
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 142–153
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_020

142

Are Multilingual Models Effective in Code-Switching?

Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu, Zhaojiang Lin,
Andrea Madotto, Pascale Fung

Center for Artificial Intelligence Research (CAiRE)
The Hong Kong University of Science and Technology

giwinata@connect.ust.hk

Abstract

Multilingual language models have shown de-
cent performance in multilingual and cross-
lingual natural language understanding tasks.
However, the power of these multilingual mod-
els in code-switching tasks has not been fully
explored. In this paper, we study the effective-
ness of multilingual language models to under-
stand their capability and adaptability to the
mixed-language setting by considering the in-
ference speed, performance, and number of pa-
rameters to measure their practicality. We con-
duct experiments in three language pairs on
named entity recognition and part-of-speech
tagging and compare them with existing meth-
ods, such as using bilingual embeddings and
multilingual meta-embeddings. Our findings
suggest that pre-trained multilingual models
do not necessarily guarantee high-quality rep-
resentations on code-switching, while using
meta-embeddings achieves similar results with
significantly fewer parameters.

1 Introduction

Learning representation for code-switching has be-
come a crucial area of research to support a greater
variety of language speakers in natural language
processing (NLP) applications, such as dialogue
system and natural language understanding (NLU).
Code-switching is a phenomenon in which a per-
son speaks more than one language in a conver-
sation, and its usage is prevalent in multilingual
communities. Yet, despite the enormous number of
studies in multilingual NLP, only very few focus on
code-switching. Recently, contextualized language
models, such as mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020) have achieved state-
of-the-art results on monolingual and cross-lingual
tasks in NLU benchmarks (Wang et al., 2018a; Hu
et al., 2020; Wilie et al., 2020; Liu et al., 2020; Lin
et al., 2020). However, the effectiveness of these
multilingual language models on code-switching
tasks remains unknown.

Several approaches have been explored in
code-switching representation learning in NLU.
Character-level representations have been utilized
to address the out-of-vocabulary issue in code-
switched text (Winata et al., 2018c; Wang et al.,
2018b), while external handcrafted resources such
as gazetteers list are usually used to mitigate
the low-resource issue in code-switching (Aguilar
et al., 2017; Trivedi et al., 2018); however, this
approach is very limited because it relies on the
size of the dictionary and it is language-dependent.
In another line of research, meta-embeddings
have been used in code-switching by combin-
ing multiple word embeddings from different lan-
guages (Winata et al., 2019a,b). This method
shows the effectiveness of mixing word representa-
tions in closely related languages to form language-
agnostic representations, and is considered very
effective in Spanish-English code-switched named
entity recognition tasks, and significantly outper-
forming mBERT (Khanuja et al., 2020) with fewer
parameters.

While more advanced multilingual language
models (Conneau et al., 2020) than multilin-
gual BERT (Devlin et al., 2019) have been pro-
posed, their effectiveness is still unknown in code-
switching tasks. Thus, we investigate their effec-
tiveness in the code-switching domain and compare
them with the existing works. Here, we would like
to answer the following research question, “Which
models are effective in representing code-switching
text, and why?."

In this paper, we evaluate the representation
quality of monolingual and bilingual word embed-
dings, multilingual meta-embeddings, and multi-
lingual language models on five downstream tasks
on named entity recognition (NER) and part-of-
speech tagging (POS) in Hindi-English, Spanish-
English, and Modern Standard Arabic-Egyptian.
We study the effectiveness of each model by con-
sidering three criteria: performance, speed, and the



143

Figure 1: Model architectures for code-switching modeling: (a) model using word embeddings, (b) model us-
ing multilingual language model, (c) model using multilingual meta-embeddings (MME), and (d) model using
hierarchical meta-embeddings (HME).

number of parameters that are essential for practi-
cal applications. Here, we set up the experimental
setting to be as language-agnostic as possible; thus,
it does not include any handcrafted features.

Our findings suggest that multilingual pre-
trained language models, such as XLM-RBASE,
achieves similar or sometimes better results than
the hierarchical meta-embeddings (HME) (Winata
et al., 2019b) model on code-switching. On the
other hand, the meta-embeddings use word and
subword pre-trained embeddings that are trained
using significantly less data than mBERT and
XLM-RBASE and can achieve on par performance
to theirs. Thus, we conjecture that the masked lan-
guage model is not be the best training objective for
representing code-switching text. Interestingly, we
found that XLM-RLARGE can improve the perfor-
mance by a great margin, but with a substantial cost
in the training and inference time, with 13x more
parameters than HME-Ensemble for only around
a 2% improvement. The main contributions of our
work are as follows:

• We evaluate the performance of word embed-
dings, multilingual language models, and mul-
tilingual meta-embeddings on code-switched
NLU tasks in three language pairs, Hindi-
English (HIN-ENG), Spanish-English (SPA-
ENG), and Modern Standard Arabic-Egyptian
(MSA-EA), to measure their ability in repre-
senting code-switching text.

• We present a comprehensive study on the ef-
fectiveness of multilingual models on a vari-
ety of code-switched NLU tasks to analyze
the practicality of each model in terms of per-
formance, speed, and number of parameters.

