnam and Singapore were on Thursday added to the
nations recording confirmed cases, joining Thailand, the
US, Taiwan and South Korea. [...] Taiwan has banned
people arriving from Wuhan and the US state department
warned American travellers to exercise increased caution
in China. (document length: 921 words)

Figure 1: A question-answer pair in NLQuAD. QA
models must predict the answer span within the context
document. The correct answer span is bolded. We ex-
tract questions and answers, respectively, from the sub-
headings and the sub-section bodies from real-word En-
glish news articles. Two other questions based on the
same article: Can the Coronavirus be stopped? What’s
the global situation?

paid to non-factoid and open-ended questions that
require complex answers such as descriptions or
opinions (Hashemi et al., 2020). Answers to non-
factoid questions extend to multiple sentences or
paragraphs having few words overlapping with the
question (Cohen and Croft, 2016). Non-factoid QA
facilitates document assistance systems, where for
example, journalists can seek assistance to high-
light relevant opinions and interpretations. It can
further motivate more research on long sequence

https://github.com/asoleimanib/nlquad
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language models. Therefore, a high-quality data
set in this area is clearly desired.

To support research towards non-factoid and
long QA tasks and to address the existing shortcom-
ings as identified above, we have built NLQuAD,
a non-factoid long question answering data set.
NLQuAD contains 31k non-factoid questions and
long answers collected from 13k BBC news articles.
We extract questions and answers from the articles’
sub-headings and the following body paragraphs
of the sub-headings (see Figure 1).

Questions in NLQuAD are not answerable by
a short span of text within the documents. This
is in contrast to existing long-context but factoid
QA data sets such as NewsQA (Trischler et al.,
2017), TriviaQA (Joshi et al., 2017), NarrativeQA
(Kočiský et al., 2018), DuoRC (Saha et al., 2018),
HotpotQA (Yang et al., 2018), and Natural Ques-
tions (Kwiatkowski et al., 2019). Although these
data sets contain long documents, questions are
answerable by short entities or a span of entities.

In particular, Natural Questions covers two types
of short and long answers. However, due to its fac-
toid questions, most long answers are still sections
containing exactly the short answers and so are triv-
ial (e.g., “Where is the world’s largest ice sheet...?”,
Short: “Antarctica”; Long: “The Antarctic ice sheet
is the largest single mass of ice on Earth...”). Fur-
thermore, although a small portion (13%) of Nat-
ural Questions samples have only long answers,
they are still spans of simple facts. For example,
“Who is the author of the book Arabian Nights?”
has no short answer simply because there are mul-
tiple authors: “The work was collected over many
centuries by various authors, translators...”. In con-
trast, we address non-factoid questions requiring
complex answers like opinions and explanations.
NLQuAD’s answers are open and not predefined.
Figure 3 and Table 3 present our question types.
NLQuAD’s questions are also not self-contained.
For example, “How are people coping in the lock-
down?” or “What’s the global situation?” cannot be
answered without the context from the document
(see Figure 1). Section 3.2 discusses our question
types in detail.

In most existing QA data sets such as SQuAD,
crowd-workers generate questions based on pro-
vided short passages and extract answers from the
passages (Rajpurkar et al., 2016). This method of
question generation can make QA samples trivial
because models can simply detect the most related

span to the question by guessing based on shal-
low pattern matching (Kočiský et al., 2018). In
contrast, all annotations in NLQuAD are done au-
tomatically and directly based on the news articles
themselves. NLQuAD, unlike MS MARCO (Ba-
jaj et al., 2016) and ELI5 (Fan et al., 2019), does
not use information retrieval (IR) methods to col-
lect supporting documents. Retrieved documents
in these data sets are not guaranteed to contain all
facts required to answer the question or they oc-
casionally just contain information related to the
question but no answers.

NLQuAD requires document-level language un-
derstanding. With an average document length and
answer length of 877 and 175 words, respectively,
it exceeds the maximum input length of the state
of the art QA models such as BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019) due to their
memory and computational requirements. Thus,
training and evaluating the (document, question,
answer) tuples is impossible using such models in
an end-to-end manner. It is worth noting that it is
also harder to perform pre-selection methods be-
fore the final span detection because our answers
are long. Meanwhile, most of our questions are not
self-contained. For example, to answer the ques-
tion “How are people coping in the lockdown?”
(Figure 1), the system needs to read the document
to interpret the concept of “lockdown” and then
locate the information regarding the people’s be-
haviour.

