
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas, pages 122–130
June 11, 2021. ©2021 Association for Computational Linguistics

122

Restoring the Sister:
Reconstructing a Lexicon from Sister Languages

using Neural Machine Translation

Remo Nitschke
The University of Arizona

nitschke@email.arizona.edu

Abstract

The historical comparative method has a long
history in historical linguists. It describes a
process by which historical linguists aim to
reverse-engineer the historical developments
of language families in order to reconstruct
proto-forms and familial relations between lan-
guages. In recent years, there have been multi-
ple attempts to replicate this process through
machine learning, especially in the realm of
cognate detection (List et al., 2016; Ciobanu
and Dinu, 2014; Rama et al., 2018). So far,
most of these experiments aimed at actual re-
construction have attempted the prediction of
a proto-form from the forms of the daughter
languages (Ciobanu and Dinu, 2018; Meloni
et al., 2019). Here, we propose a reimple-
mentation that uses modern related languages,
or sisters, instead, to reconstruct the vocabu-
lary of a target language. In particular, we
show that we can reconstruct vocabulary of a
target language by using a fairly small data
set of parallel cognates from different sister
languages, using a neural machine translation
(NMT) architecture with a standard encoder-
decoder setup. This effort is directly in fur-
therance of the goal to use machine learning
tools to help under-served language communi-
ties in their efforts at reclaiming, preserving,
or reconstructing their own languages.

1 Introduction

Historical linguistics has long employed the his-
torical comparative method to establish familial
connections between languages and to reconstruct
proto-forms (cf. Klein et al., 2017b; Meillet, 1967).
More recently, the comparative method has been
employed by revitalization projects for lexical re-
construction of lost lexical items (cf. Delgado et al.,
2019). In the particular case of Delgado et al.
(2019), lost lexical items of the target language are
reconstructed by using equivalent cognates of still-
spoken modern sister languages, i.e., languages in

the same language family that share some estab-
lished common ancestor language and a significant
amount of cognates with the target language. By
reverse-engineering the historical phonological pro-
cesses that happened between the target language
and the sister-languages, one can predict what the
lexical item in the target language should be. This
is essentially a twist on the comparative method, us-
ing the same principles, but to reconstruct a modern
sister, as opposed to a proto-antecedent.

While neural net systems have been used to em-
ulate the historical comparative method1 to recon-
struct proto-forms (Meloni et al., 2019; Ciobanu
and Dinu, 2018) and for cognate detection (List
et al., 2016; Ciobanu and Dinu, 2014; Rama et al.,
2018), there have not, to the best of our knowl-
edge, been any attempts to use neural nets to pre-
dict/reconstruct lexical items of a sister language
for revitalization/reconstruction purposes.

Meloni et al. (2019) report success for a similar
task (reconstructing Latin proto-forms) by using
cognate pattern lists as a training input. Instead of
reconstructing Latin proto-forms from only Italian
roots, they use Italian, Spanish, Portuguese, Roma-
nian and French cognates of Latin, i.e., mapping
from many languages to one. As our intended use-
case (see section 1.1) is one that suffers from data
sparsity, we explicitly explore the degree to which
expanding the list of sister-languages in the many-
to-one mapping can compensate for fewer available
data-points. Since the long-term goal of this project
is to aid language revitalization efforts, the question
of available data is of utmost importance. Machine
learning often requires vast amounts of data, and
languages which are undergoing revitalization usu-
ally have very sparse amounts of data available.
Hence, the goal for a machine learning approach

1Due to the nature of neural nets we do not know whether
these systems actually emulate the historical comparative
method or not. What is meant here is that they were used
for the same tasks.



123

here is not necessarily the highest possible accu-
racy, but rather the ability to operate with as little
data as possible, while still retaining a reasonable
amount of accuracy.

Our particular contributions are:

1. We demonstrate an approach for reframing the
historical comparative method to reconstruct a
target language from its sisters using a neural
machine translation framework. We show that
this can be done with easily accessible open
source frameworks such as OpenNMT (Klein
et al., 2017a).

