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Abstract

Analysis of gaze data behaviour has gained
momentum in recent years for different NLP
applications. The present paper aims at mod-
elling gaze data behaviour of tokens in the
context of a sentence. We have experimented
with various Machine Learning Regression Al-
gorithms on a feature space comprising the lin-
guistic features of the target tokens for predic-
tion of five Eye-Tracking features. CatBoost
Regressor performed the best and achieved
fourth position in terms of MAE based accu-
racy measurement for the ZuCo Dataset.

1 Introduction

Eye-Tracking data or Gaze data compiles
millisecond-accurate records about where humans
look while reading. This yields valuable insights
into the psycho-linguistic and cognitive aspects of
various tasks requiring human intelligence. Eye-
Tracking data has been successfully employed for
various downstream NLP tasks, such as part of
speech tagging (Barrett et al., 2016), named entity
recognition (Hollenstein et al., 2018), sentiment
analysis (Mishra et al., 2018), text simplification
(Klerke et al., 2016), and sequence classification
(Barrett and Hollenstein, 2020) among others. De-
velopment of systems for automatic prediction of
gaze behaviour has become an important topic of
research in recent years. For example, Klerke et al.
(2016) and Mishra et al. (2017) used bi-LSTM and
CNN, respectively for learning different gaze fea-
tures. In the present work, Eye-Tracking features
for words/tokens of given sentences are learned
using Tree Regressors trained on a feature space
comprising the linguistic properties of the target
tokens. The proposed feature engineering scheme
aims at encoding shallow lexical features, possible
familiarity with the readers, interactions of a target
token with other words in its context, and statistical
language model features.

2 Task Setup

The shared task is designed to predict five Eye-
Tracking features namely, number of fixations (nF),
first fixation duration (FFD), total reading time
(TR), go-past time (GP) and, fixation proportion
(fxP). ZuCo Eye-Tracking dataset is used for the
present task (Hollenstein et al., 2021, 2020, 2018).
The dataset contains three subsets corresponding
to Train, Trial and Test which contains 700, 100,
and 191 sentences, respectively. Their respective
token counts are 13765, 1971, and 3554. Each
input token is uniquely represented by a tuple
< sid, wid >, where sid is the sentence_id and
wid is the word_id. Mean Absolute Error (MAE)
is used for evaluation.

3 Feature Engineering

For the above-mentioned task, linguistic features
for a given input token are extracted in order to
encode the lexical, syntactic, and contextual prop-
erties of the input token. Additionally, familiarity
of the input token and its collocation with surround-
ing words is also modelled as explained below.

3.1 Shallow Lexical Features

It is intuitive that the lexical properties of a given
input token have an effect on the amount of time
spent on reading the word. Features, such as Num-
ber of letters (Nlets), vowels (Nvow), syllables
(Nsyl), phonemes (Nphon), morphemes (Nmorph),
and percentage of upper case characters (PerUp) in
the input token are used to model shallow lexical
characterstics of the target token. A feature (Is-
Named) is used to indicate whether the input token
is a Named Entity. The language of etymological1

origin, e.g., Latin, French of the target token is also
considered as a feature, named EtyOrig.

In addition, several Boolean features have been
used for characterization of the input token. The

1https://pypi.org/project/ety/



80

input tokens, which are the last words of the respec-
tive sentences, are suffixed by the string <EOS>.
These are identified by a Boolean feature (IsLast).
The <EOS> string is removed for further feature
extraction. Two Boolean features (IsNumber, Hy-
phen) are used to indicate whether the input token
is numeric, and whether the target token contains
multiple words connected using hyphens, respec-
tively. To indicate that the input token is a possesive
word, a Boolean feature is used (IsPossessive). The
identification has been done with the help of POS
tag of SpaCy library and presence of apostrophe.
A Boolean feature (StartPunct) is used to identify
inputs starting with a puntuation character, these
punctuations are removed for further feature ex-
traction. Furthermore, we have considered two
sentence level features namely, the total number of
tokens in the sentence (LenSent), and the relative
position (Relpos) of the input token in the sentence.

3.2 Modelling Familiarity
In the present work, the familiarity of a token is
modelled using various frequency based features
as described below.

A Boolean feature (IsStopword) is used to indi-
cate whether the token is a stopword or not. It
has been observed that the gaze time for stop-
words, such as a, an, of, is much less in compari-
son with uncommon words, such as grandiloquent
< 457, 20 >, and contrivance < 715, 4 >. This
feature has been extracted using NLTK’s list of
English stopwords.

Corpus based features are used to indicate the
common usage of input tokens. A Boolean fea-
ture (InGoogle) indicates whether the input token
belongs to the list of the 10,000 most common En-
glish words, as determined by n-gram frequency
analysis of the Google’s Trillion Word Corpus2.
Similarly, to indicate the presence of input tokens
in the list of 1000 words included in Ogden’s Basic
English3, a Boolean feature (InOgden) is used.