We also show the shortcomings of the F1 score
and ROUGE-N scores in evaluating long sequences.
There is a higher chance of overlap between the
word N-grams in two long sequences causing F1
and ROUGE-N to over-estimate the performance.
Therefore, we propose to use Intersection over
Union (IoU) measuring position-sensitive overlap
between two spans.

In summary, our contributions are as follows: (1)
We introduce a new data set for non-factoid long
QA that to the best of our knowledge is the first
data set requiring long answer span detection given
non-self-contained and non-factoid questions; (2)
We show the limitations of the F1 score in evalu-
ating long answers and propose a new evaluation
metric; (3) To establish baseline results, we exper-
iment with three state-of-the-art models: BERT,
RoBERTa, and Longformer, and compare them
with human performance. To handle the input
length limitations of BERT and RoBERTa, we pro-
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Avg # Words
data sets Que. Doc. Ans. QA Type Samples
SQuAD 10 117 3 Factoid Span Detection 150k
NewsQA 8 616 4 Factoid Span Detection 100k
TriviaQA 14 2895 2 Factoid Span Detection 95k
NarrativeQA 10 656 5 Factoid Span Detection 47k
DouRC-Self 9 591 3 Factoid Span Detection 186k
DouRC-Pharaphrase 9 1240 3 Factoid Span Detection 186k
HotpotQA 18 917 2 Factoid Span Detection 113k
Natural Questions 9 7360 192 Factoid Span Detection 307k
DuReader 5 396 67 Factoid & Non-Factoid Span Detection 200k
DQA N/A N/A 54 Factoid & Non-Factoid Span Detection 17k
MS MARCO 6 56 14 Answer Generation 183k
ELI5 42 858 131 Answer Generation 272k
NLQuAD 7 877 175 Non-Factoid Span Detection 31k

Table 1: Comparison of NLQuAD with SQuAD, MS MARCO, and long-context QA data sets.

pose to train these models in a sliding-window ap-
proach; (4) We finally show that the state-of-the-art
models have limited performance in the non-factoid
long QA task.

2 Existing data sets

Existing large-scale QA data sets can be catego-
rized based on their context passage length in
two groups: short-context QA, i.e., data sets with
paragraph-level context, and long-context QA, i.e.,
data sets with multiple-paragraph or document-
level context. Long-context QA can potentially
include questions demanding long answers. In
this section, we only review QA datasets. How-
ever, it is worth noting that very recently, (Tay
et al., 2020a) introduced a unified benchmark using
different tasks for evaluating model quality under
long-context scenarios.

2.1 Short-Context Question Answering
SQuAD (Rajpurkar et al., 2016) is a factoid span
detection data set with short answers. Crowd-
workers generated the questions given a set of arti-
cles. DROP (Dua et al., 2019) makes the problem
more challenging by adversarially-created ques-
tions requiring discrete reasoning over the text.
SQuAD and DROP use Wikipedia pages as context
passages whereas SearchQA (Dunn et al., 2017)
uses IR approaches to collect context passages.

Answer generation based on a set of passages is
another approach to address this task. MS MARCO
(Bajaj et al., 2016) consists of real-world search
queries and retrieved documents corresponding to
the queries.

There are also different types of QA data sets
such as Antique (Hashemi et al., 2020), which is a
data set for answer retrieval for non-factoid ques-

tions. There is also a range of multiple-choice QA
tasks such as RACE (Lai et al., 2017), ARC (Clark
et al., 2018), SWAQ (Zellers et al., 2018), and COS-
MOS QA (Huang et al., 2019) that are clustered
together with the short-context QA data sets.

2.2 Long-Context Question Answering

Factoid QA has been applied to longer documents,
however, the nature of factoid questions limits an-
swers to short texts. NewsQA (Trischler et al.,
2017), TriviaQA (Joshi et al., 2017), NarrativeQA
(Kočiský et al., 2018), and DuoRC (Saha et al.,
2018) fall into this category and their documents
are extracted from news articles, stories, and movie
plots, respectively. On the other hand, DQA (ter
Hoeve et al., 2020) is a document-centred QA data
set aimed at document assistance systems. Along
with Yes/No questions, it also includes non-factoid
questions with relatively long answers. How-
ever, the questions are generated by crowd-workers
based on a small set of documents.

