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Abstract

Several researchers have argued that sentence
comprehension is mediated via a content-
addressable retrieval mechanism that allows
fast and direct access to memory items. Ini-
tially failed retrievals can result in backtrack-
ing, which leads to correct retrieval. We
present an augmented version of the direct-
access model that allows backtracking to fail.
Based on self-paced listening data from in-
dividuals with aphasia, we compare the aug-
mented model to the base model without back-
tracking failures. The augmented model shows
quantitatively similar performance to the base
model, but only the augmented model can ac-
count for slow incorrect responses. We argue
that the modified direct-access model is theo-
retically better suited to fit data from impaired
populations.

1 Introduction

Comprehending a sentence involves building lin-
guistic dependencies between words. In the sen-
tence processing literature, several researchers have
argued that linguistic dependency resolution is car-
ried out via a cue-based retrieval mechanism (Van
Dyke and McElree, 2006; Lewis and Vasishth,
2005). Cue-based retrieval theory assumes that
word representations are retrieved from working
memory via their syntactic and semantic features.
Consider the following sentences:

(1) a. The boy who tickled the girl greeted

the teacher.

b. The boy who the girl tickled greeted
the teacher.

In (1a), the noun boy would be encoded in mem-
ory with features such as [+animate, +subj]. When
the reader reaches the verb tickled, a retrieval is
triggered with retrieval cues that match the features
of boy. At this point in time, boy is the only ele-
ment that matches the retrieval cues of the verb. By

contrast, in (1b), another noun intervenes between
tickled and boy that partially matches the cues set at
the retrieval: girl [+animate, -subj]. The partial fea-
ture overlap causes similarity-based interference
between the two items, making the dependency
more difficult to resolve in (1b) compared to (1a).

Interference effects have been attested in mul-
tiple studies, see for example Jager et al. (2020);
Gordon et al. (2006); Jager et al. (2017); Van Dyke
(2007). One model of cue-based retrieval that
predicts these interference effects is the direct-
access model developed by McElree and colleagues
(McElree, 2000; McElree et al., 2003; Martin and
McElree, 2008). The direct-access model (DA)
assumes that retrieval cues allow parallel access
to candidate items in memory, as opposed to a
serial search mechanism. Due to the parallelism
assumption, the speed of retrieval is predicted to be
constant across items (aside from individual differ-
ences and stochastic noise in the retrieval process).

Factors such as increased distance between the
target and the retrieval point and the presence of dis-
tractor items can lower the probability of retrieving
the correct dependent (also known as availability).
Low availability of the target dependent can lead to
failures in parsing or to misretrievals of competitor
items. When such errors occur, a backtracking pro-
cess can be initiated, which by assumption leads to
the correct retrieval of the target (McElree, 1993).
The backtracking process requires additional time
that is independent of the retrieval time. According
to the direct-access model, (1a) should have shorter
processing times than (1b) on average, because in
(1b) some trials require costly backtracking due to
lower availability of the target item boy.

The direct-access model can be adapted to ex-
plain impaired sentence comprehension in indi-
viduals with aphasia (IWA; Lisson et al., 2021).
However, there is one crucial aspect of the direct-
access model that is at odds with the aphasia liter-
ature, specifically with the finding that IWA have
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longer processing times for incorrect than for cor-
rect responses (e.g., Hanne et al., 2015; Pregla et al.,
2021). The direct-access model assumes that some
percentage of correct interpretations are only ob-
tained after costly backtracking, and thus predicts
that the average processing time for incorrect re-
sponses should be faster than for correct responses.
To address this issue, we implement a modified ver-
sion of the direct-access model that is specifically
relevant for sentence processing in IWA. In this
model, backtracking can lead to correct retrieval of
the target, as in the base model, but can also result
in misretrieval and parsing failure.