2. We provide a detailed analysis of the degree to
which inputs from additional sister languages
can overcome issues of data sparsity. We find
that adding more related languages allows
for higher accuracy with fewer data points.
However, we also find that blindly adding lan-
guages to the input stream does not always
yield said higher accuracy. The results sug-
gest that there needs to be a significant amount
of cognates with the added input language and
the target language.

1.1 Intended Use-Case and Considerations
This experiment was designed with a specific use-
case in mind: Lexical reconstruction for language
revitalization projects. Specifically, the situation
where this type of model may be most appli-
cable would be a language reclamation project
in the definition of Leonhard (2007) or a lan-
guage revival process in the definition of Mc-
Carty and Nicholas (2014). In essence, a lan-
guage where there is some need to recover or re-
construct a lexicon. An example of such a case
might be the Wampanoag language reclamation
project (https://www.wlrp.org/), or com-
parable projects using the methods outlined in Del-
gado et al. (2019).

As this is a proof-of-concept, we use the
Romance language family, specifically the non-
endangered languages of French, Spanish, Italian,
Portuguese and Romanian, and operate under as-
sumption that these results can inform how one can
use this approach with other languages of interest.
However, we are aware that the Romance language
morphology may be radically different from some
of the languages that may be in the scope of this
use case, such as agglutinative and polysynthetic
languages, and that we cannot fully predict the per-
formance of this type of system for such languages

from the Romance example. Regardless of this,
some insights gained here will still be applicable in
those cases, such as the question of compensating
lack of data by using multiple languages.

Languages that are the focus of language revital-
ization projects are typically not targets for deep
learning projects. One of the reasons for this is the
fact that these languages usually do not have large
amounts of data available for training state of the
art neural approaches. These systems need large
amounts of data, and Neural Machine Translation
systems, as the one used in this project, are no ex-
ception. For example, Cho et al. (2014) use data
sets varying between 5.5million and 348million
words. However, the task of proto-form reconstruc-
tion, which is really a task of cognate prediction,
can be achieved with fairly small datasets, if par-
allel language input is used. This was shown by
Meloni et al. (2019), whose system predicted 84%
within an edit distance of 1, meaning that 84%
of the predictions were so accurate that only one
or 0 edits were necessary to achieve the true tar-
get. For example, if the target output is “grazie",
the machine might predict “grazia" (one edit) or
"grazie" (0 edits). Within a language revitalization
context, this level of accuracy would actually be a
very good outcome. In this scenario, a linguist or
speaker familiar with the language would vet the
output regardless, so small edit distances should
not pose a big problem. Further, all members of a
language revitalization project or language commu-
nity would ultimately vet the output, as they would
make a decision on whether to accept or reject the
output as a lexical item of the language.

This begs the question of why a language revital-
ization project would want to go through the trou-
ble of using such an algorithm in the first place, if
they have someone available to vet the output, then
that person may as well do the reconstructive work
themselves, as proposed in Delgado et al. (2019).
This all depends on two factors: First, how high is
the volume of lexical items that need to be recon-
structed or predicted? The effort may not be worth
it for 10 or even a 100 lexical items, but beyond
this an neural machine translation model can poten-
tially outperform the manual labor. Once trained,
the model can make thousands of predictions in
minutes, as long as input data is available.

Second, and potentially more important, it will
depend on how well the historical phonological re-
lationships between the languages are understood.

https://www.wlrp.org/


124

Spanish French Portuguese Romanian Italian (target) status
1 - -esque -e:scere - - removed, no target
2 mosto moût mosto must mosto
3 - - - - lugano removed, no input
4 párrafo - - - paragrafo
5 -edad - -idade -itate -ità

Table 1: Examples of data patterns, including types of data removed during cleanup (e.g., rows 1 and 3).

For a family like Romance, we have a very good
understanding of the historical genesis of the lan-
guages and the different phonological processes
they underwent, see for example Maiden et al.
(2013). However, there are many language fam-
ilies in the world where these relationships and
histories are less than clear. In such situations, a
machine learning approach would be beneficial, be-
cause the algorithm learns2 the relationships for us
and gives predictions that just need to be vetted.