DuReader (He et al., 2018) consists of real-word
Chinese queries and corresponding retrieved doc-
uments. It contains both factoid and non-factoid
(40%) questions and consequently has longer aver-
age answer length than pure factoid datasets.

The multi-hop QA task, requiring multi-hop rea-
soning over multiple paragraphs, can also be con-
sidered as long-context QA if models process para-
graphs together. HotpotQA (Yang et al., 2018) is a
multi-hop data set, but the answer length of its fac-
toid questions is as limited as that of short-context
QA data sets.

Natural Questions (Kwiatkowski et al., 2019) is
a factoid QA task with much longer documents and
two types of answer lengths. It consists of factoid
questions, retrieved Wikipedia pages, and short
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Number of QA pairs 31k
Number of Documents 13k
Number of Unique Questions 24k
Avg. Document Length (Word) 876.8
Avg. Answer Length (Word) 174.6
Avg. Question Length (Word) 7.0
Avg. Document Length (Sentence) 38.7
Avg. Answer Length (Sentence) 7.5
Avg. Question Length (Sentence) 1.0
Avg. Question per Document 2.4

Table 2: NLQuAD: data set statistics.
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Figure 2: Distribution of the number of words in docu-
ment, question and answer.

answers (yes/no, entities) as well as long answers
(bounding boxes with the information to infer the
answer). However, due to the nature of factoid
questions, the majority of long answers are sections
containing exactly the short answer or simple facts.

ELI5 (Fan et al., 2019) consists of real-world
questions with answers provided by the Reddit
community. The task is to generate answers given a
set of documents retrieved from the Web. However,
the documents are not guaranteed to completely
address the questions. Furthermore, evaluation
metrics for sequence generation tasks such as the
ROUGE score (Lin and Och, 2004) are far from
perfect to assess the quality of generated answers.

Table 1 compares existing long-context question
answering data sets along with SQuAD and MS
MARCO. We report the average length for data
sets with different types of answers.

3 Data Set Design

NLQuAD consists of news articles as context doc-
uments, interrogative sub-headings in the articles
as questions, and body paragraphs corresponding
to the sub-headings as contiguous answers to the
questions. We automatically extract target answers
because annotating for non-factoid long QA is
rather challenging and costly. To ensure the qual-

ity of answers in addition to the initial investiga-
tions, we perform human evaluations (Section 5.3).
We choose the BBC news website as the resource
of our documents and the question-answer pairs,
mainly because its articles contain a considerable
amount of high-quality question-like sub-headings
which are suitable for the QA task.

NLQuAD’s characteristics make it an appealing
and challenging data set for the non-factoid long
QA task: Its context documents are long, and its
questions are non-factoid in a way that cannot be
answered by single or multiple entities. The ques-
tions are addressed by more than seven sentences
on average. Meanwhile, it covers a wide range of
topics, making it an open-domain QA data set.

The BBC news articles typically follow a spe-
cific template. They begin with an introductory
section consisting of news summaries (Narayan
et al., 2018) and one or more sections accompanied
by sub-headings. Each section contains multiple
short to medium-length paragraphs. We remove
the template and section break-lines to prevent re-
vealing possible answer boundaries.

3.1 Data Curation

We exploit Wayback Machine,2 a digital archive of
the Web, and Wayback Machine Scraper3 to scrape
the article archives. Links in the scraped pages
are used to collect additional pages from the orig-
inal website. We scraped the English BBC news
website from 2016 to 2020 as a limited number
of questions can be found in articles before 2016.
Only textual information is kept and we strip away
multimedia objects and hyperlinks outside of the
body of the articles. Duplicate documents are re-
moved and questions with bullet list answer types
are discarded. We detect interrogative sub-headings
by checking if they end with a question mark.

3.2 Data Set Statistics

NLQuAD contains 31k non-factoid questions
based on 13k supporting documents from news
articles. Table 2 shows the data set statistics. We
randomly partition the data set into training (80%),
development (10%), and evaluation (10%) sets.