1.1 Sentence Comprehension in Aphasia

Aphasia is an acquired neurological disorder that
causes language production and comprehension im-
pairments. In the aphasia literature, there are sev-
eral theories that aim to explain the source of these
impairments in language comprehension. One pos-
sibility is that IWA carry out syntactic operations
at a slower-than-normal pace, which could cause
failures in parsing. This is the slow syntax theory
(Burkhardt et al., 2008). By contrast, Ferrill et al.
(2012) claim that the underlying cause of slowed
sentence processing in IWA is delayed lexical ac-
cess, which cannot keep up with structure building.
Another theory, resource reduction, assumes that
IWA experience a reduction in the resources used
for parsing (Caplan, 2012), such as working mem-
ory. Finally, Caplan et al. (2013) claim that IWA
suffer from intermittent deficiencies in their pars-
ing system that lead to parsing failures. Previous
computational modeling work has shown that these
theories may be complementary (Patil et al., 2016;
Lisson et al., 2021), and that IWA may experience
a combination of all of these deficits (Mitzig et al.,
2018).

Assuming that a direct-access mechanism of
retrieval subserves sentence comprehension, this
mechanism could interact with one or more of the
proposed processing deficits in IWA. One way to
assess whether these deficits are plausible under
a direct-access model is the computational mod-
eling of experimental data. Lissén et al. (2021)
tested the direct-access model against self-paced
listening data from individuals with aphasia, find-
ing the model to be in line with multiple theories of
processing deficits in aphasia. Despite this encour-
aging result, the model could not fit slow incorrect
responses, due to its assumptions about backtrack-

ing and its consequences.

In what follows, we present our implementation
of the original direct-access model and the modified
version with backtracking failures. We fit the two
models to data from individuals with aphasia and
compare their quantitative performances. In order
to assess the role of the different proposed deficits
of IWA in sentence comprehension, we also map
the models’ parameters onto theories of processing
deficits in aphasia.

2 Data

The data that we model come from a self-paced lis-
tening task in German (Pregla et al., 2021). 50 con-
trol participants and 21 IWA completed the exper-
iment. Sentences were presented auditorily, word
by word. Participants paced the presentation them-
selves, choosing to hear the next word by pressing a
computer key. The time between key presses (here
called listening time) was recorded. At the end
of the sentence, two images (target and foil) were
presented, and participants had to select which im-
age matched the meaning of the sentence they had
just heard. Accuracies for the picture-selection task
were also recorded. To assess test-retest reliability,
each subject completed the task twice, with a break
of two months in between. Our modeling is based
on the pooled data of both sessions.

2.1 Items

We investigate interference effects in a linguistic
construction that is understudied in IWA: Control
constructions. In control constructions, the subject
of an infinitival clause is not overly specified, but
understood to be coreferential with one of the overt
noun phrases in the matrix clause of the same sen-
tence (e.g, Brian promises Martha to take out the
trash — Brian takes out the trash). In linguistic
theory, it is assumed that a a phonologically empty
element (PRO) occupies the subject position of fake
out (Chomsky, 1981). PRO is co-indexed with a
noun phrase in the matrix clause that acts as its
antecedent. The verb in the matrix clause specifies,
according to its semantic and syntactic properties,
which noun phrase in the matrix clause triggers the
interpretation of PRO in the subclause.

In sentence (2a) below, the verb verspricht
(promises) is lexically specified as a subject-
control verb, and the subject noun phrase of the
main clause, Peter, is chosen as the antecedent
of PRO. By contrast, in (2b), the object-control
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verb erlaubt (allows) specifies that the object noun
phrase of the main clause, Lisa, is the antecedent
of PRO.

(2) a. Subject control
Peter; verspricht nun Lisa;, PRO; das
kleine Lamm zu streicheln und zu
kraulen.

‘Peter now promises Lisa to pet and to
ruffle the little lamb’

b. Object control
Peter; erlaubt nun Lisa;, PRO; das
kleine Lamm zu streicheln und zu
kraulen.

‘Peter now allows Lisa to pet and to
ruffle the little lamb’

Cue-based retrieval theory assumes that control
clauses require completion of the PRO dependency
through memory access to the correct noun phrase.
The direct-access model would predict (2b) to be
easier to process than (2a), because the target (Lisa)
is linearly closer to the retrieval site at PRO, and
thus more available. Therefore, at PRO, the proba-
bility of retrieval of the target should be higher in
(2b) relative to (2a). In line with this prediction,
unimpaired subjects show a processing advantage
for object control over subject control (Kwon and
Sturt, 2016). Similarly, IWA exhibit more diffi-
culties understanding subject control conditions in
acting-out tasks (Caplan and Hildebrandt, 1988;
Caplan et al., 1996). However, the object control
advantage in IWA has not been previously tested
using online methods.