Under this perspective, the best model might not
necessarily be the one that produces the most ac-
curate output, but perhaps the one that produces
the fewest incorrigible mistakes. An incorrigible
mistake here would be the algorithm predicting an
item that is completely unrelated to the target root
e.g., predicting “cinque” for a target of “grazie”).
Further, ease of usability and accessibility will be
another factor for this kind of use-case, as not ev-
ery project of this type will have a computational
linguist to call on. Hence, another aim should be
a low-threshold for reproducability and the utiliza-
tion of easy to use open-source frameworks. In the
spirit of the latter, all data and code necessary to
reproduce the results are open-source and freely
available. This paper is intended for computational
linguists and linguists and/or community members
who are involved with projects surrounding lan-
guages which might benefit from this approach.
As such, it is written with both audiences in mind,
with Section 6 (“Warning Labels for Interested Lin-
guists") specifically aimed at linguists and commu-
nity members interested in a potential application
of this method.

2 The Dataset

The data set used for this experiment was provided
by Shauli Rafvogel of Meloni et al. (2019). The ini-
tial set consisted of 5420 lines of cognate sextuples
of the Romance language family, specifically: Ro-

2Or, rather, it interprets.

Continental Romance

Italo Western Romance

Italian Western Romance

West-Ibero Romance

Spanish Portuguese

Gallo-Rhaetian

French

Eastern Romance

Balkan Romance

Romanian

Figure 1: An abridged family tree of the relevant
Romance languages. Adapted from glottolog (Ham-
marström et al., 2020).

manian, French, Spanish, Portuguese, Italian and
Latin. As the aim for this experiment was to recon-
struct from sister languages to a sister language, the
Latin items were removed from the set and instead
Italian was chosen to be the target language for the
experiment, since it had the most complete pattern
with respect to the other languages in the set. Table
1 illustrates the types of lines present in the initial
dataset.

Lines with no target and lines with no input were
removed. Lines where there was a target but no
input (row 3) were also removed, as well as lines
where there was input but no target (line 1). After
the removal of all lines which lead to empty pat-
terns in the Italian set, and all lines which were
empty patterns in the input, 3527 remained. From
these, 2466 lines were taken as training data, 345
were taken for validation, and 717 were set aside
for testing.

Meloni et al. (2019) use both an orthographic
and an IPA data set, and show that the orthographic
set yielded more accurate results. Here, we use
only orthographic representations, which we prefer
not for accuracy, but because orthographic datasets
are more easily acquired for most languages, par-
ticularly those of interest in language reclamation
projects. If both an IPA set and an orthographic set
are available, one may attempt using both to boost
the accuracy of the results. Chen (2018) showed

https://github.com/remo-help/Restoring_the_Sister
https://github.com/remo-help/Restoring_the_Sister
https://github.com/remo-help/Restoring_the_Sister


125

that this is possible with glossing data in the case
of sentence level neural machine translation. We
will discuss this implementation in Section 5.2.

See Figure 1 for a very simplified phylogenetic
tree representation of the familial relations of the
Romance languages used in this dataset. This tree
was constructed using data from glottolog (Ham-
marström et al., 2020), and is included just for
illustrative purposes and not as a statement about
the phylogeny of Romance languages.3

3 Experimental Setup

This experiment was run using the OpenNMT-
pytorch neural machine translation (Klein et al.,
2017a) framework, using the default settings (a 2-
layer LSTM with 500 hidden units on both the en-
coder and decoder). The opennmt-py default setup
was chosen intentionally; the envisioned use-case
requires an easily reproducable approach for inter-
ested users or communities who might profit from
using this method for their own purposes, but who
don’t necessarily have deep expertise in machine
learning or tuning neural models. A publicly avail-
able toolkit, like opennmt, and a no-configuration
setup helps lower the bar to entry for these parties.

Neural machine translation (NMT) frameworks
are designed to translate sentences from one lan-
guage to another, but they can be used for a number
of sequential data tasks (Neubig, 2017). One such
task is the prediction of a cognate from a set of in-
put words, as used here. These frameworks are typ-
ically an encoder-decoder setup, where both the en-
coder and decoder are often implemented as LSTM
(Long Short-Term Memory) networks (Hochreiter
and Schmidhuber, 1997), which have the advantage
of effectively capturing long-distance dependencies
(Neubig, 2017). In an encoder-decoder setup, the
encoder reads in the character based input represen-
tation and transforms it into a vector representation.
The decoder takes this vector representation and
transforms it into a character based output repre-
sentation (Cho et al., 2014).