While NLQuAD has long documents and long-
answer QA pairs, the histograms in Figure 2 indi-
cate the wide range of samples. Figure 3 presents a
visualisation of the distribution of question types

2archive.org/web
3github.com/sangaline/wayback-machine-scraper

https://archive.org/web/
https://github.com/Sangaline/Wayback-Machine-Scraper
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Figure 3: Distribution of trigram prefixes of questions
in NLQuAD. Empty portions indicate suffixes with
small percentages. NLQuAD covers a wide range of
non-factoid question types.

What How Why
is the background... did the attack... is the US...
is the latest... did we get... is this happening...
is the reaction... did it come... is there a...
is happening in... does the US/UK... are there protests...
is in the... does it work... are the fires...
are the allegations... has the government... did the US...
did the court... have the authorities... was the vote...
happened in the... do you know... does this matter...
has the reaction... is the shutdown... has the US...
do we know... many people are... do not we...

Table 3: Top 4-grams prefixes of questions in
NLQuAD. Even ’What’ questions are non-factoid and
need longer answers (descriptions or opinions)

in terms of their first three tokens. Table 3 also lists
high frequency examples of “what”, “how” and
“why” questions. NLQuAD has a large percentage
of “how” and “why” question types where also the
“what” examples are non-factoid and consequently
require longer explanations as answers.

We manually investigated 100 randomly sam-
pled question-answer pairs from the NLQuAD
training set and find that 87% of the questions are
not self-contained and require additional contex-
tual information to be understood or disambiguated.
Most of the answers consist of explanations, de-
scriptions, or opinions, and only 2% of the ques-
tions can be answered by a short span of text.

4 Baseline Models

To investigate the difficulty level of NLQuAD for
state-of-the-art QA systems and to establish base-
line results, we evaluate the performance of BERT

(Devlin et al., 2018), RoBERTa (Liu et al., 2019),
and Longformer (Beltagy et al., 2020). Longformer
is a scalable model for processing long documents
and has been used for long sequences such as doc-
ument classification (Beltagy et al., 2020) and doc-
ument re-ranking (Sekulić et al., 2020). We refer
readers to Tay et al. (2020b) for a detailed survey on
efficient transformers. We train these Transformer-
based (Vaswani et al., 2017) models to predict the
span of the answer in a context document given a
question and document.

4.1 BERT and RoBERTa

The BERT QA model concatenates question and
document pairs into a single sequence and predicts
the answer span by a dot product between the fi-
nal hidden vectors, a start vector and an end vec-
tor (Devlin et al., 2018). Due to the memory and
computational requirements, BERT can encode se-
quences with a maximum length of 512 tokens that
is less than the average sample length in NLQuAD.
Therefore, we adopt a sliding window approach.
We split the samples into segments using a sliding
window of 512 tokens and a stride of 128 tokens.
Each segment is augmented with its correspond-
ing question. The segments can include no answer,
a portion of the answer, or the entire answer. We
train BERT on the segments independently. Finally,
the predicted spans corresponding to a single sam-
ple are aggregated to predict the final span that is
the span between the earliest start position and the
latest end position. The output is considered empty
when all segments have empty spans.

RoBERTa has the same model architecture and
input length limitation as BERT but with a robustly
optimized pre-training scheme allowing it to gener-
alize better to downstream tasks such as QA (Liu
et al., 2019). We apply the same sliding window
approach for RoBERTa.

4.2 Longformer

In order to process the question and entire docu-
ments at the same time, we use the Longformer
model. It employs an attention mechanism scaling
linearly with the sequence length which enables
Longformer to process up to 4,096 tokens. It uses
multiple attention heads with different dilation con-
figurations to attend to the entire sequence and
includes global attention to question tokens in the
sequence. Question and document pairs are packed
together into a single sequence without having to
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Figure 4: Comparing F1, ROUGE-N and IoU. Left/Middle: All scores behave similarly in the higher values,
but F1 and ROUGE-N over-estimate the performance in the lower IoU values due to a higher chance of overlap
between the bag of words, n-grams, or longer LCSs in the prediction and target spans. The dashed line shows
y = x. Right: F1 and ROUGE-N over-estimate more in samples with longer answers. Results are plotted for the
Longformer on the development set.

use sliding windows and the answer span is calcu-
lated by a dot product (Beltagy et al., 2020).