• We further analyze the memory footprint re-

quired by each model over different sequence
lengths in a GPU. Thus, we are able to un-
derstand which model to choose in a practical
scenario.

2 Representation Models

In this section, we describe multilingual models
that we explore in the context of code-switching.
Figure 1 shows the architectures for a word em-
beddings model, a multilingual language model,
and the multilingual meta-embeddings (MME), and
HME models.

2.1 Word Embeddings
2.1.1 FastText
In general, code-switching text contains a primary
language the matrix language (ML)) as well as a
secondary language (the embedded language (EL)).
To represent code-switching text, a straightforward
idea is to train the model with the word embed-
dings of the ML and EL from FastText (Grave et al.,
2018). Code-switching text has many noisy tokens
and sometimes mixed words in the ML and EL that
produce a “new word”, which leads to a high num-
ber of out-of-vocabulary (OOV) tokens. To solve
this issue, we utilize subword-level embeddings
from FastText (Grave et al., 2018) to generate the
representations for these OOV tokens. We conduct
experiments on two variants of applying the word
embeddings to the code-switching tasks: FastText
(ML) and FastText (EL), which utilize the word
embeddings of ML and EL, respectively.

2.1.2 MUSE
To leverage the information from the embeddings
of both the ML and EL, we utilize MUSE (Lample
et al., 2018) to align the embeddings space of the
ML and EL so that we can inject the information



144

of the EL embeddings into the ML embeddings,
and vice versa. We perform alignment in two di-
rections: (1) We align the ML embeddings to the
vector space of the EL embeddings (denoted as
MUSE (ML → EL)); (2) We conduct the align-
ment in the opposite direction, which aligns the EL
embeddings to the vector space of the ML embed-
dings (denoted as MUSE (EL→ML)). After the
embeddings alignment, we train the model with the
aligned embeddings for the code-switching tasks.

2.2 Multilingual Pre-trained Models

Pre-trained on large-scale corpora across numer-
ous languages, multilingual language models (De-
vlin et al., 2019; Conneau et al., 2020) possess the
ability to produce aligned multilingual representa-
tions for semantically similar words and sentences,
which brings them advantages to cope with code-
mixed multilingual text.

2.2.1 Multilingual BERT
Multilingual BERT (mBERT) (Devlin et al., 2019),
a multilingual version of the BERT model, is pre-
trained on Wikipedia text across 104 languages
with a model size of 110M parameters. It has been
shown to possess a surprising multilingual abil-
ity and to outperform existing strong models on
multiple zero-shot cross-lingual tasks (Pires et al.,
2019; Wu and Dredze, 2019). Given its strengths
in handling multilingual text, we leverage it for
code-switching tasks.

2.2.2 XLM-RoBERTa
XLM-RoBERTa (XLM-R) (Conneau et al., 2020)
is a multilingual language model that is pre-trained
on 100 languages using more than two terabytes of
filtered CommonCrawl data. Thanks to the large-
scale training corpora and enormous model size
(XLM-RBASE and XLM-RLARGE have 270M and
550M parameters, respectively), XLM-R is shown
to have a better multilingual ability than mBERT,
and it can significantly outperform mBERT on a
variety of cross-lingual benchmarks. Therefore, we
also investigate the effectiveness of XLM-R for
code-switching tasks.

2.2.3 Char2Subword
Char2Subword introduces a character-to-subword
module to handle rare and unseen spellings by
training an embedding lookup table (Aguilar et al.,
2020b). This approach leverages transfer learn-
ing from an existing pre-trained language model,

such as mBERT, and resumes the pre-training of
the upper layers of the model. The method aims
to increase the robustness of the model to various
typography styles.

2.3 Multilingual Meta-Embeddings

The MME model (Winata et al., 2019a) is formed
by combining multiple word embeddings from dif-
ferent languages. Let’s define w to be a sequence of
words with n elements, where w = [w1, . . . , wn].
First, a list of word-level embedding layers is used
E

(w)
i to map words w into embeddings xi. Then,

the embeddings are combined using one out of the
following three methods: concat, linear, and self-
attention. We briefly discuss each method below.

Concat This method concatenates word embed-
dings by merging the dimensions of word represen-
tations into higher-dimensional embeddings. This
is one of the simplest methods to join all embed-
dings without losing information, but it requires a
larger activation memory than the linear method.

xCONCAT
i = [xi,1, ...,xi,n]. (1)

Linear This method sums all word embeddings
into single word embeddings with equal weight
without considering each embedding’s importance.
The method may cause a loss of information and
may generate noisy representations. Also, though
it is very efficient, it requires an additional layer to
project all embeddings into a single-dimensional
space if one embedding is larger than another.

x′
i,j = Wj · xi,j ,

xLINEAR
i =

n∑
j=0

x′
i,j .

