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Abstract

In this paper we present COCO-EX, a tool
for Extracting Concepts from texts and link-
ing them to the ConceptNet knowledge graph.
COCO-EX extracts meaningful concepts from
natural language texts and maps them to con-
junct concept nodes in ConceptNet, utilizing
the maximum of relational information stored
in the ConceptNet knowledge graph. COCO-
EX takes into account the challenging charac-
teristics of ConceptNet, namely that – unlike
conventional knowledge graphs – nodes are
represented as non-canonicalized, free-form
text. This means that i) concepts are not nor-
malized; ii) they often consist of several differ-
ent, nested phrase types; and iii) many of them
are uninformative, over-specific, or misspelled.
A commonly used shortcut to circumvent these
problems is to apply string matching. We com-
pare COCO-EX to this method and show that
COCO-EX enables the extraction of meaning-
ful, important rather than overspecific or unin-
formative concepts, and allows to assess more
relational information stored in the knowledge
graph. 1

1 Introduction

ConceptNet (Speer et al., 2017) is a semantic net-
work which contains general commonsense facts
about the world, e.g. Birds can fly or Comput-
ers are used for sending e-mails (Liebermann,
2008). It originates from the crowdsourcing project
Open Mind Common Sense (Speer et al., 2008)
that acquired commonsense knowledge from con-
tributions over the web. The current version also
includes expert-created resources such as Word-
Net (Fellbaum, 1998) and JMDict (Breen, 2004),
other crowdsourced resources such as Wiktionary,

1We provide a demo video (https://www.
youtube.com/watch?v=bgqVhE2vR9A&feature=
youtu.be) and the code (https://github.com/
Heidelberg-NLP/CoCo-Ex) for COCO-EX.

knowledge obtained through games with a pur-
pose such as Verbosity, and automatically extracted
knowledge (cf. Speer et al. (2008)). Knowledge
facts in ConceptNet are represented as triples, e.g.
[dog,ISA,domestic animal]. The current version,
ConceptNet 5, comprises 37 relations, such as
USEDFOR, ISA, PARTOF, or LOCATEDAT.

ConceptNet has been proven a useful resource
of background knowledge for various NLP down-
stream tasks, and is thus widely used, e.g., for
reading comprehension (Mihaylov and Frank,
2018), machine comprehension (Wang et al., 2018;
González et al., 2018), dialog modelling (Young
et al., 2018), argument classification (Paul et al.,
2020), textual entailment (Weissenborn et al.,
2018), question answering (Ostermann et al., 2018)
or for explaining sentiment (Paul and Frank, 2019).

As opposed to conventional knowledge bases
such as NELL (Carlson et al., 2010), Freebase
(Bollacker et al., 2008), or YAGO (Nickel et al.,
2012), the nodes in ConceptNet are represented as
non-canonicalized, free-form text. This means that
(I) concept nodes are not normalized: e.g. bake
cake, bake cakes, baking cake, and baking cakes
are represented as distinct nodes; likewise bin bag,
binbag, bin bags, and bin-bag are separate nodes
in ConceptNet. (II) concept nodes often consist of
multi-word expressions, which can be very long
and complex. Often they consist of several nested
phrase types, e.g., buying the ingredients of the
recipe, or a friend was celebrating a birthday. (III)
Since large parts of ConceptNet have been crowd-
sourced, it contains noise (e.g., typos), uninfor-
mative concepts (e.g., there, it’s), or very specific
concepts (e.g., the second concept in the triple:
[compute,HASPROP,more complex than pencil]).

These specific properties lead to a larger amount
of nodes and a substantially sparser graph com-
pared to conventional knowledge bases. This in
turn is challenging for tasks such as knowledge

https://www.youtube.com/watch?v=bgqVhE2vR9A&feature=youtu.be
https://www.youtube.com/watch?v=bgqVhE2vR9A&feature=youtu.be
https://www.youtube.com/watch?v=bgqVhE2vR9A&feature=youtu.be
https://github.com/Heidelberg-NLP/CoCo-Ex
https://github.com/Heidelberg-NLP/CoCo-Ex
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base completion (cf. Li et al. (2016); Saito et al.
(2018); Bosselut et al. (2019); Malaviya et al.
(2020)); the semantic representation of nodes and
edges (Speer and Lowry-Duda, 2017); or the learn-
ing of new relations (dos Santos et al., 2015; Becker
et al., 2019; Trisedya et al., 2019).

