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Abstract
In this paper we describe our contribution to
the CMCL 2021 Shared Task, which consists
in predicting 5 different eye tracking variables
from English tokenized text. Our approach is
based on a neural network that combines both
raw textual features we extracted from the text
and parser-based features that include linguis-
tic predictions (e.g. part of speech) and com-
plexity metrics (e.g., entropy of parsing). We
found that both the features we considered as
well as the architecture of the neural model
that combined these features played a role in
the overall performance. Our system achieved
relatively high accuracy on the test data of the
challenge and was ranked 2nd out of 13 com-
peting teams and a total of 30 submissions.

1 Introduction

The CMCL 2021 Shared Task (Hollenstein et al.,
2021) aims at comparing different approaches to
the task of predicting eye tracking variables. Given
English text as a sequence of tokens, the goal is
to predict 5 behavioural metrics (averaged over 12
human subjects).

Our approach was based on two major steps.
First, we generated several features that either
proved successful in previous work or that reflected
our intuition about their potential in predicting eye
tracking data. Second, we proposed a way for an
optimal combination of these features using a sim-
ple neural network. Both steps proved to be useful
in our final predictions.

The paper is organized as follows. First, in sec-
tion 2, we list and describe the features we used to
predict the eye-tracking data. Then, in section 3,
we briefly describe the neural architecture of the
model we used to combine the features. Next, in
section 4, we report details about the model’s train-
ing and evaluation. Finally, in section 5, we analyze
and discuss the impact of each feature (as well as
the impact of each group of features) on the overall
performance of the model.

2 Features Generation

Before introducing the model (schematically de-
scribed in Figure 1), we thought useful to first list
and describe how we obtained the candidate pre-
dictive features from the original textual material
of the challenge as well as from secondary sources.
Our features are listed in Table 1, and can be orga-
nized into four categories: 1) Raw textual features
we extracted form the proposed text, 2) Frequency
values, 3) Linguistic features we obtained by an-
notating the proposed text in an automatic fashion,
and 4) Complexity measures produced by a parser
across several linguistic levels. Below are more
details on each of these categories of features.

2.1 Raw Textual Features
The eight features of this group were directly ex-
tracted from the textual material of the challenge.
These features are listed in Table 1 and they are
self-explanatory. They include, e.g., word length,
prefixes, and suffixes.

2.2 Frequencies
Every word in the text has been associated with
three frequency values: the frequency of the word
out of context (unigram), the frequencies of bi-
grams made of the current word and either the pre-
ceding or the next one. The values were computed
using the Google’s One billion words benchmark
for language modeling corpus (Chelba et al., 2013).

2.3 Linguistic Features
We enriched the original textual material with three
types of linguistic annotations (obtained automat-
ically): part of speech tags, morphological tags
and syntactic dependencies. Theses three types of
annotations were realized using an augmented (neu-
ral network based) version our software MACAON

(Nasr et al., 2011), where words in a sentence are
discovered then annotated one at a time (from left
to right). Annotation is based on classifiers that
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take as input features about current word and its
context and produce as output a probability distri-
bution over a set of actions. Such actions posit
word boundaries on the raw text, associate part of
speech and morphological tags to words or link
words of a sentence with syntactic dependencies.
The actions that perform the prediction of syntactic
dependencies are based on the transition based pars-
ing framework (Nivre, 2003), which makes use of
a stack that stores words that should be connected
to words not yet discovered. The stack allows to
connect words that are not adjacent in the sentence.

The classifiers are organized in an incremental ar-
chitecture, i.e., once the tokenizer detected a word
boundary, control jumps to the part of speech tag-
ger, then to the morphological tagger and eventu-
ally to the syntactic parser, before going back to
the tokenizer. The behaviour of the whole system
is greedy, at every step, a single action is selected
and performed. The action selected is the one that
maximizes the probability distribution computed
by the classifier.

2.4 Complexity Metrics

Besides producing linguistic labels, MACAON also
produces numbers that reflect the difficulty associ-
ated with a given linguistic decision. We used these
numbers to instantiate several “complexity metrics”
that we used as a proxy to human difficulty to pro-
cess a word (Hale, 2001). We generated two types
of such complexity measures.

The first one is a measure of the “confidence”
with which the system selects a given action. This
confidence is based on the shape of the probabil-
ity distribution produced by the system at each
step. The measure used is simply the entropy of
the probability distribution. A low entropy distri-
bution corresponds to a high confidence and a high
entropy to a low one. Four different measures of
entropy were computed, one for every linguistic
level (see Table 1).