Self-Attention This method generates a meta-
representation by taking the vector representation
from multiple monolingual pre-trained embeddings
in different subunits, such as word and subword.
It applies a projection matrix Wj to transform the
dimensions from the original space xi,j ∈ Rd to
a new shared space x′

i,j ∈ Rd′ . Then, it calcu-
lates attention weights αi,j ∈ Rd′ with a non-linear
scoring function φ (e.g., tanh) to take important
information from each individual embedding x′

i,j .
Then, MME is calculated by taking the weighted



145

sum of the projected embeddings x′
i,j :

x′
i,j = Wj · xi,j , (2)

αi,j =
exp(φ(x′

i,j))∑n
k=1 exp(φ(x

′
i,k))

, (3)

ui =
n∑

j=1

αi,jx
′
i,j . (4)

2.4 Hierarchical Meta-Embedings
The HME method combines word, subword, and
character representations to create a mixture of em-
beddings (Winata et al., 2019b). It generates multi-
lingual meta-embeddings of words and subwords,
and then, concatenates them with character-level
embeddings to generate final word representations.
HME combines the word-level, subword-level, and
character-level representations by concatenation,
and randomly initializes the character embeddings.
During the training, the character embeddings are
trainable, while all subword and word embeddings
remain fixed.

2.5 HME-Ensemble
The ensemble is a technique to improve the model’s
robustness from multiple predictions. In this case,
we train the HME model multiple times and take
the prediction of each model. Then, we compute
the final prediction by majority voting to achieve
a consensus. This method has shown to be very
effective in improving the robustness of an unseen
test set (Winata et al., 2019c). Interestingly, this
method is very simple to implement and can be
easily spawned in multiple machines, as in parallel
processes.

3 Experiments

In this section, we describe the details of the
datasets we use and how the models are trained.

3.1 Datasets
We evaluate our models on five downstream tasks in
the LinCE Benchmark (Aguilar et al., 2020a). We
choose three named entity recognition (NER) tasks,
Hindi-English (HIN-ENG) (Singh et al., 2018a),
Spanish-English (SPA-ENG) (Aguilar et al., 2018)
and Modern Standard Arabic (MSA-EA) (Aguilar
et al., 2018), and two part-of-speech (POS) tag-
ging tasks, Hindi-English (HIN-ENG) (Singh et al.,
2018b) and Spanish-English (SPA-ENG) (Soto
and Hirschberg, 2017). We apply Roman-to-
Devanagari transliteration on the Hindi-English

datasets since the multilingual models are trained
with data using that form. Table 1 shows the num-
ber of tokens of each language for each dataset.
We classify the language with more tokens as the
ML and the other as the EL. We replace user
hashtags and mentions with <USR>, emoji with
<EMOJI>, and URL with <URL> for models that
use word-embeddings, similar to Winata et al.
(2019a). We evaluate our model with the micro
F1 score for NER and accuracy for POS tagging,
following Aguilar et al. (2020a).

#L1 #L2 ML EL

NER

HIN-ENG 13,860 11,391 HIN ENG
SPA-ENG 163,824 402,923 ENG SPA
MSA-EA† - - MSA EA

POS

HIN-ENG 12,589 9,882 HIN ENG
SPA-ENG 178,135 92,517 SPA ENG

Table 1: Dataset statistics are taken from Aguilar et al.
(2020a). We define L1 and L2 as the languages found
in the dataset. For example, in HIN-ENG, L1 is HIN
and L2 is ENG. †We define MSA as ML and EA as
EL. #L1 represents the number of tokens in the first
language and #L2 represents the number of tokens in
the second language.

3.2 Experimental Setup

We describe our experimental details for each
model.

3.2.1 Scratch
We train transformer-based models without any pre-
training by following the mBERT model structure,
and the parameters are randomly initialized, includ-
ing the subword embeddings. We train transformer
models with four and six layers with a hidden size
of 768. This setting is important to measure the
effectiveness of pre-trained multilingual models.
We start the training with a learning rate of 1e-4
and an early stop of 10 epochs.

3.2.2 Word Embeddings
We use FastText embeddings (Grave et al., 2018;
Mikolov et al., 2018) to train our transformer mod-
els. The model consists of a 4-layer transformer
encoder with four heads and a hidden size of 200.
We train a transformer followed by a Conditional
Random Field (CRF) layer (Lafferty et al., 2001).



146

The model is trained by starting with a learning rate
of 0.1 with a batch size of 32 and an early stop of
10 epochs. We also train our model with only ML
and EL embeddings. We freeze all embeddings and
only keep the classifier trainable.

We leverage MUSE (Lample et al., 2018) to
align the embeddings space between the ML and
EL. MUSE mainly consists of two stages: adver-
sarial training and a refinement procedure. For
all alignment settings, we conduct the adversarial
training using the SGD optimizer with a starting
learning rate of 0.1, and then we perform the re-
finement procedure for five iterations using the Pro-
crustes solution and CSLS (Lample et al., 2018).
After the alignment, we train our model with the
aligned word embeddings (MUSE (ML→ EL) or
MUSE (EL→ML)) on the code-switching tasks.

3.2.3 Pre-trained Multilingual Models

We use pre-trained models from Huggingface. 1

On top of each model, we put a fully-connected
layer classifier. We train the model with a learn-
ing rate between [1e-5, 5e-5] with a decay of 0.1
and a batch size of 8. For large models, such as
XLM-RLARGE and XLM-MLMLARGE, we freeze
the embeddings layer to fit in a single GPU.