Moreover, non-canonicalized nodes become
challenging when merging knowledge bases, as
in Faralli et al. (2020), who introduce a graph
database merging multiple hypernymy graphs ex-
tracted from ConceptNet, DBpedia, WebIsAGraph,
WordNet, and Wikipedia. They find that only 25%
of the edges connect nodes from ConceptNet to
other databases, which can be traced back to the
fact that ConceptNet nodes are non-canonicalized,
as opposed to common knowledge bases.

Finally, free-form concept nodes become prob-
lematic when we aim to project a ConceptNet
subgraph from natural language texts by mapping
phrases from natural language text to nodes in Con-
ceptNet. In recent approaches, simple string match-
ing has been applied to perform such a mapping
(e.g. Lin et al. (2019); Wang et al. (2020)). Given
the non-normalized nature of the concepts in Con-
ceptNet, this can, however, result in an incomplete
and noisy mapping: e.g., if the word “brains” oc-
curs in a text, it can be mapped to the Concept-
Net node brains (which is connected by 131 edges
within ConceptNet), but not to brain (which is con-
nected by 1799 edges). Therefore, a lot of rela-
tional knowledge stored in ConceptNet gets lost
when mapping natural language text to concepts in
ConceptNet via string matching. Moreover, since
ConceptNet contains many nodes that don’t rep-
resent meaningful concepts (e.g. yes, there, it’s,
the), simple string matching can lead to the extrac-
tion of concepts that will most likely be useless for
downstream applications.

Motivated by these observations, we built a Con-
cept Extraction Tool for ConceptNet, CoCo-Ex,
which we present in this paper. COCO-EX is a
tool written in Python 3.6 that selects meaningful
concepts, possibly consisting of multiple tokens
from natural language texts; it maps them to a col-
lection of concept nodes in ConceptNet, utilizing
the maximum of relational information stored in
the knowledge graph. It is thus perfectly suited for
identifying and extracting concepts from natural
language texts and mapping them to ConceptNet,
e.g., to project knowledge subgraphs from texts
(Paul and Frank, 2019), or for detecting and classi-

fying knowledge relations instantiated within texts
(Becker et al., 2019).

We describe our Concept Extraction Tool COCO-
EX in Section 2. In Section 3 we evaluate the bene-
fits of COCO-EX in a practical application scenario,
comparing it to simple string matching, by evalu-
ating the retrieved concepts and their connectivity
both automatically and manually. We conclude
with a summary and results in Section 4.

2 COCO-EX: Extracting Concepts from
Text and Mapping them to ConceptNet

COCO-EX is a pipeline implementation compris-
ing several stages as shown in Figure 1.

In Step 1, we extract candidate phrases from a
given text, which we preprocess in Step 2. In Step
3, we map the preprocessed phrases to ConceptNet
concepts, which we preprocess in the same manner:
We first create a dictionary based on ConceptNet,
where we gather all concepts that are conceptually
related (that is, referring to a similar or the same
entity or event), but represented as distinct nodes.
In this dictionary we then look up the preprocessed
candidate phrases and get all ConceptNet nodes
which contain them. In order to avoid obtaining
conceptually unrelated nodes, in Step 4 we estab-
lish a method that allows us to filter out nodes that
are not similar enough to the candidate phrase using
similarity metrics and vector space representations.