NMT frameworks also employ a “vocabulary"
set, which contains vocabulary of the language that
is being translated from and vocabulary of the lan-
guage that is being translated to. The size of this
vocabulary is often an issue for the effectiveness
of NMT models (Hirschmann et al., 2016). In our

3We also acknowledge that tree representations are not nec-
essarily the most accurate way to represent these relationships
(Kaylan and François, 2019).

case, the source vocabulary simply contains all of
the characters that occur in all the input language
examples and the target vocabulary contains the
characters that occur in the target language exam-
ple. To illustrate: if this task was about predicting
English words, then the target vocabulary would
contain all the letters of the English alphabet.

3.1 Input Concatenation
Since the input in our case is a list of cognates
from different languages, we need to consider how
we feed this input to the machine. There are two
obvious options for this task. We can either feed
the cognates one by one, or we can merge the cog-
nates first, before feeding them to the machine. In
this experiment, we merge the words character by
character to construct the input lines. This means
that for every line in the input, the first character
of each word was concatenated, then the second
character of each word was concatenated, and so
on. For an illustration:

(1) patterns in the input: aille, alha, al, aie

(2) target patterns: aglia

(3) input: aaaaillilhelae

(4) target: aglia

This merging delivered marginally better results
than simple concatenation in early testing, which is
why it was selected. It is unclear as to why this is
the case. We suspect that the merged input makes it
easier for the model to recognize if the same char-
acters appear in the same position of the input, as is
the case with "a" in the initial position in the above
example. However, we are cautious to recommend
this input representation in general, because differ-
ent morphologies may be better represented in a
concatenation.

3.2 Different Training Setups
To determine the performance gains from simply
having more data versus having data from more
languages, we create several training scenarios.
In each, we use the same aforementioned 2-layer
LSTM. To understand the benefit of additional lan-
guage, we first train with the entire training set with
all four languages, then successively remove lan-
guages from the input set until only one remains.
Next, to compare this to the impact of simply hav-
ing fewer data points, but from all languages, we
generate several impoverished versions of the data
set. For these impoverished versions, lines were



126

removed randomly4 from the set reducing the data
by 70%, 50%, 30% and 10% respectively.

4 Evaluation Measures

Machine translation is usually evaluated using the
BLEU (Papineni et al., 2002) score, but BLEU is
designed with sentence level translations in mind.
We instead evaluate the output according to edit
distance in the style of Meloni et al. (2019) by
calculating the percentage of the output which is
within a given edit distance. In addition to this
metric, we also use a custom evaluation metric
designed to emphasize the usability of the output
for the intended use-case, i.e., as predictions to be
vetted by an expert to save time over doing the
entire analysis manually. In order to calculate this
score, we calculate the Damerau-Levenshtein edit
distance to the target for each word and assign
weights to them by their edit distance. That is:

score = (a+ b ∗ .9 + c ∗ .8 + d ∗ .7 + e ∗ .6)/t

where a is number of predictions with distance 0, b
is the number with distance 1, c is the number with
distance 2, d is the number with distance 3, e the
number with distance 4, and t is the total number
of predictions. As an example, consider a scenario
where there are three predicted cognates. If system
1 produces 3 output patterns within an edit distance
of 2, it would receive a score of 0.8. If system 2
produces two output patterns with edit distance 0
and one within a distance of 5, this would result in
a score of 0.67.

The logic behind this metric is that any predic-
tion with an edit distance larger than 4 edits is
essentially useless for the proposed task. Since
such a large edit distance essentially constitutes
an incorrigible mistake as mentioned in (Section
1.1). The edit distance of 4 constitutes an arbitrary
cut-off to a degree, but it allows us a simple and in-
formative evaluation metric for our use case. This
metric will rank a model that has a large number
of items in a and a large number of items beyond 4
edits lower than a model with items mostly in the
b-d range. Presumably, the latter is more useful to
the task, as small errors can be adjusted by linguists
or language users.