3.2.4 Multilingual Meta-Embeddings (MME)

We use pre-trained word embeddings to train our
MME. Table 2 shows the embeddings used for each
dataset. We freeze all embeddings and train a trans-
former classifier with the CRF. The transformer
classifier consists of a hidden size of 200, a head
of 4, and 4 layers. All models are trained with a
learning rate of 0.1, an early stop of 10 epochs, and
a batch size of 32. We follow the implementation
from the code repository. 2 Table 2 shows the list
of word embeddings used in MME.

3.2.5 Hierarchical Meta-Embeddings (HME)

We train our HME model using the same embed-
dings as MME and pre-trained subword embed-
dings from Heinzerling and Strube (2018). The
subword embeddings for each language pair are
shown in Table 3. We freeze all word embeddings
and subword embeddings, and keep the character
embeddings trainable.

1https://github.com/huggingface/transformers
2https://github.com/gentaiscool/meta-emb

Word Embeddings List

NER

HIN-ENG FastText: Hindi, English (Grave et al., 2018)
SPA-ENG FastText: Spanish, English, Catalan,

Portugese (Grave et al., 2018)
GLoVe: English-Twitter (Pennington et al., 2014)

MSA-EA FastText: Arabic, Egyptian (Grave et al., 2018)

POS

HIN-ENG FastText: Hindi, English (Grave et al., 2018)
SPA-ENG FastText: Spanish, English, Catalan,

Portugese (Grave et al., 2018)
GLoVe: English-Twitter (Pennington et al., 2014)

Table 2: Embeddings list for MME.

Subword Embeddings List

NER

HIN-ENG Hindi, English
SPA-ENG Spanish, English, Catalan, Portugese
MSA-EA Arabic, Egyptian

POS

HIN-ENG Hindi, English
SPA-ENG Spanish, English, Catalan, Portugese

Table 3: Subword embeddings list for HME.

3.3 Other Baselines

We compare the results with Char2subword and
mBERT (cased) from Aguilar et al. (2020b). We
also include the results of English BERT provided
by the organizer of the LinCE public benchmark
leaderboard (accessed on March 12nd, 2021). 3

4 Results and Discussions

4.1 LinCE Benchmark

We evaluate all the models on the LinCE bench-
mark, and the development set results are shown
in Table 4. As expected, models without any pre-
training (e.g., Scratch (4L)) perform significantly
worse than other pre-trained models. Both Fast-
Text and MME use pre-trained word embeddings,
but MME achieves a consistently higher F1 score
than FastText in both NER and POS tasks, demon-
strating the importance of the contextualized self-
attentive encoder. HME further improves on the F1
score of the MME models, suggesting that encod-
ing hierarchical information from sub-word level,
word level, and sentence level representations can
improve code-switching task performance. Com-
paring HME with contextualized pre-trained mul-

3https://ritual.uh.edu/lince

https://github.com/huggingface/transformers
https://github.com/gentaiscool/meta-emb
https://ritual.uh.edu/lince


147

NER POS

HIN-ENG SPA-ENG MSA-EA HIN-ENG SPA-ENG

Method Avg Perf. Params F1 Params F1 Params F1 Params Acc Params Acc

Scratch (2L) 63.40 96M 46.51 96M 32.75 96M 60.14 96M 83.20 96M 94.39
Scratch (4L) 60.93 111M 47.01 111M 19.06 111M 60.24 111M 83.72 111M 94.64

Mono/Multilingual Word Embeddings

FastText (ML) 76.43 4M 63.58 18M 57.10 16M 78.42 4M 84.63 6M 98.41
FastText (EL) 76.71 4M 69.79 18M 58.34 16M 72.68 4M 84.40 6M 98.36
MUSE (ML→ EL) 76.54 4M 64.05 18M 58.00 16M 78.50 4M 83.82 6M 98.34
MUSE (EL→ML) 75.58 4M 64.86 18M 57.08 16M 73.95 4M 83.62 6M 98.38

Pre-Trained Multilingual Models

mBERT (uncased) 79.46 167M 68.08 167M 63.73 167M 78.61 167M 90.42 167M 96.48
mBERT (cased)‡ 79.97 177M 72.94 177M 62.66 177M 78.93 177M 87.86 177M 97.29
Char2Subword‡ 81.07 136M 74.91 136M 63.32 136M 80.45 136M 89.64 136M 97.03
XLM-RBASE 81.90 278M 76.85 278M 62.76 278M 81.24 278M 91.51 278M 97.12
XLM-RLARGE 84.39 565M 79.62 565M 67.18 565M 85.19 565M 92.78 565M 97.20
XLM-MLMLARGE 81.41 572M 73.91 572M 62.89 572M 82.72 572M 90.33 572M 97.19

Multilingual Meta-Embeddings

Concat 79.70 10M 70.76 86M 61.65 31M 79.33 8M 88.14 23M 98.61
Linear 79.60 10M 69.68 86M 61.74 31M 79.42 8M 88.58 23M 98.58
Attention (MME) 79.86 10M 71.69 86M 61.23 31M 79.41 8M 88.34 23M 98.65
HME 81.60 12M 73.98 92M 62.09 35M 81.26 12M 92.01 30M 98.66
HME-Ensemble 82.44 20M 76.16 103M 62.80 43M 81.67 20M 92.84 40M 98.74

Table 4: Results on the development set of the LinCE benchmark. ‡ The results are taken from Aguilar et al.
(2020b). The number of parameters of mBERT (cased) is calculated by approximation.