Step 1: Extracting Candidate Phrase Types.
We start by extracting candidate phrases from a
given text using the Stanford Constituency parser
(Mi and Huang, 2015). We extract noun phrases,
verb phrases and adjective phrases.2 We find that
some verb phrases are very long and specific and
therefore unlikely to find exact matches in Concept-
Net (e.g., “be sorted into different wheelie bins”).
Yet, ConceptNet concepts often consist of general
verb-object phrases, such as walk the dog; cook
dinner; bake a cake. To accommodate for this, we
create, for every verbal phrase we extract from the
text, additional versions (i.e., chunks) that exclude
subordinated prepositional phrases and/or noun
phrases (e.g., for “be sorted into different wheelie
bins” we additionally extract “be sorted into” and
“be sorted”). Addressing the fact that nodes in Con-
ceptNet are of different lengths and often consist

2We extract leaves (= tokens) of all subtrees that have
one of the following phrase types or POS-tags: ’NP’, ’VP’,
’ADJP’, ’JJ’, ’JJR’, ’JJS’, ’NN’, ’NNS’, ’NNP’, ’NNPS’,
’VB’, ’VBG’, ’VBD’, ’VBN’, ’VBP’, ’VBZ’.
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Figure 1: Our pipeline for extracting and mapping phrases from texts to nodes in ConceptNet.

of several nested phrases, we keep all the original
complex verbal phrases; the reduced chunks; and
the split-off nested, subordinated phrases, which
we again split into chunks (here: “different wheelie
bins”, “wheelie bins”, and ”bins”).

Step 2: Preprocessing Candidate Phrase Types
and ConceptNet Nodes. Next, we preprocess
the candidate phrases we extracted from the text
to prepare the mapping in Step 3. We apply spacy
(Honnibal and Montani, 2017) to lemmatize the
candidate phrases extracted from the texts, and re-
move articles, pronouns, adverbs, conjunctions, in-
terjections and punctuation. The very same process
we apply in Step 3 to nodes in ConceptNet, which
are not normalized, in order to build a dictionary
from ConceptNet.

Step 3: Matching Candidate Phrase Types to
a Dictionary Based on ConceptNet. We then
map the preprocessed phrases to the preprocessed
ConceptNet concepts as follows: We create a dic-
tionary based on ConceptNet where we collect all
concepts that are conceptually related – in the sense
that they involve at least one common content word
– but are represented as distinct nodes in Concept-
Net. I.e., we aim to subsume, e.g., dog, dogs, nice
dog, and my neighbour’s dog under one entry in the
dictionary (cf. Figure 2). In our dictionary, keys
are lemmatized words contained in concept node
phrases (e.g. 〈dog〉 for the concept my dog), and
the corresponding value assigned to a key is a list
of all ConcepNet nodes that contain this lemma
(e.g. dog, dogs, my dog, my neigbor’s dog), as de-
termined by the lemmatization of the nodes (see
Step 2 for the applied process). Therefore, in our
dictionary all ConceptNet nodes that contain the
same lemma, the lemma of the key, are clustered
together in one entry. Note that we lemmatize the
ConcepNet nodes only for the purpose of mapping
and clustering, while they remain unchanged (in
their original form and inflection) as values in the

dictionary. I.e., we compare a key (lemma) to the
lemmatized version of the concepts, and include all
nodes, or concept phrases in their original, inflected
form, that contain this lemma.

An example of how we create an entry in the
dictionary is given in Figure 2 and Figure 3: for
the key 〈dog〉, all conceptually related nodes are
retrieved from ConceptNet (Figure 2) by matching
the (lemmatized) key and the lemmatized Concept-
Net concepts (Figure 3, left side). All the retrieved
ConceptNet nodes that contain the key lemma in
their lemmatized form are stored as the key’s values
(middle of Figure 3). In case the lemmatized candi-
date phrase from the text contains further lemmas,
we apply the same procedure for each of these, and
construct additional entries, if they have not yet
been created and stored.

Using this dictionary we are now able to assess
the maximum of relational information stored in the
ConceptNet knowledge graph for a given candidate
phrase from a text, since it allows us to jointly look
up the in- and outgoing edges of all values (nodes)
assigned to the same key, e.g., [dogs,ISA,domestic
animal]; [dog,HASPROPERTY,nice]; ..) (Figure
3, right-hand side). In case a candidate phrase
contains multiple lemmas, we collect the union
of ConceptNet nodes defined for the respective
lemmas (keys) as their values, and apply a filtering
step, which we describe below, to select the concept
nodes that best correspond to the complex phrase.