Using this metric, we can rank different input
combinations according to their assumed useful-

4This was done by simply removing every nth line depend-
ing on how much reduction was needed.

ness to the task of lexical reconstruction for revital-
ization purposes.

5 Results

Table 2 shows the edit distance percentages and
scores of different runs at 10,000 steps of train-
ing.5 We can compare the difference in outcome
between using fewer languages in the input versus
using less input lines overall. This addresses the
question of whether adding multiple languages to
the input helps compensate for fewer data points
(cognate pairs). The runs with successively reduced
numbers of languages (top half of the table), are all
trained with all available input lines (2466) but ex-
cluding specific columns/languages. The “reduced
input" runs (bottom half of the table), on the other
hand, are done with all four languages but with
fewer cognates, by excluding rows. These runs had
the following amount of training input lines: 10%:
2220 lines of input, 30%: 1793 lines of input, 50%:
1345 lines of input, 70%: 896 lines of input (recall
that the total number of input lines available for
training was 2466). All runs were tested on the
same testing data target.

In Table 2 (see following page), we can observe
that, unsurprisingly, the training sample with the
most languages and data (Span-Fre-Port-Ro) per-
forms best. 44.6% within edit distance 0 means
that almost half the predictions the machine makes
are correct. In terms of accuracy, this is not in-
credible, Meloni et al. (2019) report 64.1% within
edit distance 0. However, considering that we are
using a data set approximately a third the size of
theirs for training (2466 cognates compared with
7038), the performance is surprisingly good. The
more important measure for the intended use-case
is the fact that over 80% of items are within an edit
distance of 3, meaning that of the output produced,
80% need only three edits or fewer to meet the
target.

We can also observe that the performance suc-
cessively drops as we remove languages, with the
Spanish only6 performing worst. However, the
way in which this performance drops is not en-
tirely transparent. It appears that in terms of scor-
ing, the Spanish-French (Spa-Fre) sample actu-

5One step of training means that the algorithm has gone
through one batch of input lines. The default batch-size for
opennmt is 64.

6Spanish only was only trained for 5000 steps, as the model
plateaus around 1000 steps. The performance of the Spanish
only model was measured every 500 steps for Figure 2.



127

Edit Distance 0 ≤1 ≤ 2 ≤3 ≤4 score

Span-Fre-Port-Ro 44.63% 57.74% 69.6% 80.33% 88.42% 0.82
Span-Fre-Port 42.68% 53.27% 68.34% 77.68% 84.94% 0.78
Span-Port-Ro 42.54% 53.28% 66.39% 74.76% 81.59% 0.75
Span-Fre 39.9% 50.9% 63.88% 74.62% 83.4% 0.76
Spanish only 35.6% 47.98% 60.25% 69.03% 74.76% 0.68

10% Reduced Input 40.17% 54.25% 69.6% 81.31% 87.59% 0.8
30% Reduced Input 39.75% 50.91% 66.11% 73.36% 83.12% 0.77
50% Reduced Input 33.19% 45.61% 60.95% 71.27% 82.4% 0.75
70% Reduced Input 17.02% 26.08% 41% 50.77% 65.97% 0.59

Table 2: Edit distance percentiles at 10,000 training steps. Shown are the results from using all data points with
different combinations of languages (top), as well as using all languages but with random downsampling of the
data from each (bottom). All scores are calculated from the testing data.

ally performs better than the Spanish-Portuguese-
Romanian sample. Further, while Span-Port-Ro
has significantly better values in the 0-2 edit range,
it is outperformed by Span-Fre in terms of score
because Span-Fre has more items in the ≤ 4 edit
range.

The noticeable difference between Span-Fre-
Port and Span-Port-Ro is surprising and warrants
some examination. The likely explanation is
twofold. First, The Romanian set is the one with
the most empty patterns. The Romanian training
data only includes 930 filled patterns, in compar-
ison, Portuguese includes 1905 patterns, French
includes 1790, and Spanish has 2125. It may be
the case that the Romanian data is too small in
comparison with the others to have a significant
impact on the outcome. The other factor may be
that Romanian is phylogenetically the most distant
from the target language (Italian) (Figure 1).