Our experimental items were 20 sentences (10
per condition) similar to (2a) and (2b). The corre-
sponding pictures for the picture-selection task are
shown in Figure (1). The top picture is the target
picture for (2a), whereas the bottom picture is the
target for (2b). We assume that trials where the
foil picture has been selected (i.e., the picture that
shows the distractor noun as the agent of the action)
correspond to a misretrieval.

2.2 Dependent Variables

The dependent variables used for modeling were
the listening times (henceforth, LT) at the retrieval
site (PRO) and the accuracy of the picture-selection
task. Given that PRO is phonologically empty, we
assumed that the retrieval process takes place at
some point between the second and the third noun
phrase (Lisa and das kleine Lamm in (2a)). We

Figure 1: Example pictures used in the picture-
selection task.

therefore summed the listening times of these re-
gions within each trial. In order to evaluate the
slowed lexical access hypothesis (Ferrill et al.,
2012), we also used data from an auditory lexical
decision task that participants performed in addi-
tion to the experiment. This task was based on
LEMO 2.0 (Stadie et al., 2013). Participants had to
decide whether an auditorily presented item was a
word or a neologism, and the response times were
recorded. For each participant, we computed the
mean response times for correct responses. These
were then centered and scaled within groups and
used as continuous predictors in the models. We
will refer to the scaled lexical decision task reaction
times as the LDT predictor.

3 Direct-Access Model

Our implementation of the direct-access model fol-
lows Nicenboim and Vasishth (2018). The model
assumes that listening times for correct responses
come from a mixture distribution, given that there
are trials with backtracking, where an additional
processing cost J is added, and trials without back-
tracking, where no such cost is added. By contrast,
incorrect responses never involve backtracking, and
the average listening time should be the same as for
correct responses without backtracking. A graph-
ical representation of the model is displayed in
Figure (2). The three possible cases are as follows:

(a) Retrieval of the target succeeds at first attempt,
with probability 6:
LT ~ lognormal(p, o)
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Figure 2: Graphical representation of the direct-access
model.

(b) Retrieval fails at first attempt, backtracking is
initiated, with probability
(1—6) - Py: LT ~ lognormal(pu + 6,0)

(c) Retrieval fails, no backtracking, and a misre-
trieval occurs, with probability
(1-0)-(1—PFy): LT ~ lognormal(p, o)

The model includes both fixed and random ef-
fects in order to account for sentence complex-
ity, group differences, and individual variability.
The hierarchical structure is shown in Equation (1).
All parameters have an adjustment by group (IWA
versus control), because we expect IWA to have
different parameter estimates from control partic-
ipants. Since DA assumes that retrieval times are
not affected by sentence complexity, the average
listening times (x) do not have an adjustment for
condition. By contrast, the probability of retrieval
of the target, 6, includes a condition adjustment.
This parameter can be thought of as indexing mem-
ory availability. The probability of backtracking P,
the cost of backtracking d, and ¢ do not depend on
sentence complexity, but may vary between IWA
and controls. The hierarchical structure is embed-
ded within the parameters when possible (we re-
port the maximal hierarchical structure that could
be fit). In Equation (1), the terms u« and w are the
by-participant and by-item adjustments to the fixed
effects, respectively. These are assumed to come
from two multivariate normal distributions. All pa-
rameters had regularizing priors, listed in Appendix
B.

p= pio + Uuo + wyo + B1 - group
0=a+ug+we+ B2 LDTH+
B3 - LDT - group+
(Ba + wpg,) - group
(Bs + ug,) - condition+ (1)
B¢ - group - condition
Py, =~ +uy + B7 - group
0 =00+ Bs - group
o =00+ B9 - group

The model was implemented in the probabilistic
programming language Stan (Stan Development
Team, 2020), and fit via the rstan package (Carpen-
ter et al., 2017) in R (R Core Team, 2020). The
model was fit with 3 chains and 8,000 iterations,
half of which were used as warm-up.