5 Experiments

5.1 Evaluation Metrics

Exact Match (EM) and the macro-averaged F1
score are the two main evaluation metrics in the
span detection QA task (Rajpurkar et al., 2016).
Exact Match determines if the prediction exactly
matches the target which can be a too strict crite-
rion for long answers. The F1 score measures the
overlap between the words in the prediction and the
target. It treats sequences as a bag of words. Un-
fortunately, in long answers, it is highly likely that
a random, long span shares a considerable number
of tokens with the target span.

The ROUGE-N scores (Lin and Och, 2004),
which are primarily used for sequence generation
evaluation, have the same drawback in long se-
quences. ROUGE-N measures the N-gram overlap
between the prediction and target. High chances of
overlap of unigrams and bigrams in long sequences
cause ROUGE-1 and ROUGE-2 to over-estimate
performance. The same holds for ROUGE-L with
the Longest Common Sub-sequence (LCS) because
of a high chance of longer LCSs between two long
sequences.

To better take sequence similarities into account,
we propose to evaluate models with the Intersection
over Union (IoU) score, also known as Jaccard
Index. IoU is defined as follows:

IoU =
|p ∩ t|
|p ∪ t|

Question: How did we get here?

Headline: Eta disarms: French police find 3.5 tonnes of
weapons

Target Answer: Slowly, and with many false starts.
Eta used parts of south-western France as a base, even
though most of its operations were against Spanish tar-
gets in Spain. The group has, however, killed some
French policemen, but mostly during police raids on
members of the group. Etaś first ceasefire was in 1998,
but collapsed the following year. A similar declaration
in 2006 only lasted a matter of months, ending when Eta
bombed an airport car park, killing two people. Four
years later, in 2010, Eta announced it would not carry
out further attacks and in January 2011, it declared a
permanent and “internationally verifiable” ceasefire but
refused to disarm. In recent years, police in France and
Spain have arrested hundreds of Eta figures and seized
many of its weapons. Etaś political wing, Herri Bata-
suna, was banned by the Spanish government, which
argued that the two groups were inextricably linked.

Prediction: The group was set up more than 50 years
ago in the era of Spanish dictator General Franco, who
repressed the Basques politically and culturally. Eta’s
goal was to create an independent Basque state out of
territory in south-west France and northern Spain. Its
first known killing was in 1968, when a secret police
chief was shot dead in the Basque city of San Sebastian.
France and Spain refuse to negotiate with Eta, which is
on the EU blacklist of terrorist organisations.

Figure 5: A prediction span that is semantically differ-
ent from the target span but has a F1=30% (Prec.=43%,
Rec.=23%) and IoU=0. Red shows the overlapping
words in the prediction span with the target. Articles
(a, an, the) and punctuations are discarded before over-
lapping calculation. (ROUGE-1=32%, ROUGE-2=4%,
ROUGE-L=24%)

where p and t and are the predicted and target
contiguous intervals over the context document,
containing the positions of the tokens. Intersec-
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Method EM Prec. Rec. F1 IoU
BM25L 0.03 29.66 83.37 41.86 23.28
BM25L-oracle 12.03 50.44 51.18 50.30 29.16
Random Span 0.00 28.43 78.40 39.91 20.67
First Span 0.00 25.40 72.30 36.02 15.70
Last Span 0.03 29.38 83.90 41.77 23.63

Table 4: Ranking results on the development set. BM25L performs similar to selecting the last 512 tokens in the
context document as the answer. BM25L-oracle knows the target answer span size.

Method EM Prec. Rec. F1 IoU
BERT-base e=2,s=128 23.27 60.28 84.10 64.34 54.04
BERT-base e=1,w,s=128 23.33 59.79 81.50 63.12 53.11
BERT-base e=2,w,s=128 24.53 61.78 83.46 64.90 54.81
BERT-base e=3,w,s=128 22.77 60.24 83.73 63.89 53.49
BERT-base e=2,w,s=256 24.09 61.64 79.08 63.38 53.41
BERT-base e=2,w,s=512 17.87 58.06 66.35 55.98 46.01
RoBERTa-base e=2,s=128 26.18 62.59 82.87 65.25 55.47
RoBERTa-base e=1,w,s=128 25.32 61.76 84.36 65.22 55.28
RoBERTa-base e=2,w,s=128 27.21 62.71 85.34 66.17 56.33
RoBERTa-base e=3,w,s=128 26.65 61.83 84.78 65.55 55.79
RoBERTa-base e=2,w,s=256 27.33 62.21 82.33 66.08 56.23
RoBERTa-base e=2,w,s=512 17.17 62.16 64.71 57.11 47.17
BERT-large e=2,w,s=128 28.54 63.83 84.68 66.95 57.24
RoBERTa-large e=2,w,s=128 30.92 66.74 87.47 69.85 60.56