This becomes even more apparent in Figure 2,
which. shows the performance of different models
over time.7 Here we can observe that there is hardly
any difference between the performance of Span-
Fre-Port-Ro and Span-Fre-Port over time, and it
is only at 10,000 steps that they start to diverge.
This divergence at the 10,000 step mark is likely
random, the graph suggest that their overall per-
formance is almost identical in regards to scoring.
Another point in this direction are the seemingly
convergent graphs of Span-Fre and Span-Port-Ro,
suggesting that there is no difference between us-
ing 2 or 3 languages as input if the third language

7This can give a better representation of the performance,
because a neural net constantly adjusts its weights, so looking
at just one point in time can be deceiving.

Figure 2: Performance at different training steps for
models with different combinations of input languages,
plotted by custom score. All scores are calculated from
the testing data.

is Romanian.
Discounting the performance of the exclu-

sion/inclusion of Romanian, we can observe that
performance overall tends to increase with each
parallel language added. This is especially evident
with the obvious drop-off in performance of the
Spanish only input. If we assume that Romanian
has no impact, then we can see that 3 languages
(blue and orange) perform similarly and two lan-
guages (red and green) perform similarly, and there
is an obvious drop-off between those two patterns.
This suggests that using parallel language input can
compensate smaller datasets.

Due to the small dataset, the scores plateau fairly
early, around the 3000 epoch mark for most. This



128

Figure 3: Performance of models trained on all four lan-
guages, but with varying levels of downsampled data.
Included for comparison are models trained with all
data on different language combinations. Plotted is the
custom score over steps. Scores are calculated every
1000 training steps. All models were run on OpenNMT-
py default parameters.

suggests that it would be sufficient to run these
models at 3000 epochs, which would save some
time on low-end hardware. However, with these
small datasets, training time should rarely exceed
5 hours on consumer grade PCs.8

5.1 Parallel Languages vs Input Reduction
Let us now consider the second question of this
paper: Can parallel language input compensate for
small dataset size? We know that performance re-
duces if we reduce the number of languages in the
input mix. Now we compare this drop-off to the
reduction in performance caused by reducing the
overall amount of input data. This can be seen in
Figure 3, which shows the performance at differ-
ent training steps for models trained on decreasing
amounts of data. Included for comparison are mod-
els trained on all data using all four (Span-Fra-Port-
Ro), three (Span-Port-Ro), and one (Span) input
language.9

First, we observe that a 10% reduction in training
data (grey) does not seem to have a strong impact,
as this performs mostly equal to Span-Fre-Port-

8These were trained on an i5-5200 CPU with 2.2GHz, and
training took anywhere between 4-7 hours for 10,000 steps.

9Since in Figure 2 we observe that Span-Port-Ro and Span-
Fre perform quite similarly, and Span-Fre-Port performs simi-
larly to Span-Fre-Port-Fro, to make the graph easier to read,
we remove Span-Fre and Span-Fre-Port from this graph.

Ro. Further, we can see is that the 30% reduced
case performs marginally better than Span-Port-
Ro. This is a good result, as it suggests that we
can compensate for a fair amount of data by using
additional languages. Essentially, in this case we
can observe that removing a language from the
input can be equivalent to removing 30% of the
input or more. Even the 50% reduced case (brown)
still performs better than using just one language
(Spanish only).

The extreme fall-off between the 50% reduction
and the 70% reduction suggests that there is some
point beyond which even multiple languages can-
not compensate for lack of data points. Where
this fall-off point is exactly, will likely fluctuate
depending on the data set.

5.2 Potential Improvements

Chen (2018) shows that neural machine translation
tasks can be greatly improved by adding glossing
data to the input mix (We will gloss over the techni-
cal details of the implementation here). While there
is no direct equivalent to the gloss-sentence rela-
tionship, there might be a close analog for words:
phonetic transcriptions. Orthography may be con-
servative and often misleading, but phonetic repre-
sentations are not.

Meloni et al. (2019) use a phonetic dataset in
their experiment, but they map from phonetic rep-
resentations to phonetic representations, so their
input and their target items are represented in IPA.
This performs worse than the orthographic task. An
interesting further experiment would be to blend
orthographic representations and phonetic repre-
sentations in the input, in the style of Chen (2018),
mapping that to an orthographic output. This would
be a close analog to the sentence-gloss to sentence
mapping that Chen (2018) reports success with.