3.1 Predictions

Based on the theories of processing deficits in apha-
sia discussed in Section (1.1), and on the findings
in Lisso6n et al. (2021), we make the following pre-
dictions:

1. IWA’s p and ¢ values should be higher than
controls’. This would be in line with slow
syntax, assuming that both the initial retrieval
and the backtracked retrieval are accompanied
by appropriate structure-building processes.

2. The probability of initial retrieval of the target
6 should be lower for IWA relative to controls,
across conditions.

3. Object control conditions should have a larger
0, relative to subject control. In addition, IWA
should have a bigger interference effect, i.e.,
the difference in 6 between the two condi-
tions should be larger in IWA than in controls.
This pattern would be expected under the re-
source reduction theory, which states that IWA
should have greater difficulties in more com-
plex sentences.

4. Slower lexical decision (LDT) should be as-
sociated with a decrease in 6 across groups.
Strong support for delayed lexical access
would come from an interaction between LDT
and group, such that an increase in LDT pre-
dicts a greater decrease in 6 for IWA than
for controls: Slow lexical access could cause
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parsing problems for controls, but if delayed
lexical access is the main cause of difficulty in
IWA:s, parsing failures should occur more of-
ten in this group for individuals whose lexical
access is particularly slow.

The probability of backtracking should be
lower for IWA, which would be in line with
resource reduction.

Finally, the dispersion parameter o of the
listening-time distribution should be larger for
IWA, which would indicate that IWA have
more noise in their parsing system. This
would be in line with intermittent deficien-
cies, since more noise could be due to more
breakdowns in parsing.

These predictions build on the previous work by
Lisson et al. (2021), but other options for the map-
ping between parameters and theories of compre-
hension deficits in aphasia are possible, see Mitzig
et al. (2018); Patil et al. (2016).

3.2 Results

We begin by assessing the posterior distribution of
the probability of retrieval of the target, 6, shown
in Figure (3).

Posterior distribution of 6

Controls IWA

Condition

H Object

&

L
90

D= ==
S

50 60 70 80 50 70 80 90

[%]

Figure 3: Posterior distribution of # across conditions
and groups.

Controls are estimated to retrieve the target at
the first retrieval attempt in both conditions in more
than 90% of trials. The mean of the subject-control
condition is slightly lower than the mean for the
object-control condition. By contrast, IWA display
a greater effect of interference: In object-control
sentences, where the antecedent is close to PRO,
IWA are estimated to correctly retrieve the target
at the first attempt 85% of the time, compared to

Subject
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60% for subject-control. An increase in LDT leads
to a decrease in 6 of —6% Crl: [—11%, —2%], but
there was no interaction with group x LDT (—2%
Crl: [—6%, 2%]). The credible intervals for the
remaining parameters are shown in Table (1).

Par. Control participants IWA

W [1668 ms, 1901 ms] [2508 ms, 3073 ms]
1) [1084 ms, 1385ms] [2897 ms, 6836 ms]
P, [63%, 78%] [3%, 10%]

o [0.15, 0.16] [0.27, 0.3]

Table 1: Parameter credible intervals, DA model.

As expected under the slow syntax theory, IWA’s
mean listening times (1) and the time needed for
backtracking (d) are higher than controls’. Sim-
ilarly, o is also higher for IWA, as predicted by
intermittent deficiencies. Finally, the probability
of backtracking is much lower for IWA than for
controls. Assuming that backtracking uses gen-
eral parsing resources, this estimate is in line with
resource reduction.

3.3 Posterior Predictive Checks

One way to assess the behavior of the model is to
check the posterior distribution of data generated
by the model against the empirical data. If the
mean of the empirical data falls within the range
of predicted values of the model, the model could
have generated the empirical data. By contrast, if
the empirical data are outside of the range of the
generated values, this indicates a suboptimal fit.
Figure (4) shows the posterior predictive distribu-
tions of the direct-access model across groups and
conditions. Overall, correct responses are modeled
reasonably well, except in the object-control condi-
tion for IWA. The model also underestimates the
listening times for incorrect responses, except for
IWA in the subject-control condition. In all other
design cells, incorrect responses are slower than
correct responses, contrary to the model’s assump-
tion that slow backtracking responses are always
correct.