Table 5: BERT and RoBERTa results on the development set. e=#epoch, w=warm-up over the first 1,000 steps,
s=stride.

tion (p ∩ t = {x|x ∈ p andx ∈ t}) measures the
overlapping interval and union (∪) is defined as
p ∪ t = {x|x ∈ p orx ∈ t}.

Figure 4 (left/middle) compares the F1 and
ROUGE-N scores and IoU for the Longformer
model on the development set. The F1 and
ROUGE-N scores are always higher than IoU, but
the metrics perform similarly in their higher val-
ues. Somewhat surprisingly, the F1 score can be
up to 40% while there is no overlap between the
two spans and IoU=0. We manually inspected the
spans with F1>0 and IoU=0 and saw no signif-
icant semantic similarity between the predicted
answer span and the target span. The same pat-
tern repeats for the ROUGE-N scores. ROUGE-1
similar to F1 can reach 40% while IoU=0, but
ROUGE-2 and ROUGE-L are less prone to such
over-estimation due to lower chance of overlap of
bigrams than unigrams and shorter LCSs in two ran-
dom non-overlapping sequences. Figure 4 (right)
indicates that the F1 and ROUGE-N scores are
higher than IoU for longer answers reiterating the
fact that these scores over-estimate more for longer
sequences. Figure 5 shows two spans in a docu-
ment with high F1 and ROUGE-N percentages, but
different meanings.

5.2 Results and Discussion

We use the BM25L ranking function (Trotman
et al., 2014) to investigate how a basic IR approach
can detect answer spans using TF-IDF features. We
adopt a sliding window approach with a window
size of 512 and a stride of one sentence. We com-
pare BM25L with random window (span) selection
and the first and last window selection in the docu-
ments. Table 4 presents the results of the ranking
functions. In the BM25L-oracle, we set the window
size to the target answer span size. BM25L-oracle
outperforms the other methods but the results are
far from perfect. There is no significant difference
between BM25L and other methods. The results
restate the fact that there is little word overlap be-
tween non-factoid questions and their answers.

We analyze the performance of BERT and
RoBERTa with different hyper-parameters on the
development set in Table 5. Smaller strides, i.e.,
higher overlap between the segments, and warm-up
contribute to better performances. RoBERTa con-
stantly outperforms BERT, which is to be expected
as RoBERTa is optimized robustly during the pre-
training. We use the HuggingFace’s Transformers
(Wolf et al., 2019) code4 and train the base and
large models on 2 and 4 GPUs, respectively. We

4github.com/huggingface/transformers

https://github.com/HuggingFace/Transformers
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Method #Param. EM Prec. Rec. F1 IoU
BERT-base 110M 25.03 60.60 82.48 63.96 53.75
BERT-large 340M 30.29 64.87 84.62 67.91 58.39
RoBERTa-base 125M 29.07 64.02 84.79 67.19 57.65
RoBERTa-large 355M 33.40 67.79 87.56 71.10 62.39
Longformer 149M 50.30 83.92 85.17 81.38 73.57

Table 6: NLQuAD evaluation set results. Longformer surpasses the other models in all the metrics except recall.

have to use a batch size of 12 and 8, respectively,
for the base and large models because of the long
input sequence size and memory limitations.

We use the official AllenAI Longformer code5

to train Longformer on NLQuAD. We use the same
batch size of 12 (batch size of 1 and gradient accu-
mulation over 12 batches) and learning rate warm-
up for the first 1,000 steps. Due to memory re-
quirements, we limit the experiments to only the
Longformer base model (the large model cannot fit
on our GPUs even with a batch size of 1). We ran
the experiments on 2 NVIDIA P40 (24GB GPU
memory) for about one day for 5 epochs. Similarly,
we choose the best epoch based on the performance
on the development set.