Frequency based features are also used to model
the familiarity of input tokens. The following
features are used: Frequency of input token in
Ogden’s Basic English (OgdenFreq), Exquisite
Corpus (ECFreq) and, SUBTLEX (SUBTFreq).
Exquisite Corpus4 compiles texts from seven dif-
ferent domains. SUBTLEX contains frequency of
51 million words calculated on a corpus of Movie

2https://github.com/first20hours/google-10000-english
3http://ogden.basic-english.org
4https://pypi.org/project/wordfreq/

Subtitles. Contextual Diversity (ConDiversity) re-
ported in SUBTLEX is also used as a feature. Con-
textual Diversity is computed as the percentage of
movies in which the word appears. Furthermore,
frequency of the input tokens given in the L count
of (Thorndike and Lorge, 1944), and London-Lund
Corpus of English Conversation by (Brown, 1984)
are also used as features (TLFreq, BrownFreq).

The probability of the input token calculated
using a bigram and trigram character language
models are also considered as feature (CharProb2,
CharProb3). The probability is lower for words
where letters have unusual ordering. For ex-
ample, consider the tokens crazy < 350, 3 >
and czar < 525, 28 >, CharProb2(crazy) >
CharProb2(czar) because the letter bigram cr
(cry, crazy, create, cream, secret) is more common
than bigram cz (czar, eczema) amongst English
words. The letter bigram and trigram probabilities
are calculated using letter counts from Google’s
Trillion Word Corpus5. Suppose a word W consist
of N letters W = l1 . . . lN then, the corresponding
feature value is calculated as:

CharProb2(W ) =
1

N − 1

N−1∑
i=1

log10P (lili+1)

CharProb3(W ) =
1

N − 2

N−2∑
i=1

log10P (lili+1li+2)

3.3 Modelling Context
There is a significant variation in the amount of
time spent on comprehending the semantics of a
word in different sentences. Variation in fixation
time for the token early in different sentences is
presented in Table 1. To model this variation, it
is important to include features with respect to the
context of the input word. Both simple Universal
POS tag (UniTag) and detailed Penn POS tag (Pen-
nTag) of the input token extracted using SpaCy
are considered as features. The POS of a target
word depends on the context in which it appears as
shown in Table 2.

Number of synsets (Nsyn), hyponyms (Nhypo)
and hypernyms (Nhyper) extracted from NLTK
WordNet are also used as features. These features
are calculated considering the synsets having the
same POS tag as the input token. The Dependency
tree of a sentence helps to understand the relation-
ship between different words of a given sentence.

5http://norvig.com/ngrams/count_2l.txt,
http://norvig.com/ngrams/count_3l.txt
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id nF FF GP TR fxP
< 252, 3 > 21.91 4.44 7.55 7.08 100
< 618, 5 > 15.33 4.18 4.18 5.28 83.3
< 533, 15 > 9.19 3.03 3.22 3.22 61.1

Table 1: Variation in fixation time for the token early

sid Sentence Uni/Penn
366 After the show was cancelled,

he played a handyman on the NOUN/
series The Facts of Life. NN

460 A classy item by a legend who
may have nothing left to prove VERB/
but still has the chops and VB
drive to show how its done.

Table 2: POS feature for the token show

In this respect, the dependency tag of the input to-
ken with its syntactical head (DepTag) and, POS
tag of the head (HeadPOS) are considered as fea-
tures. Additionally, two features are extracted from
the dependency tree, namely, depth of the input
token in the tree (TokDepth), and the number of
children of the input token (NChild).

3.4 Language Model Features

Statistical n-gram language models help to model
collocation of words in sentences, and to deter-
mine the probability of a sequence of words. In
the present work, we use a trigram language model
trained on the Gigaword corpus6 to extract two fea-
tures (FragScore3, FragScore5) which measure the
language model score of a word sequence contain-
ing the input token and the context words in the
sentence in a window of 3 and 5, respectively.

Suppose the input sentence is denoted by S =
w1w2 . . . wN and wn is the target token where n ∈
1, 2, . . . N . Let P3 denote the trigram language
model probability then,

FragScore3(wn) = log10P3(wj . . . wn . . . wk)

FragScore5(wn) = log10P3(wr . . . wn . . . wt)

where j = max(1, n− 3), k = min(N,n+3),
r = max(1, n− 5) and t = min(N,n+ 5).