NER POS

Method Avg Params Avg Perf.↑ HIN-ENG SPA-ENG MSA-EA HIN-ENG SPA-ENG

English BERT (cased)† 108M 75.80 74.46 61.15 59.44 87.02 96.92
mBERT (cased)‡ 177M 77.08 72.57 64.05 65.39 86.30 97.07
HME 36M 77.64 73.78 63.06 66.14 88.55 96.66
Char2Subword‡ 136M 77.85 73.38 64.65 66.13 88.23 96.88
XLM-MLMLARGE 572M 78.40 74.49 64.16 67.22 89.10 97.04
XLM-RBASE 278M 78.75 75.72 64.95 65.13 91.00 96.96
HME-Ensemble 45M 79.17 75.97 65.11 68.71 89.30 96.78
XLM-RLARGE 565M 80.96 80.70 69.55 65.78 91.59 97.18

Table 5: Results on the test set of the LinCE benchmark.‡ The results are taken from Aguilar et al. (2020b). † The
result is taken from the LinCE leaderboard.

tilingual models such as mBERT and XLM-R, we
find that HME models are able to obtain compet-
itive F1 scores while maintaining a 10x smaller
model sizes. This result indicates that pre-trained
multilingual word embeddings can achieve a good
balance between performance and model size in
code-switching tasks. Table 5 shows the models’
performance in the LinCE test set. The results are
highly correlated to the results of the development
set. XLM-RLARGE achieves the best-averaged per-
formance, with a 13x larger model size compared
to the HME-Ensemble model.

4.2 Model Effectiveness and Efficiency

Performance vs. Model Size As shown in Fig-
ure 2, the Scratch models yield the worst average
score, at around 60.93 points. With the smallest
pre-trained embedding model, FastText, the model
performance can improve by around 10 points com-
pared to the Scratch models and they only have
10M parameters on average. On the other hand,
the MME models, which have 31.6M parameters
on average, achieve similar results to the mBERT
models, with around 170M parameters. Interest-
ingly, adding subwords and character embeddings
to MME, such as in the HME models, further im-



148

10M 31.6M 100M 316.2M 1B
#Parameter (log scaled)

60

65

70

75

80

85
Av

g.
 S

co
re

 (%
)

MUSE
(ML EL)

Scratch (4L)

MUSE
(EL ML)

XLM-R
base

XLM-MLM
large

Scratch (2L)

XLM-R
large

mBERT
(cased)

HME

mBERT
(uncased)

HME
Ensemble

Char2Subword

MME

31.6M 100M 316.2M 1B
#Parameter (log scaled)

74

75

76

77

78

79

80

81

Av
g.

 S
co

re
 (%

)

XLM-R
large

mBERT

HME Char2Subword

XLM-R
base

HME
Ensemble

XLM-MLM
large

English BERT
(cased)

Figure 2: Validation set (left) and test set (right) evaluation performance (y-axis) and parameter (x-axis) of different
models on LinCE benchmark.

proves the performance of the MME models and
achieves a 81.60 average score, similar to that of
the XLM-RBASE and XLM-MLMLARGE models,
but with less than one-fifth the number of param-
eters, at around 42.25M. The Ensemble method
adds further performance improvement of around
1% with an additional 2.5M parameters compared
to the non-Ensemble counterparts.

Inference Time To compare the speed of differ-
ent models, we use generated dummy data with
various sequence lengths, [16, 32, 64, 128, 256,
512, 1024, 2048, 4096]. We measure each model’s
inference time and collect the statistics of each
model at one particular sequence length by run-
ning the model 100 times. The experiment is per-
formed on a single NVIDIA GTX1080Ti GPU. We
do not include the pre-processing time in our analy-
sis. Still, it is clear that the pre-processing time for
meta-embeddings models is longer than for other
models as pre-processing requires a tokenization
step to be conducted for the input multiple times
with different tokenizers. The sequence lengths are
counted based on the input tokens of each model.
We use words for the MME and HME models, and
subwords for other models.

The results of the inference speed test are shown
in Figure 3. Although all pre-trained contextualized
language models yield a very high validation score,
these models are also the slowest in terms of infer-
ence time. For shorter sequences, the HME model
performs as fast as the mBERT and XLM-RBASE
models, but it can retain the speed as the sequence
length increases because of the smaller model di-
mension in every layer. The FastText, MME, and
Scratch models yield a high throughput in short-
sequence settings by processing more than 150

16 32 64 128 256 512 1024 2048 4096
Sequence length (log scaled)

0

50

100

150

200

250

Av
g.