Specifically, when looking up extracted can-
didate phrases that contain a single lemma (e.g.
〈dog〉), we consider the complete list of nodes
stored in the dictionary for that lemma (key) –
that is, all concepts containing (inflected versions
of) 〈dog〉, including also multiword phrases which
are linked with other keys. When looking up ex-
tracted candidate phrases that contain more than
one lemma (e.g. “walk the dog”), we obtain sets
of ConceptNet nodes (values) that are defined for
each (non-stopword) lemma (key) – here: 〈dog〉
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Figure 2: Collecting conceptually related nodes in Con-
ceptNet, here: for the phrase ”the dog”.

and 〈walk〉 – and retrieve all ConceptNet nodes
from their respective list of values. From these
sets, instead of building their union, we construct
their intersection, which yields the set of phrases
from all keys’ values that contain the maximum of
lemmas contained in the candidate phrase.

For our example “walk the dog”, we would ob-
tain the two lemmas 〈walk〉 and 〈dog〉, together
with their values:

〈walk〉 → walk, walks, walking, walking home,
walking a dog, long walk, walk the dog, ... ; and
〈dog〉 → dog, dogs, nice dog, my neigbor’s dog,

walking a dog, walk the dog, ...;
and extract walking a dog and walk the dog that

are contained as values in both keys.
During the mapping process that collects values

(ConceptNet concepts) for the lemmatized keys of
candidate phrases, we are also resolving ambigui-
ties. E.g., the forms fly or flies can be either a noun
or a verb. We resolve this ambiguity by comparing
the POS tags obtained during preprocessing the ex-
tracted candidate phrases to the POS tags that are
associated with concepts in ConceptNet.3 Specifi-
cally, we retrieve POS information for the extracted
candidate phrases by applying the POS tagger im-
plemented in spacy (Honnibal and Montani, 2017)
on the sentence level, while for ConceptNet nodes
we assess the POS labels available as metadata. In
case we find several concepts with the same sur-
face form but different POS tags in ConceptNet
(e.g. fly/noun and fly/verb), we use the POS anno-
tations from the extracted candidate phrases and
from ConceptNet tags to restrict the mapping to
matching POS, hence we do not include any con-
cepts with conflicting POS information in the list

3We find POS information for a majority of concepts con-
tained in ConceptNet, as used in specific tuples. In cases where
this information is not given, we do not apply any filtering.

Figure 3: Example of the ConceptNet Dictionary en-
try for 〈dog〉. Left: lemmatized ConceptNet nodes
(grey) that contain 〈dog〉 (underlined); middle: CN dic-
tionary entry (containing the original CN nodes); right:
relational knowledge (in- and outgoing edges for each
value (CN node) assigned to the key) which can be re-
trieved from ConceptNet based on the dictionary entry.

of values for the phrase’s keys.
To summarize, the dictionary we obtain from

Step 3 allows us to look up concepts for any pre-
processed candidate phrases, and obtain from it
all ConceptNet nodes which contain them or in-
flected versions of them. In case of multiple lem-
mas contained in a candidate phrase, we retrieve
all nodes that contain all lemmas included in the
given phrase, by computing an intersection over the
values associated with all keys (lemmas) evoked
by the phrase.4 Since we lemmatize both the Con-
ceptNet nodes and the extracted candidate phrases
as described above, we maximize the number of
matches, and hence, the associated ConceptNet re-
lation tuples, while selecting maximally specific
nodes. At the same time, since we construct chun-
ked phrases from the extracted concepts, we also al-
low for more constrained matches (limited, e.g., to
single lemmata) with equally constrained Concept-
Net concepts, preventing over-specific phrases and
an ensuing loss of recall. Finally, we apply POS fil-
tering, and hence avoid the retrieval of ConceptNet
concepts that do not match the POS category of the
concepts mentioned in the candidate phrase, rely-
ing on the sentential context of the phrase candidate
for disambiguation.