4 Modified Direct-Access Model

Based on the original DA model’s suboptimal fit,
we propose a modified version (MDA). In this ver-
sion, the distribution of listening times for both
correct and incorrect responses is a mixture of di-
rectly accessed and backtracked retrievals. The
MDA model assumes that backtracking can fail.
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Figure 4: Posterior predictive checks of the direct-
access model split by accuracy, group, and condition.
The violin plots indicate the distribution of listening
times generated by the model. The black stars stand
for the mean of the empirical data.

In terms of implementation, the main difference
between the models is a newly-introduced parame-
ter 6y, which is the probability of correct retrieval
after backtracking. Figure (5) displays a graphical
representation of this new model: After backtrack-
ing, the target is retrieved with probability 6, and
a misretrieval occurs with probability 1 — 6. The
hierarchical structure is the same as in the DA orig-
inal model, except for 8, whose adjustments are
shown in Equation (2).

Op = ap + Uqy, + B - group 2
Initial retrieval

1-0

C Distractor )

4
C Target J

LT ~ lognormal(u, o)

Py

1-P,

‘ Backtracking ‘ No backtracking

0, 1-0,

( Target )( Distractor )( Distractor )

LT ~ lognormal(u, o)

LT ~ lognormal(u + 6, 0)

Figure 5: Graphical representation of the modified
direct-access model.

The model was run with 10,000 iterations, half
of which were used as warm-up.

4.1 Predictions

All predictions are carried over from the base DA
model. In addition, the probability of retrieval of
the target after backtracking 6 should be lower for
IWA than for controls. This would indicate that
IWA are more likely to experience parsing failure
or misretrieval even after backtracking.

4.2 Results

We begin by assessing the probability of first cor-
rect retrieval, 6. The posterior distribution across
groups and conditions is shown in Figure (6). The
estimates are quite similar to the ones in the original
DA model: Controls have a very high probability
of initial correct retrieval across conditions, and
IWA display a greater interference effect.

Posterior distribution of 6
Controls IWA

Condition

Object
Subject

[%]

Figure 6: Posterior distribution of § across conditions
and groups.

As in the base model, IWA have a low proba-
bility of backtracking in this model (7% CrI: [4%,
12%]) relative to controls (80%, Crl: [72%, 86%]).
The probability of correct retrieval after backtrack-
ing, 0, determines the amount of slow incorrect
responses. The posterior distribution of 8 is shown
in Figure (7). After backtracking, controls are esti-
mated to retrieve the target 90% of the time, com-
pared to around 70% for IWA.

The rest of estimates are also similar to the
ones in the original DA model: IWA’s p is higher
than controls’ (2751 ms, Crl: [2477, 3046] versus
1770 ms, Crl: [1654 ms, 1890 ms]). The cost of
backtracking, 6, is very high for IWA (6394 ms Crl:
[4235, 9468]) relative to controls (1238 ms, Crl:
[1103 ms, 1387 ms]). Finally, o is also higher for
IWA (0.27 CrI: [0.25, 0.28]) than for controls (0.15
Crl: [0.14, 0.15]).
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Figure 7: Posterior distribution of 8}, across conditions
and groups.

4.3 Posterior Predictive Checks

The posterior predictive checks for the modified
direct-access model are shown in Figure (8).

MDA model
Controls IWA
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Figure 8: Posterior predictive checks of the modified
direct-access model split by accuracy, group, and con-
dition. The violin plots indicate the distribution of lis-
tening times generated by the model. The black stars
stand for the mean of the empirical data.

Like the base model, the MDA mostly correctly
estimates listening times for correct responses
across the board. The fits for incorrect responses
seem to have improved, except for object-control
in IWA, where the predicted listening times are still
faster than the observed listening times.

5 Model Comparison

In order to quantitatively compare the performance
of the models, we computed Bayes factors. We
chose Bayes factors over other alternatives (e.g.
cross-validation), because the two models seem to
predict similar distributions, and Bayes factors are
especially suited for nested models, or models that

make very similar predictions. The hypothesis be-
ing tested is whether there is a non-zero parameter
0y that indexes the probability of successful back-
tracking, assumed by the MDA model, or whether
backtracking is always successful, as assumed by
the base DA model.