Table 6 summarizes the scores obtained by the
baseline systems on the NLQuAD evaluation set.
While Longformer significantly outperforms BERT
and RoBERTa, its performance, particularly in
terms of IoU and EM, is far from perfect. This
demonstrates that NLQuAD and non-factoid QA is
still an open problem for state-of-the-art models.

5.3 Human Evaluation

To ensure that the samples are of high quality, in ad-
dition to the initial investigation and pre-processing
steps, we asked four volunteers to investigate 50
random samples from the evaluation set. They
rated the goodness of answers on a 3-point scale:
(1: Irrelevant answer; 2: Good answer after adding
or removing some sentences; 3: Perfect answer).
The average score is 2.56 indicating the high qual-
ity of NLQuAD’s QA samples.

In order to benchmark human performance, we
asked the four volunteers to answer 50 questions, a
randomly sampled subset of evaluation set. They
were given unlimited time to detect the answers,
but on average, it took them about 270 seconds to
answer a question. Table 7 compares human per-
formance with Longformer and RoBERTa-large on
the same subset. Similar to HotpotQA (Yang et al.,
2018), we estimate the human upper bound by tak-

5github.com/allenai/longformer

Method EM Prec. Rec. F1 IoU
RoBERTa-large 36.00 61.78 87.00 66.41 57.09
Human-AVG 35.50 86.67 68.66 72.52 62.94
Longformer 56.00 78.55 83.69 78.27 70.64
Human-UB 74.00 97.79 94.88 95.49 92.63

Table 7: Comparing human performance with Long-
former and RoBERTa-large on a subset of evaluation
set. UB=upper bound, AVG=average.

Target > Longformer 
 37%
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 61%
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 2%
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Figure 6: Pairwise comparison between the target
spans, Longformer, and RoBERTa’s predicted spans.
X>Y means X is more preferable.

ing the best human answer in terms of our primary
evaluation metric (IoU) for each sample. While
NLQuAD is a challenging task both for humans
and the state of the art QA models, the human up-
per bound performance significantly outperforms
the models. We suspect that the mediocre average
of human performance, considering the high score
of the target answers, might be because volunteers
are not familiar with the articles’ writing style or
they might have become exhausted by reading long
articles.

Furthermore, we asked another volunteer to com-
pare the target answers with the predicted answers
in a pairwise comparison for 100 samples. Fig-
ure 6 shows that the target answers are preferred
in 37% and 64% of cases over the Longformer and
RoBERTa predictions, respectively. The human
evaluation is in line with the results shown in Ta-
ble 6 and Table 7.

https://github.com/allenai/longformer
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Figure 7: Effect of document and answer length on the performances. Left: IoU drops in all models for longer
documents. Middle: RoBERTa and BERT outperform Longformer in longer answers. Right: Longformer has a
bias to predict shorter answers while RoBERTa and BERT predict longer answers. The dashed line means y = x.

5.4 Error Analysis

Figure 7 compares the performance of BERT,
RoBERTa, and Longformer for instances with dif-
ferent document and answer lengths. As expected,
both longer documents and longer answers are
harder for the models. Surprisingly, BERT and
RoBERTa outperform Longformer for longer an-
swers. The same pattern occurs for F1 and EM (not
shown in the figure).

Figure 7 (right) shows that RoBERTa and BERT
behave completely differently compared to Long-
former for longer answer lengths. The former mod-
els have a bias to predict longer spans while Long-
former under-estimates the length of the answer
span. This different behaviour might be due to the
sliding window approach and the prediction aggre-
gation in the RoBERTa and BERT models and the
attention dilation strategy in Longformer.

6 Conclusion

We introduce NLQuAD, a non-factoid long ques-
tion answering data set from BBC news articles.
NLQuAD’s question types and the long lengths of
its context documents as well as answers, make it a
challenging real-world task. We propose to use In-
tersection over Union (IoU) as an evaluation metric
for long question answering. To establish a base-
line performance, we experimented with the BERT,
RoBERTa, and Longformer question answering
models. Longformer outperforms the other meth-
ods with an IoU of 73.57%, but the results show
that the performance of state-of-the-art question
answering systems is far from perfect. We hope
NLQuAD will inspire more research in the area of
document-level language understanding and ques-
tion answering.
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