 S
pe

ed
 (s

am
pl

e/
se

co
nd

)

Attention (MME)
Concat
HME
Linear
mBERT (Cased)
FastText

Scratch (2L)
Scratch (4L)
XLM-MLM large
XLM-R base
XLM-R large

Figure 3: Speed-to-sequence length comparison of dif-
ferent models.

samples per second. For longer sequences, the
same behavior occurs, with the throughput of the
Scratch models reducing as the sequence length
increases, even becoming lower than that of the
HME model when the sequence length is greater
than or equal to 256. Interestingly, for the FastText,
MME, and HME models, the throughput remains
steady when the sequence length is less than 1024,
and it starts to decrease afterwards.

Memory Footprint We record the memory foot-
print over different sequence lengths, and use the
same setting for the FastText, MME, and HME
models as in the inference time analysis. We record
the size of each model on the GPU and the size of
the activation after performing one forward oper-
ation to a single sample with a certain sequence
length. The result of the memory footprint analy-
sis for a sequence length of 512 is shown in Table
6. Based on the results, we can see that meta-
embedding models use a significantly smaller mem-
ory footprint to store the model and activation mem-
ory. For instance, the memory footprint of the HME



149

model is less than that of the Scratch (4L) model,
which has only four transformer encoder layers, a
model dimension of 768 and a feed-forward dimen-
sion of 3,072. On the other hand, large pre-trained
language models, such as XLM-MLMLARGE and
XLM-RLARGE, use a much larger memory for stor-
ing the activation memory compared to all other
models. The complete results of the memory foot-
print analysis are shown in Appendix A.

Model Activation (MB)

FastText 79.0
Concat 85.3
Linear 80.8
Attention (MME) 88.0
HME 154.8
Scratch (2L) 133.0
Scratch (4L) 264.0
mBERT 597.0
XLM-RBASE 597.0
XLM-RLARGE 1541.0
XLM-MLMLARGE 1158.0

Table 6: GPU memory consumption of different mod-
els with input size of 512.

5 Related Work

Transfer Learning on Code-Switching Previ-
ous works on code-switching have mostly focused
on combining pre-trained word embeddings with
trainable character embeddings to represent noisy
mixed-language text (Trivedi et al., 2018; Wang
et al., 2018b; Winata et al., 2018c). Winata et al.
(2018a) presented a multi-task training framework
to leverage part-of-speech information in a lan-
guage model. Later, they introduced the MME in
the code-switching domain by combining multiple
word embeddings from different languages (Winata
et al., 2019a). MME has since also been applied
to Indian languages (Priyadharshini et al., 2020;
Dowlagar and Mamidi, 2021).

Meta-embeddings have been previously ex-
plored in various monolingual NLP tasks (Yin
and Schütze, 2016; Muromägi et al., 2017; Bol-
legala et al., 2018; Coates and Bollegala, 2018;
Kiela et al., 2018). Winata et al. (2019b) intro-
duced hierarchical meta-embeddings by leverag-
ing subwords and characters to improve the code-
switching text representation. Pratapa et al. (2018b)
propose to train skip-gram embeddings from syn-
thetic code-switched data generated by Pratapa

et al. (2018a). This improves syntactic and se-
mantic code-switching tasks. Winata et al. (2018b);
Lee et al. (2019); Winata et al. (2019d); Samanta
et al. (2019), and Gupta et al. (2020) proposed
a generative-based model for augmenting code-
switching data from parallel data. Recently,
Aguilar et al. (2020b) proposed the Char2Subword
model, which builds representations from charac-
ters out of the subword vocabulary, and they used
the module to replace subword embeddings that
are robust to misspellings and inflection that are
mainly found in a social media text. Khanuja et al.
(2020) explored fine-tuning techniques to improve
mBERT for code-switching tasks, while Winata
et al. (2020) introduced a meta-learning-based
model to leverage monolingual data effectively in
code-switching speech and language models.

Bilingual Embeddings In another line of works,
bilingual embeddings have been introduced
to represent code-switching sentences, such
as in bilingual correlation-based embeddings
(BiCCA) (Faruqui and Dyer, 2014), the bilin-
gual compositional model (BiCVM) (Hermann and
Blunsom, 2014), BiSkip (Luong et al., 2015), RC-
SLS (Joulin et al., 2018), and MUSE (Lample et al.,
2017, 2018), to align words in L1 to the correspond-
ing words in L2, and vice versa.

6 Conclusion

In this paper, we study multilingual language mod-
els’ effectiveness so as to understand their capa-
bility and adaptability to the mixed-language set-
ting. We conduct experiments on named entity
recognition and part-of-speech tagging on various
language pairs. We find that a pre-trained multi-
lingual model does not necessarily guarantee high-
quality representations on code-switching, while
the hierarchical meta-embeddings (HME) model
achieve similar results to mBERT and XLM-RBASE
but with significantly fewer parameters. Interest-
ingly, we find that XLM-RLARGE has better perfor-
mance by a great margin, but with a substantial
cost in the training and inference time, using 13x
more parameters than HME-Ensemble for only a
2% improvement.