In order to perform the comparison, the models
were run for 40,000 iterations, of which 3,000 were
used for warm-up. Bayes factors were computed
using the bridgesampling package (Gronau et al.,
2020) in R. The Bayes factor of DA over MDA was
estimated to be 2. This result is inconclusive, and
indicates that the models provide similar quantita-
tive fit to the data.

6 Discussion and Conclusion

In the present paper, we implemented and tested
two versions of the direct-access model of cue-
based retrieval and evaluated their predictive per-
formance on data from individuals with aphasia
and control participants. Specifically, we modeled
interference in an under-studied linguistic construc-
tion, namely control structures.

Both the base model and the modified model are
in line with a combination of processing deficits in
IWA: slow syntax, resource reduction, and intermit-
tent deficiencies. Neither of the two models showed
support for delayed lexical access as a source of
retrieval difficulty specifically for IWA. Although
a delay in LDT was connected to a decrease in the
probability of correct retrieval, the effect of LDT
was similar for IWA and control participants. In
general, our results are consistent with other studies
showing that a combination of processing deficits
may be the source of impairments in sentence com-
prehension in IWA (Caplan et al., 2015; Mitzig
et al., 2018; Lisson et al., 2021).

Unlike the base direct-access model, our mod-
ified DA model (MDA) assumes that backtrack-
ing can fail, resulting in slow, incorrect retrievals.
However, this added assumption does not result in
a decisive advantage in fit for the MDA model, as
shown by the posterior predictive checks and the
Bayes factor analysis. This result is unexpected,
and leads us to think that the MDA model may be
overparametrized. In MDA, all of the main parame-
ters include a group adjustment. As a consequence,
for instance, the mean listening times, u, are esti-
mated to be higher for IWA than for controls. The
cost of backtracking, which is only added to p if
backtracking is performed, accounts for slower re-
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sponses. However, because IWA’s 1 is estimated to
be higher than controls’ u, the model may not need
to rely on backtracking in order to account for slow
responses in IWA. This could be the reason why
the probability of backtracking for IWA is very low
(7%) relative to controls (80%). In addition, IWA’s
0y has to be estimated from the 7% of trials that
include backtracking. Given the size of the IWA
group (21 participants), and the small amount of
trials that include backtracking, perhaps the model
cannot correctly estimate the 0, parameter. This
could be investigated in several ways. One possibil-
ity would be to remove the group adjustments from
1, Py, 6, and 0y one at the time, and see which of
these models shows a better quantitative fit for the
data (see Lisson et al., 2021). Another possibility
would be to evaluate how these parameters inter-
act with and without group adjustments (e.g., do
P, and/or ¢ for IWA increase if there is no group
adjustment in ©?7). We will address these questions
in future work.

The present paper contributes to the aphasia lit-
erature by proposing a modification of the direct-
access model that can account for incorrect slow
responses. Despite our inconclusive results, we be-
lieve that the modified direct-access model offers a
more appropriate set of assumptions for individu-
als with aphasia than the direct-access model. The
modified-direct access model can account for slow
incorrect responses, which are frequently found in
studies on sentence processing in IWA (e.g., Hanne
etal., 2015; Lisson et al., 2021; Pregla et al., 2021).
It remains to be seen, by testing the new modified
direct-access model against more data from indi-
viduals with aphasia, whether there is a difference
in predictive performance between the two models.
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A Data and Code

Data and code are available at
https://bit.1ly/30VVOYb.

B Priors

Equation (3) shows the priors used. These are
regularizing priors (Schad et al., 2020) and allow
for a broad range of parameter values. We used
the same priors as Lissén et al. (2021), so that
the model results could be comparable. In Lis-
son et al. (2021), the priors were selected by plot-
ting the predictive prior distribution for each pa-
rameter. Plots of the prior predictive distributions
can be found in the supplementary materials at
https://osf.io/wkdrz.

The priors for o and v are in logit space, the
rest of priors are in log space. In the modified
direct-access model, a, has the same priors as a.

a ~ normal(1,0.5
Bi,...12 ~ normal(0,0.5

3
v ~ normal(—1,0.5 ©)

)

)

o ~ normal(7.5,0.6)

)

do ~ normal(0,1)

oo ~ normal(0,0.5)

A LKJ(2) (Lewandowski et al., 2009) prior was

used for the correlation matrix of the variance-
covariance matrix of the random effects.
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