Step 4: Constraining the Mapping to Concept-
Net Concepts. While in Step 3 we constrain the
selected concept nodes by intersection in case the
phrase candidate contains multiple lemmata, we
still obtain many ConceptNet nodes when mapping
short phrases containing a single content word to
ConceptNet, since we retrieve all nodes that in-
clude the lemma of the candidate phrase. In prac-
tice, this yields a huge set of concepts that contain

4This holds as long as the lemmas identified in the textual
phrases can be identified within ConceptNet’s concept nodes.
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not only this lemma, but many other content words
not present in the candidate phrase – possibly con-
ceptually unrelated nodes that we want to omit. For
example, if the candidate phrase is “dog”, we map
it to the ConceptNet nodes dog and dogs, but also
conceptually not strictly related nodes such as feed-
ing my dogs, dogs are my favourite animals, it’s
raining cats and dogs, etc. We therefore establish a
method that allows us to filter out nodes that are not
similar enough to the candidate phrase, and hence
are assumed to be conceptually unrelated, which
we describe in the following.

We filter the nodes (values) for each lemma (key)
by calculating the similarity between the Concept-
Net concepts and the extracted candidate phrase.
We calculate similarity in terms of length (by token
or char length) and in terms of semantic similarity
(using word embeddings and similarity metrics).
We experimented with different similarity metrics:
we tried Dice Coefficient (Sørensen, 1948), Jac-
card Coefficient (Jaccard, 1902), Minimum Edit
Distance, Word Mover’s Distance (Kusner et al.,
2015), and Cosine Distance, with different similar-
ity thresholds. For the metrics that require word
representations in vector space (Word Mover’s Dis-
tance and and Cosine Distance), we tried differ-
ent embeddings (Numberbatch (Speer et al., 2017),
Word2Vec trained on GoogleNews (Mikolov et al.,
2013), and GloVe (Pennington et al., 2014)), where
we compute representations for multiword terms
by averaging their embeddings. We also consider
differences in phrase lengths: here we compare the
length of the ConceptNet nodes’ concept phrases to
the length of the candidate phrase – by number of
tokens and of characters. E.g. when comparing the
candidate phrase ”my dog” to the nodes (a) dogs
and (b) many dogs, we obtain for (a) a difference
in the number of tokens by 1 and of characters by
1, and for (b) in the number of tokens by 0 and of
characters by 3.

We evaluated the output of several configurations
manually in terms of how well the filtered nodes fit
the extracted candidate phrase, and found the fol-
lowing configurations to yield the highest coverage
and lowest noise: we allow for a maximum token
length difference of 1 and/or a maximum character
difference of 10, and a minimum Dice coefficient
of 0.85. The other configurations are implemented
as well (as command line parameters), so users can
experiment with different settings easily.

Str-Match CoCo-Ex

CommonsenseQA Questions 99,217 88,631
Answers 106,681 116,941

OpenBookQA Questions 38,415 38,485
Answers 53,748 61,313

Table 1: Number of concepts linked to ConceptNet
by simple string matching vs. using COCO-EX. Com-
monsenseQA contains 12,247 questions with 5 answer
choices each, and OpenBookQA provides 6,000 4-way
multiple-choice questions.

3 Applications

Recent approaches that map natural language text
to nodes in ConceptNet apply simple string match-
ing. Wang et al. (2020) for example use Concept-
Net in order to retrieve multi-hop knowledge paths
as background information for improving the task
of question answering. They map concepts that ap-
pear in questions and answers from the two bench-
mark datasets, CommonsenseQA (Talmor et al.,
2019) and OpenBookQA (Mihaylov et al., 2018),
to ConceptNet using plain string matching.

Irrespective of the question answering task, we
want to evaluate the two methods of linking con-
cepts from texts to ConceptNet (plain string match-
ing vs. COCO-EX) by comparing the number of
concepts that could be retrieved from ConceptNet
by both methods, respectively; and by evaluating
the quality of the retrieved concepts, with regard
to their coverage and informativity, as well as the
amount of utilized relational knowledge from the
ConceptNet knowledge graph.

We reimplement the string matching method and
make it comparable to COCO-EX by retrieving all
noun phrases, verb phrases and adjective phrases
and their nested phrases (as we do for COCO-
EX). Additionally, as in COCO-EX, we filter these
phrases by removing articles, pronouns, adverbs,
conjunctions, interjections and punctuation, and
keep the original phrases and the chunked versions.

The counts of concepts retrieved by simple
string matching vs. using COCO-EX are displayed
in Table 1. We find that for the CommonsenseQA
dataset, more concepts are linked to ConceptNet
from the questions when using string matching,
while with COCO-EX we can link more concepts
from the answers (Table 1). For OpenBookQA, the
number of extracted concepts for the questions are
similar for both methods, while again we can link
more concepts from the answers with COCO-EX.