We use an n-gram language model to calculate
the conditional probability of a word given the pre-
ceding n-1 words. In particular, two features cor-
responding to the average conditional probabilities

6lm_giga_64k_nvp_3gram.zip

(AvgCondP3,AvgCondP2) have been extracted us-
ing the aforementioned trigram language model
and a bigram model trained on Google’s Trillion
Word Corpus7. For words near the sentence bound-
ary, the average is adjusted accordingly. If P2 de-
notes the bigram language model probability then,

AvgCondP3(wn) =
1

3

n+2∑
k=n

P3(wk | wk−1, wk−2)

AvgCondP2(wn) =
1

2

n+1∑
k=n

P2(wk | wk−1)

Sentences with higher perplexity have uncom-
mon word sequences which may require more time
to comprehend. Perplexity of the sentence calcu-
lated using tri-gram language model is also consid-
ered as a feature (Perplexity).

Perplexity(S) = N

√
1/P3(w1w2 . . . wN )

4 Description of Algorithms

Experiments were conducted using the following
machine learning regression algorithms:

• Partial Least Square Regression (PLS): This
method aims at fitting a linear regression
model by projecting the dependent and inde-
pendent variables into a new space.

• Neural Network (NN): NN based regression
method aims at predicting the value of the
dependent variable as a function of input vari-
ables via a collection of interconnected nodes.

• Decision Tree (DT): The regression model is
built in the form of a tree structure by breaking
the dataset into smaller subsets.

• Random Forest (RF): RF regressor fits a multi-
tude of decision trees on various sub-samples
of the dataset, and uses averaging to improve
accuracy and control over-fitting.

• XGBoost (XG) : Here, weakly learned deci-
sion trees are turned into strong learners by
training upon residuals instead of aggregation
(Chen and Guestrin, 2016).

• Light Gradient Boosting Machine (LG) : This
method uses a histogram-based boosting algo-
rthim which uses a specialised Gradient-based
one-sided sampling of data points of large gra-
dients (Ke et al., 2017).

7http://norvig.com/ngrams/
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• CatBoost (CB): This method takes advantage
of the categorical features which are otherwise
converted to numerical features in traditional
gradient boosting algorithms. CB uses oblivi-
ous trees as base predictors which uses same
splitting criterior accross the entire level of the
tree, and hence are less prone to overfitting
(Prokhorenkova et al., 2018).

Since five target Eye-Tracking metrics had to be
predicted, Multioutput (MO) and Regressor Chain
(RC) algorithms were deployed using sklearn.

5 Experimental Details

The input tokens containing only punctuations were
removed. The Eye-Tracking feature for token ‘&’
is assigned a fixed value 8. For all other punctu-
ation tokens, the assigned Eye-Tracking feature
value is 0. SpaCy9 is used for POS tagging, lemma-
tization, dependency parsing and NER. Stopword
feature, Corpus features and Frequency features as
described in Section 3.2 were extracted after lower
casing and lemmatizing the input token. For RC
the order is tuned between the 120 possibilities and
the max_depth denoted as d, is tuned between 1
to 15. For NN the number of intermediate dense
layers is tuned between 1 to 4, the layer dimension
is tuned between {10, 25, 50, 100, 150, 200, 250,
300, 500} and dropouts is tuned randomly between
0 to 1. ReLU activation function is used in the
intermediate dense layers, batch size is set to 32,
learning rate is set to 0.005, and MAE is minimized
using Adam optimizer (Kingma and Ba, 2015).

6 Results

The individual MAE for the five predicted features
along with overall MAE for various regression tech-
niques are reported in Table 3. For NN, two dense
layers with dimension 100 and 200, respectively
and corresponding dropouts 0.13 and 0.02, respec-
tively were used. In the present work, CB outper-
forms other regression algorithms. This can be at-
tributed to the permutation-driven ordered boosting
technique of CB and effective use of categorical fea-
tures. It can be observed that CB+MO performed
the best on the Test Dataset. CB+RC with order
(0,4,1,2,3) improved the performance for the Trial
Dataset however, it did not have the same effect for
the Test Data. The MAE of the proposed system is
within 0.14 of the top performer.

8mean of Eye-Tracking values of ‘&’ in the training set
9https://spacy.io/

7 Analysis

System predictions are presented in Table 4. The
model had the highest MAE for the token <
824, 16 > which contained alphanumeric charac-
ters because the features failed to capture its proper-
ties. For the token < 900, 9 >, the gold labels are
0, but the system predicts positive values. The true
gaze features nF, GP, and TR for multi-hyphenated
and repeated token, viz. < 874, 20 > is found to
be higher than the predicted values. However, the
prediction of the system for the tokens < 951, 5 >
and < 976, 26 > are close to the true values. The
MAE for the token ‘with’ in sentence 828 is very
low while in sentence 933, it is very high. This
is because there is large variation in the true Eye-
Tracking values while the variation is low in the
predicted values.

To analyze the importance of each feature,
the corresponding feature is eliminated and the
CB+MO model is trained on the reduced feature
space. It was observed that elimination of each in-
dividual feature increased the error and thus, each
feature plays an important role in the overall per-
formance of the system. The MAE on the Trial Set
corresponding to individual features are reported
in Table 5. The feature Relpos, which indicates the
relative position of token in the sentence, emerged
as the most important feature.