The second kind of complexity metrics is related
to the stack of the syntactic parser. One measure
we used was the height of the stack. The stack
has a tendency to grow when processing complex
sentences, e.g., when it involves several subordi-
nated clauses. A large value of the stack’s height
can therefore be interpreted as an indicator of a
syntactically complex linguistic configuration. The
second measure was the distance that separates in
the sentence the two words on the top of the stack.
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1600
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Figure 1: Model Architecture: a sliding window reads
the sentence and encodes the features of the words (see
Table 1) in the input layer. An MLP compresses the
input layer using non linear functions. Five linear re-
gressors predict the values of the variables.

2.5 Implementation Details

The MACAON model was trained on the concate-
nation of the English corpora GUM, EWT, LinES
and ParTUT from Universal Dependencies (Zeman
et al., 2019), for a total of 29,916 sentences and
515,228 words. It was used to process the raw1 (un-
tokenized) text in the ZuCo corpus. This processing
yielded a tokenization of the text similar to the way
UD corpora are tokenized (punctuation marks are
tokens), where for each word we produced both
linguisitc labels and complexity metrics. These
measures were then aligned with the shared task
corpus using Levenshtein distances between words.
This alignment was necessary because the tokeniza-
tion is different between the linguistic model output
and the shared task material.

3 Features Combination

We used a simple neural network to perform a se-
ries of five regression tasks, one for each measure
to predict. The regressions were realized using the
architecture described in Figure 1. As is clear from
the figure, all regression tasks take as input a single
representation of the words being processed. This
representation is optimized for the five regression
tasks simultaneously. Perhaps the most complex
part of the model is the encoding of the input layer
because different kind of features require different
encoding methods.2

1Available in the task_materials directory of the ZuCo
distribution https://osf.io/q3zws/.

2The neural network was implemented in C++ using the
PyTorch library (Paszke et al., 2019). The same software is
used both to provide linguistic labels as in section 2 and to

https://osf.io/q3zws/
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The model is composed of three parts, each part
taking as input the output of the preceding one
(Figure 1).

3.1 The Input Layer

The input of the Multilayer Perceptron is a large
vector that encodes all the features listed in Table 1.
It is made of the concatenation of all these feature
encodings for a span of three words centered on
the current word. The features were encoded dif-
ferently depending on their nature. For numeric
values, such as word lengths or frequencies, we
directly input them into our neural network. As
for discrete values, such as part of speech tags,
we used a dictionnary mapping each label to an
embedding. Such embeddings (of size 64),3 are
learnable parameters of the model. They are ran-
domly initialized, except for the FORM feature (see
Table 1) where the embeddings were initialized on
the train section of the shared task material using
GloVe4 (Pennington et al., 2014). We associated
each feature with a bi-LSTM taking as input the
sequence of values indicated in the Span column
of Table 1, which define a window of width 1,2 or
three, centered on the current word. The outputs
of all such bi-LSTMs were concatenated, yielding
a single embedding of size 5632. A dropout layer
is then applied to the whole input vector, where
during training 30% of the neurons are set to 0,
making the network less prone to over-fitting.

3.2 The Multilayer Perceptron

It is composed of 2 linear layers (with bias), each
one of size 1600. The ReLU function was applied
to each layer output, and no dropout was used. The
goal of the Multilayer Perceptron is to build a com-
pact representation of the input layer that is opti-
mized for the regression tasks.

3.3 The Decision Layer

The decision layer is simply a linear layer (with
bias) of input size 1600 and output size 1. There are
5 different decision layers (one for each value to
predict). Parameter of this linear layer are the only
one that were not shared between the 5 predictions
tasks.

predict the challenge’s five oculometric measures, but with
different models. The software used to train our model is
available online: https://gitlab.lis-lab.fr/franck.dary/macaon/

3See section 4 about hyperparameters selection.
4Implementation: https://github.com/stanfordnlp/GloVe.

Words with less than 2 occurrences were treated as unknown
words, thus producing an unknown words embedding.

4 Training and Evaluation

In this section, we will describe how we trained the
neural network presented in section 3 to predict all
five shared task oculometric measures (nFix, FFD,
TRT, GPT, fixProp), and how we proceeded for the
choice of its hyperparameters such as number of
layers, size of layers, size of embeddings.

During the training phase of the shared task,
we decided to split the training material into
train/dev/test parts of the following respective sizes
70%/15%/15%. This allowed us to use the dev
part for early stopping and the test part to compare
competing models on the basis of their generaliza-
tion capability. We used absolute error as our loss
function, and used Adagrad as our optimizer.