Acknowledgments

This work has been partially funded by
ITF/319/16FP and MRP/055/18 of the Inno-
vation Technology Commission, the Hong Kong



150

SAR Government, and School of Engineering
Ph.D. Fellowship Award, the Hong Kong Uni-
versity of Science and Technology, and RDC
1718050-0 of EMOS.AI.

References
Gustavo Aguilar, Fahad AlGhamdi, Victor Soto, Mona

Diab, Julia Hirschberg, and Thamar Solorio. 2018.
Named entity recognition on code-switched data:
Overview of the calcs 2018 shared task. In Proceed-
ings of the Third Workshop on Computational Ap-
proaches to Linguistic Code-Switching, pages 138–
147.

Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.
2020a. Lince: A centralized benchmark for linguis-
tic code-switching evaluation. In Proceedings of
The 12th Language Resources and Evaluation Con-
ference, pages 1803–1813.

Gustavo Aguilar, Suraj Maharjan, Adrian Pastor López-
Monroy, and Thamar Solorio. 2017. A multi-task ap-
proach for named entity recognition in social media
data. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 148–153.

Gustavo Aguilar, Bryan McCann, Tong Niu, Nazneen
Rajani, Nitish Keskar, and Thamar Solorio. 2020b.
Char2subword: Extending the subword embed-
ding space from pre-trained models using ro-
bust character compositionality. arXiv preprint
arXiv:2010.12730.

Danushka Bollegala, Kohei Hayashi, and Ken-Ichi
Kawarabayashi. 2018. Think globally, embed lo-
cally: locally linear meta-embedding of words. In
Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence, pages 3970–3976.
AAAI Press.

Joshua Coates and Danushka Bollegala. 2018. Frus-
tratingly easy meta-embedding–computing meta-
embeddings by averaging source word embeddings.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 194–198.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Édouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Suman Dowlagar and Radhika Mamidi. 2021. Cm-
saone@ dravidian-codemix-fire2020: A meta em-
bedding and transformer model for code-mixed sen-
timent analysis on social media text. arXiv preprint
arXiv:2101.09004.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 462–471.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya.
2020. A semi-supervised approach to generate the
code-mixed text using pre-trained encoder and trans-
fer learning. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: Findings, pages 2267–2280.

Benjamin Heinzerling and Michael Strube. 2018.
Bpemb: Tokenization-free pre-trained subword em-
beddings in 275 languages. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC-2018).

Karl Moritz Hermann and Phil Blunsom. 2014. Mul-
tilingual models for compositional distributed se-
mantics. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 58–68, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In International Conference on Machine
Learning, pages 4411–4421. PMLR.

Armand Joulin, Piotr Bojanowski, Tomáš Mikolov,
Hervé Jégou, and Édouard Grave. 2018. Loss in
translation: Learning bilingual word mapping with a
retrieval criterion. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2979–2984.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. Gluecos: An evaluation benchmark for code-
switched nlp. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3575–3585.

https://doi.org/10.3115/v1/P14-1006
https://doi.org/10.3115/v1/P14-1006
https://doi.org/10.3115/v1/P14-1006


151

Douwe Kiela, Changhan Wang, and Kyunghyun Cho.
2018. Dynamic meta-embeddings for improved sen-
tence representations. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1466–1477.

John D Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, pages
282–289.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2017. Unsupervised ma-
chine translation using monolingual corpora only.
arXiv preprint arXiv:1711.00043.

Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Interna-
tional Conference on Learning Representations.

Grandee Lee, Xianghu Yue, and Haizhou Li. 2019.
Linguistically motivated parallel data augmentation
for code-switch language modeling. In INTER-
SPEECH, pages 3730–3734.

Zhaojiang Lin, Zihan Liu, Genta Indra Winata, Samuel
Cahyawijaya, Andrea Madotto, Yejin Bang, Etsuko
Ishii, and Pascale Fung. 2020. Xpersona: Eval-
uating multilingual personalized chatbot. arXiv
preprint arXiv:2003.07568.

Zihan Liu, Genta Indra Winata, Zhaojiang Lin, Peng
Xu, and Pascale Fung. 2020. Attention-informed
mixed-language training for zero-shot cross-lingual
task-oriented dialogue systems. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8433–8440.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In Proceedings of the
1st Workshop on Vector Space Modeling for Natural
Language Processing, pages 151–159, Denver, Col-
orado. Association for Computational Linguistics.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Avo Muromägi, Kairit Sirts, and Sven Laur. 2017. Lin-
ear ensembles of word embedding models. In Pro-
ceedings of the 21st Nordic Conference on Compu-
tational Linguistics, pages 96–104.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual bert? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4996–5001.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018a. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 1543–1553.

Adithya Pratapa, Monojit Choudhury, and Sunayana
Sitaram. 2018b. Word embeddings for code-mixed
language processing. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3067–3072, Brussels, Bel-
gium. Association for Computational Linguistics.

Ruba Priyadharshini, Bharathi Raja Chakravarthi,
Mani Vegupatti, and John P McCrae. 2020. Named
entity recognition for code-mixed indian corpus us-
ing meta embedding. In 2020 6th International Con-
ference on Advanced Computing and Communica-
tion Systems (ICACCS), pages 68–72. IEEE.