8 Conclusion and Future Work

Automatic prediction of Gaze features without hu-
man intervention is important for scalability of
these features for tasks involving large datasets.
The Shared Task aims at prediction of five Eye-
Tracking features for each token of a given sen-
tence. In the present work, a set of linguistic fea-
tures focused on representing the shallow lexical
characteristics of the token, rarity of the token, and
interaction and collocation of the target token with
its context are extracted. CB+MO regressor trained
on the above feature space secured fourth rank on
the Shared Task. Error analysis indicates that there
is high variation of Eye-Tracking features for the
same words in different contexts. However, the
proposed system does not capture this variation. In
future we would like to incorporate more features
in order to represent the context of the target token
more effectively.
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Trial Test
Technique d nF FF GP TR fxP MAE nF FF GP TR fxP MAE
CB+RC 6 3.92 0.64 2.25 1.49 10.7 3.79 4.04 0.68 2.27 1.56 11.3 3.98
(0,4,1,2,3)
CB+MO 6 3.92 0.63 2.27 1.51 10.7 3.81 4.04 0.67 2.25 1.57 11.2 3.95
RF+MO 11 4.03 0.64 2.41 1.56 10.9 3.90 4.21 0.69 2.37 1.64 11.4 4.06
LG+MO 4.04 0.64 2.43 1.56 10.8 3.90 4.10 0.67 2.35 1.59 11.2 3.99
XG+ MO 4.05 0.65 2.40 1.57 10.9 3.92 4.21 0.69 2.40 1.63 11.5 4.09
DT+MO 7 4.32 0.68 2.58 1.70 11.6 4.18 4.51 0.73 2.53 1.78 12.3 4.37
NN 4.65 0.75 2.55 1.77 12.9 4.52 4.90 0.78 2.65 1.89 13.9 4.82
PLS+MO 4.79 0.73 3.10 1.85 13.2 4.74 4.95 0.78 3.21 1.93 13.8 4.93

Table 3: Mean Absolute Error values

Predicted Gold
id word nF FF GP TR fxP nF FF GP TR fxP MAE

< 824, 16 > 111Senator 24.9 4.1 8.7 8.2 88.3 97.7 5.8 33.4 41.1 100 28.8
< 900, 9 > counts.<EOS> 13.6 3.7 16.5 5.3 71.3 0.0 0.0 0.0 0.0 0.0 22.1
< 874, 20 > great-great- 37.8 4.7 17.2 14.8 96.1 86.1 3.8 30.8 31.1 89.7 17.1

great-great-great
< 951, 5 > side-splittingly 42.5 4.9 12.1 15.3 99.8 42.5 4.3 14.3 14.8 100 0.69
< 976, 26 > Rice’s 17.8 4.0 6.4 6.5 83.4 17.2 4.4 6.4 6.4 83.3 0.23
< 828, 9 > with 10.6 2.4 3.2 3.2 56.7 10.3 2.1 3.2 2.7 58.3 0.55
< 933, 5 > with 11.0 2.5 3.4 3.5 58.3 14.9 3.2 7.0 5.1 75.0 5.31

Table 4: System predictions

Feature Group Feature Space MAE Feature Group Feature Space MAE

Shallow Lexical

w/o Nlets 3.8474

Familiarity

w/o IsStopword 3.8158
w/o Nvow 3.8169 w/o InGoogle 3.8190
w/o Nsyl 3.8264 w/o InOgden 3.8177
w/o Nphon 3.8231 w/o OgdenFreq 3.8256
w/o Nmorph 3.8255 w/o ECFreq 3.8173
w/o PerUp 3.8206 w/o SUBTFreq 3.8161
w/o IsNamed 3.8180 w/o ConDiversity 3.8154
w/o EtyOrig 3.8214 w/o TLFreq 3.8118
w/o IsLast 3.8243 w/o BrownFreq 3.8160
w/o IsNumber 3.8209 w/o CharProb2 3.8203
w/o Hyphen 3.8261 w/o CharProb3 3.8236
w/o IsPossesive 3.8176

Context

w/o UniTag 3.8112
w/o StartPunct 3.8183 w/o PennTag 3.8186
w/o LenSent 3.8388 w/o NSyn 3.8194
w/o RelPos 3.8725 w/o Nhypo 3.8201

Language Model

w/o FragScore3 3.8166 w/o Nhyper 3.8233
w/o FragScore5 3.8313 w/o DepTag 3.8206
w/o AvgCondP2 3.8263 w/o HeadPOS 3.8192
w/o AvgCondP3 3.8190 w/o TokDepth 3.8247
w/o Perplexity 3.8169 w/o NChild 3.8178

Table 5: MAE scores for individual feature elimination
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