To decide on the values of the hyperparameters,
we trained different models (changing one hyper
parameter at a time) for 40 epochs on the train part
of our split. As a form of early stopping, we only
saved a model when its performance was the best
on the dev set. Finally, we used performance on the
test part of our split to compare models and decide
which hyperparameter values were the best.

To train our final model, we ditched our custom
split and used the entire shared task training ma-
terial for a total of 7 epochs to avoid overfitting,
achieving an MAE of 3.83 (the best team obtained
3.81). In Table 1 we reported that our best model
had an MAE of 3.73, indicating that ditching the
train/dev split was not a good idea.

5 Results and Discussion

Table 1 lists all the predictive features used in the
current work and their impact on the Mean Abso-
lute Error (MAE) — averaged over the five target
measures of the challenge — both at the individual
level and at the group level.

The individual MAE values were computed by
training the model only on the feature at hand in ad-
dition to FREQUENCY and LENGTH, thus reflecting
its performance beyond these simple baseline fea-
tures5. As for the group-level MAE, we obtained
them by training a model that takes as input all the
features of the group at hand as well as the preced-
ing groups in the table. For example, the MAE for
“Raw Textual Features” was obtained by training
the model on all the feature in this group only (as

5That’s why the individual MAE values for FREQUENCY
and LENGTH are identical: It is the errors of a model trained
only on the baseline features made of FREQUENCY and
LENGTH.

https://gitlab.lis-lab.fr/franck.dary/macaon/
https://github.com/stanfordnlp/GloVe


111

Name Description Span MAE (individual) MAE (group)
Raw Textual Features

LENGTH Number of letters in the word. 111 4.20±0.00
PREFIX First 3 letters of the word. 010 4.15±0.02
SUFFIX Last 3 letters of the word. 010 4.16±0.01
FORM Contextualized word embedding. 110 4.05±0.01
EOS Whether or not the word is the last of the sentence. 110 4.15±0.00 3.87±0.01
WORD_ID Index of the word in the sentence. (Kuperman et al., 2010) 110 4.09±0.01
SENT_ID Index of the sentence in the text. (Genzel and Charniak, 2002) 110 4.16±0.01
TEXT_ID Index of the file containing the raw text. 010 4.18±0.00

Frequencies
FREQUENCY Logarithm of the frequency of the word. 111 4.20±0.00
COOC_P Log frequency of the bigram with previous word. 111 4.15±0.00 3.78±0.02
COOC_N Log frequency of the bigram with next word. 111 4.17±0.00

Linguistic Features
POS Part of speech. 110 4.15±0.00
MORPHO Morphology. 110 4.17±0.00 3.74±0.01
DEPREL Syntactic function. 110 4.14±0.00
DEP_LEN Distance to the syntactic governor. 110 4.17±0.01

Complexity Metrics
STACK_SIZE Size of the stack when processing the word. (Gibson, 2000) 111 4.12±0.00
STACK_DIST Distance between the two top elements of the stack. 111 4.14±0.01
ENT_TOK Entropy of the tokenizer. 110 4.22±0.00
ENT_TAG Entropy of the part of speech tagger. 110 4.22±0.01
ENT_MORPHO Entropy of the morphological tagger. 110 4.22±0.00 3.73±0.00
ENT_PARSER Entropy of the dependency parser. (Boston et al., 2008) 110 4.23±0.01
ENT_MEAN Mean of the entropies. 110 4.22±0.00
ENT_MAX Highest entropy. 110 4.23±0.01

Table 1: Features of our model. Span defines the words taken into account in a window of length 3 centered on
the current word. The first MAE column of row FEATNAME is the MAE achieved by a model using only features
{FEATNAME,FREQUENCY,LENGTH}. Last MAE column is the score achieved by a model when adding this feature
group (last value is for the model with all features). Results include standard deviation across 2 replications.

there is no preceding group). The MAE for “Fre-
quencies” was obtained by training the model on
all the feature in this group in addition to the fea-
tures in the “Raw Textual Features” group, and so
forth. Finally, the score associated with “Complex-
ity Metrics” is the most comprehensive, including
all features in the table. The goal of such nested
calculation is to appreciate the role of each higher-
level group above and beyond the information pro-
vided by the lower-level group of features. The
four groups were ordered by the amount of effort
it requires to obtain them. We did not test every
combination of features.