One thing to consider, is that this may be not
ideal for the use-case. Phonetic datasets are not
easy to produce and the orthography is often more
readily available. While this might improve per-
formance, needing a phonetic as well as an ortho-
graphic dataset would likely increase the threshold
of reproducability for interested parties.

6 Warning Labels for Interested
Linguists

There are some important aspects of this kind of
approach that linguists, or community members
who are interested in utilizing it for their purposes,



129

should be aware of.
There are certain things that this type of ap-

proach can and cannot do for a community or
project. The model does not so much reconstruct a
word for the community, but rather proposes what
the word could be, according to the data it has been
fed. The model will propose these recommenda-
tions on the basis of an abstract notion of what
the historic phonological and morphological differ-
ences are between languages ABC and language
D. This does not necessarily mean that the model
learns or understands the historical phonological
and morphological processes that separate the input
sister languages from the target languages. It has
simply learned a way to generalize from the input
to the output with some degree of accuracy. What
is learned need not necessarily overlap with what
linguists believe to have happened.

Therefore, this type of model will only ever gen-
erate cognates of the input. It cannot generate novel
items. This is an important factor to consider for
any community or linguist planning on using this
approach.

Consider the following case: Imagine we are
trying to use this approach to reconstruct English
from other Germanic languages. A large part of
the English lexicon is not of Germanic ancestry.
However, any lexicon we would try to reconstruct
using this trained algorithm would give us approxi-
mations of a Germanic derived lexeme for the word
we are trying to reconstruct. This is a potentially
undesirable effect of the way the model was trained.
Linguists and interested community members need
to be aware of this and implement their own quality
control.

However, this approach can potentially be useful
for any language project where a community and
or linguists are working with an incomplete lexicon
for a language. The prerequisite for this being a
useful tool in such a scenario is the assumption
that the sister languages to the target language are
somewhat well documented and have at least dictio-
naries available from which data can be extracted.
A final prerequisite is the presence of minimally a
small dictionary of the target language.

The model would then be trained using the sis-
ter languages as input, and the target language list
as a target output. After training confirms a rea-
sonable accuracy, the model can then be fed with
other known words in the sister language to get a
prediction of those words in the target language.

After producing said output, the linguist, or lan-
guage community, needs to subject the output to a
quality control and decide on a series of questions:
Do the output patterns match what we know of the
target language? Can we assume that these words
are cognates in the target language, or is there some
evidence that other forms were present? Finally,
if this is used by a community to fill in empty pat-
terns in their language, the community needs to
decide whether the output is something that the
community wants in their language. The algorithm
is not infallible, and only proposes. Ultimately, a
language community using this tool must make a
decision whether to accept or reject the algorithm’s
recommendations.

7 Conclusions

In this paper, we have shown that NMT frame-
works can be used to predict cognates of a target
language from cognates of its sister languages. We
have further shown that adding or removing input
languages has interesting effects on the accuracy of
the model. This indicates that we can use additional
sister languages to compensate the lack of data in
a given situation, though, as demonstrated in the
case of Romanian, we cannot blindly add sister
languages, nor assume that all additions are equally
useful. This might be a promising method for situ-
ations where not a lot of data is present, but there
are multiple well-documented related languages of
the target language.

The next step for this line of research is to move
from a proof of concept to an implementation in
an actual language revitalization scenario. This is
something we are currently working on. A further
question that need to be addressed as well, is how
well this approach performs with languages that
exhibit a different morphology from the Romance
languages, such as agglutinative and polysynthetic
languages.

All code and data used for this project are open-
source and can be found here, in order to reproduce
these results.

Something we would like to address in this final
paragraphs is that machine learning is a potential
tool. Like every tool, it has its uses and cases where
it is not useful. The decision of using such a tool
to expand the lexicon of a language is a decision of
that language community, and not of a linguist.

https://github.com/remo-help/Restoring_the_Sister


130

Acknowledgements

The author would like to thank the anonymous re-
viewers for their comments and give special thanks
to Becky Sharp for helping with last minute edits.