For evaluating concept quality, we set up a
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Str-Matching COCO-EX

CommonsenseQA
Coverage (binary) 17 of 25 (68%) 20 of 25 (80%)
Ratio of Informative (Wanted) Concepts (total and %) 152 of 220 (69%) 190 of 192 (99%)
Connecting Edges of Informative Concepts (total/avg-question) 151,526/6,061 185,663/7,427

OpenBookQA
Coverage (binary) 16 of 25 (64%) 14 of 25 (56%)
Ratio of Informative (Wanted) Concepts (total and %) 92 of 148 (62%) 104 of 145 (72%)
Connecting Edges of Informative Concepts (total/avg-question) 91,938/3,678 110,039/4,402

Table 2: Manual evaluation of linked concepts from 25 questions for each dataset. For each question, our annotators
evaluated if all meaningful concepts were extracted (Coverage; in a binary evaluation setup yes/no); and how many
of the extracted concepts are informative (wanted) (Ratio wanted/wanted+unwanted) . For all informative (wanted)
concepts, we then looked up the number of edges connecting these nodes in ConceptNet (in- and outgoing edges).

small annotation experiment where we provided
our annotators with 50 questions randomly sampled
from CommonsenseQA and OpenBookQA. For
each question, our annotators evaluated whether
all meaningful concepts were extracted (coverage,
in a binary setting (yes/no)); and if/how many in-
formative (and thus, wanted) concepts are among
the extracted concepts (which can be interpreted as
reverse precision).5 For each dataset, two annota-
tors with linguistic background performed annota-
tions. We measure annotator agreement in terms
of Cohen’s Kappa and achieve an agreement of
78%. Remaining conflicts were resolved by an ex-
pert annotator (one of the authors). The number
of concepts that could be accessed in ConceptNet
we evaluate automatically, in terms of the number
of in- and outgoing edges connecting the node(s)
which have been annotated as informative (wanted),
identified by simple string matching vs. all nodes
obtained by COCO-EX through keys and values.

The results of our manual evaluation experiment
are displayed in Table 2. We find that the coverage
(if all meaningful concepts were extracted, evalu-
ated in a binary setting: yes/no) is higher for Com-
monsenseQA when using COCO-EX and higher
for OpenBooksQA when applying string matching.

Next, we evaluate the informativeness of the
extracted concepts. We find that the ratio between
informative (wanted) and uninformative concepts
(unwanted) is much better when using COCO-EX

opposed to simple string matching on both datasets
(cf. Table 2). Finally, we also evaluate the amount
of relational information stored in the ConceptNet
knowledge graph which can be retrieved by looking

5Our annotation manual can be found here: https://
github.com/Heidelberg-NLP/CoCo-Ex/blob/
master/CoCo-Ex_Annotation_Manual.pdf

up in- and outgoing nodes from the nodes rated as
informative. Here we find that with COCO-EX,
much more relational information of ConceptNet
can be accessed, indicating again the superiority of
this method compared to simple string matching.

4 Conclusion

In this paper we presented COCO-EX, a tool for
Extracting Concepts from texts and linking them to
the ConceptNet knowledge graph. As opposed to
the common shortcut method of simply matching
strings from texts to ConceptNet nodes, COCO-
EX extracts meaningful concepts from texts and
maps them to collections of concept nodes in Con-
ceptNet, which enables us to assess the maximum
of relational information stored in the ConceptNet
knowledge graph. COCO-EX takes into account
that concepts in ConceptNet are represented as non-
canonicalized, free-form text and are often com-
plex, noisy, uninformative, and/or over-specific.
We evaluated COCO-EX against the method of sim-
ple string matching, which confirmed our hypothe-
ses that (i) COCO-EX improves the precision of
mapping by enabling the extraction of meaningful,
important rather than overspecific or uninformative
concepts, and (ii) allows to utilize the maximum
of relational information stored in the knowledge
graph, a step towards overcoming the well-known
sparsity issue of commonsense knowledge graphs
such as ConceptNet.
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