Several conclusion can be drawn from these re-
sults. First, we found that low-level features per-
formed very well. Indeed when combining only
raw textual features and frequencies, we already
had an impressive performance of MAE = 3.78.
The linguistic features allow us to only slightly im-
prove performance with a small gain of ∆MAE =
0.04. Surprisingly enough, the complexity met-
rics barely added any useful information. When
looking at each complexity measure individually,
we found that only the measures related to the

stack size of the parser added information, whereas
entropy-based measures, if anything, degraded per-
formance in the test set compared to frequency and
length. This was unexpected because the litera-
ture (Demberg and Keller, 2009; Wu et al., 2010)
suggest that these metrics should play a little but
noticeable role in modeling oculometric features.
We suspect that even if these metrics are signifi-
cant in mixed effect models, they are not powerful
enough to increase the predictive performance of a
neural network model.

In addition to testing the contribution of the pre-
dictive features, we were curious if our way of
combining these features also played a role. Thus,
we compared our non-linear neural network to five
linear regressions (one for each variable in the chal-
lenge) both using Table 1 features6. The average
gain was quite large ∆MAE = 1.23, showing that
both the features we used as well as the way we
combined them played a role in the scores we ob-
tained in this challenge.

6Minus FORM, PREFIX and SUFFIX because the linear
model would struggle to deal with the many values that appear
in the test set but not in the train set.
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Appendix

Name nFix FFD GPT TRT fixProp
Raw Textual Features

LENGTH 4.30±0.00 0.71±0.00 2.55±0.00 1.69±0.00 11.75±0.00
EOS 4.28±0.00 0.71±0.00 2.38±0.00 1.69±0.00 11.71±0.00
SUFFIX 4.25±0.00 0.70±0.00 2.60±0.00 1.66±0.00 11.59±0.00
TEXT_ID 4.25±0.00 0.71±0.00 2.52±0.00 1.67±0.00 11.75±0.00
PREFIX 4.24±0.00 3.88 0.70±0.00 0.67 2.59±0.00 2.21 1.66±0.00 1.54 11.57±0.00 11.06
SENT_ID 4.16±0.00 0.70±0.00 2.55±0.00 1.64±0.00 11.75±0.00
WORD_ID 4.11±0.00 0.70±0.00 2.52±0.00 1.61±0.00 11.52±0.00
FORM 4.11±0.00 0.69±0.00 2.29±0.00 1.60±0.00 11.54±0.00

Frequencies
FREQUENCY 4.30±0.00 0.71±0.00 2.55±0.00 1.69±0.00 11.75±0.00
COOC_N 4.28±0.00 3.76 0.71±0.00 0.66 2.44±0.00 2.13 1.68±0.00 1.44 11.73±0.00 10.91
COOC_P 4.28±0.00 0.70±0.00 2.46±0.00 1.67±0.00 11.66±0.00

Linguistic Features
DEP_LEN 4.28±0.00 0.71±0.00 2.48±0.00 1.68±0.00 11.73±0.00
MORPHO 4.26±0.00 0.70±0.00 2.56±0.00 1.67±0.00 11.68±0.00
POS 4.23±0.00 3.69 0.70±0.00 0.65 2.56±0.00 2.12 1.65±0.00 1.43 11.59±0.00 10.79
DEPREL 4.21±0.00 0.70±0.00 2.56±0.00 1.66±0.00 11.57±0.00

Complexity Metrics
ENT_TOK 4.32±0.00 0.71±0.00 2.62±0.00 1.69±0.00 11.73±0.00
ENT_PARSER 4.31±0.00 0.71±0.00 2.66±0.00 1.69±0.00 11.78±0.00
ENT_MORPHO 4.31±0.00 0.71±0.00 2.62±0.00 1.69±0.00 11.77±0.00
ENT_MAX 4.30±0.00 0.71±0.00 2.66±0.00 1.69±0.00 11.78±0.00
ENT_MEAN 4.30±0.00 3.67 0.71±0.00 0.65 2.62±0.00 2.12 1.69±0.00 1.43 11.75±0.00 10.80
ENT_TAG 4.30±0.00 0.71±0.00 2.60±0.00 1.69±0.00 11.78±0.00
STACK_DIST 4.23±0.00 0.70±0.00 2.50±0.00 1.67±0.00 11.63±0.00
STACK_SIZE 4.20±0.00 0.70±0.00 2.48±0.00 1.65±0.00 11.59±0.00

Table 2: Detailed results for individual features and features groups, across 5 metrics.