References
Yuan Lu Chen. 2018. Improving Neural Net Ma-

chine Translation Systems with Linguistic Informa-
tion. Phd thesis, University of Arizona.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. CoRR, abs/1409.1259.

Alina Maria Ciobanu and Liviu P. Dinu. 2014. Auto-
matic detection of cognates using orthographic align-
ment. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 99–105, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Alina Maria Ciobanu and Liviu P. Dinu. 2018. Ab ini-
tio: Automatic Latin proto-word reconstruction. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 1604–1614, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Leighton Delgado, Irene Navas, Conor Quinn, Tina
Tarrant, Wunetu Tarrant, and Harry Wallace. 2019.
Digital documentation training for long island al-
gonquian community language researchers: a new
paradigm for community linguistics. Presented
at: 51st Algonquian Conference, McGill University,
Montréal, QC, 24-27 October.

Harald Hammarström, Robert Forkel, Martin Haspel-
math, and Sebastian Bank. 2020. Glottolog 4.3.
Jena.

Fabian Hirschmann, Jinseok Nam, and Johannes
Fürnkranz. 2016. What makes word-level neural
machine translation hard: A case study on English-
German translation. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pages 3199–
3208, Osaka, Japan. The COLING 2016 Organizing
Committee.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9.

Siva Kaylan and Alexandre François. 2019. Freeing
the comparative method from the tree model: A
framework for historical glottometry. In Let’s talk
about trees: Genetic relationships of languages and
their phylogenetic representation. Cambridge Uni-
versity Press, online.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017a. Opennmt:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Jared Klein, Brian Joseph, and Matthias Fritz. 2017b.
Handbook of Comparative and Historical Indo-
European Linguistics : An International Handbook.
De Gruyter, Berlin.

Wesley Y. Leonhard. 2007. Miami Language Reclama-
tion in the Home: A Case Study. Phd thesis, Univer-
sity of California, Berkeley.

Johann-Mattis List, Philippe Lopez, and Eric Bapteste.
2016. Using sequence similarity networks to iden-
tify partial cognates in multilingual wordlists. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 599–605.

M. Maiden, J. Smith, and A. Ledgeway, editors. 2013.
The Cambridge History of the Romance Languages,
volume 2. Cambridge University Press, Cambridge.

Teresa L. McCarty and Sheilah E. Nicholas. 2014. Re-
claiming indigenous languages: A reconsideration
of the roles and responsibilities of schools. Review
of Research in Education, 31.

Antoine Meillet. 1967. The comparative method in
historical linguistics. Librairie Honoré Champion,
Paris.

Carlo Meloni, Shauli Ravfogel, and Yoav Goldberg.
2019. Ab antiquo: Proto-language reconstruction
with rnns.

Graham Neubig. 2017. Neural machine translation and
sequence-to-sequence models: A tutorial. CoRR,
abs/1703.01619.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Taraka Rama, Johann-Mattis List, Johannes Wahle,
and Gerhard Jäger. 2018. Are automatic meth-
ods for cognate detection good enough for phyloge-
netic reconstruction in historical linguistics? CoRR,
abs/1804.05416.

http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
https://doi.org/10.3115/v1/P14-2017
https://doi.org/10.3115/v1/P14-2017
https://doi.org/10.3115/v1/P14-2017
https://www.aclweb.org/anthology/C18-1136
https://www.aclweb.org/anthology/C18-1136
http://www.conormquinn.com/DigitalDocumentationTraining.pdf
http://www.conormquinn.com/DigitalDocumentationTraining.pdf
http://www.conormquinn.com/DigitalDocumentationTraining.pdf
https://doi.org/10.5281/zenodo.4061162
https://www.aclweb.org/anthology/C16-1301
https://www.aclweb.org/anthology/C16-1301
https://www.aclweb.org/anthology/C16-1301
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P16-2097
https://doi.org/10.18653/v1/P16-2097
http://arxiv.org/abs/1908.02477
http://arxiv.org/abs/1908.02477
http://arxiv.org/abs/1703.01619
http://arxiv.org/abs/1703.01619
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1804.05416
http://arxiv.org/abs/1804.05416
http://arxiv.org/abs/1804.05416