Bidisha Samanta, Sharmila Reddy, Hussain Jagirdar,
Niloy Ganguly, and Soumen Chakrabarti. 2019. A
deep generative model for code-switched text. arXiv
preprint arXiv:1906.08972.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018a. Language identification and
named entity recognition in hinglish code mixed
tweets. In Proceedings of ACL 2018, Student Re-
search Workshop, pages 52–58.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018b. A twitter corpus for hindi-english
code mixed pos tagging. In Proceedings of the Sixth
International Workshop on Natural Language Pro-
cessing for Social Media, pages 12–17.

Victor Soto and Julia Hirschberg. 2017. Crowdsourc-
ing universal part-of-speech tags for code-switching.
Proc. Interspeech 2017, pages 77–81.

Shashwat Trivedi, Harsh Rangwani, and Anil Kumar
Singh. 2018. Iit (bhu) submission for the acl
shared task on named entity recognition on code-
switched data. In Proceedings of the Third Work-
shop on Computational Approaches to Linguistic
Code-Switching, pages 148–153.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018a.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355.

Changhan Wang, Kyunghyun Cho, and Douwe Kiela.
2018b. Code-switched named entity recognition
with embedding attention. In Proceedings of the

https://openreview.net/forum?id=H196sainb
https://doi.org/10.3115/v1/W15-1521
https://doi.org/10.3115/v1/W15-1521
https://doi.org/10.18653/v1/D18-1344
https://doi.org/10.18653/v1/D18-1344


152

Third Workshop on Computational Approaches to
Linguistic Code-Switching, pages 154–158.

Bryan Wilie, Karissa Vincentio, Genta Indra Winata,
Samuel Cahyawijaya, Xiaohong Li, Zhi Yuan Lim,
Sidik Soleman, Rahmad Mahendra, Pascale Fung,
Syafri Bahar, et al. 2020. Indonlu: Benchmark and
resources for evaluating indonesian natural language
understanding. In Proceedings of the 1st Confer-
ence of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 843–857.

Genta Indra Winata, Samuel Cahyawijaya, Zhaojiang
Lin, Zihan Liu, Peng Xu, and Pascale Fung. 2020.
Meta-transfer learning for code-switched speech
recognition. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3770–3776.

Genta Indra Winata, Zhaojiang Lin, and Pascale Fung.
2019a. Learning multilingual meta-embeddings for
code-switching named entity recognition. In Pro-
ceedings of the 4th Workshop on Representation
Learning for NLP (RepL4NLP-2019), pages 181–
186.

Genta Indra Winata, Zhaojiang Lin, Jamin Shin, Zihan
Liu, and Pascale Fung. 2019b. Hierarchical meta-
embeddings for code-switching named entity recog-
nition. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3532–3538.

Genta Indra Winata, Andrea Madotto, Zhaojiang Lin,
Jamin Shin, Yan Xu, Peng Xu, and Pascale Fung.
2019c. Caire_hkust at semeval-2019 task 3: Hierar-
chical attention for dialogue emotion classification.
In Proceedings of the 13th International Workshop
on Semantic Evaluation, pages 142–147.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2018a. Code-switching
language modeling using syntax-aware multi-task
learning. In Proceedings of the Third Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 62–67.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2018b. Learn to code-switch:
Data augmentation using copy mechanism on lan-
guage modeling. arXiv preprint arXiv:1810.10254.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019d. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271–280.

Genta Indra Winata, Chien-Sheng Wu, Andrea
Madotto, and Pascale Fung. 2018c. Bilingual char-
acter representation for efficiently addressing out-of-
vocabulary words in code-switching named entity

recognition. In Proceedings of the Third Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 110–114.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
bert. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844.

Wenpeng Yin and Hinrich Schütze. 2016. Learning
word meta-embeddings. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1351–1360.

A Memory Footprint Analysis

We show the complete results of our memory foot-
print analysis in Table 7.



153

Model Activation (MB)
16 32 64 128 256 512 1024 2048 4096

FastText 1.0 2.0 4.0 10.0 26.0 79.0 261.0 941.0 3547.0
Linear 1.0 2.0 4.0 10.0 27.4 80.8 265.6 950.0 3562.0
Concat 1.0 2.0 5.0 11.2 29.2 85.2 274.5 967.5 3596.5
Attention (MME) 1.0 2.0 5.4 12.4 31.0 89.0 283.2 985.6 3630.6
HME 3.2 6.6 13.4 28.6 64.2 154.8 416.4 1252.0 4155.0
Scratch (2L) 2.0 4.0 8.0 20.0 46.0 133.0 - - -
Scratch (4L) 3.0 7.0 15.0 38.0 90.0 264.0 - - -
mBERT (uncased) 10.0 20.0 41.0 100.0 218.0 597.0 - - -
XLM-RBASE 10.0 20.0 41.0 100.0 218.0 597.0 - - -
XLM-RLARGE 25.0 52.0 109.0 241.0 579.0 1541.0 - - -
XLM-MLMLARGE 20.0 42.0 89.0 193.0 467.0 1158.0 - - -

Table 7: Memory footprint (MB) for storing the activations for a given sequence length.


