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Abstract

Despite their impressive performance in NLP,
self-attention networks were recently proved
to be limited for processing formal languages
with hierarchical structure, such as Dyck,,, the
language consisting of well-nested parenthe-
ses of k types. This suggested that natural
language can be approximated well with mod-
els that are too weak for formal languages, or
that the role of hierarchy and recursion in nat-
ural language might be limited. We qualify
this implication by proving that self-attention
networks can process Dyck;, p, the subset of
Dyck,, with depth bounded by D, which ar-
guably better captures the bounded hierarchi-
cal structure of natural language. Specifically,
we construct a hard-attention network with
D + 1 layers and O(log k) memory size (per
token per layer) that recognizes Dycky, p, and
a soft-attention network with two layers and
O(log k) memory size that generates Dyck;, p.
Experiments show that self-attention networks
trained on Dyck,, ,, generalize to longer inputs
with near-perfect accuracy, and also verify the
theoretical memory advantage of self-attention
networks over recurrent networks. '

1 Introduction

Transformers (Vaswani et al., 2017) are now the
undisputed champions across several benchmark
leaderboards in NLP. The major innovation of this
architecture, self-attention, processes input tokens
in a distributed way, enabling efficient parallel com-
putation as well as long-range dependency mod-
elling. The empirical success of self-attention in
NLP has led to a growing interest in studying its
properties, with an eye towards a better understand-
ing of the nature and characteristics of natural lan-
guage (Tran et al., 2018; Papadimitriou and Juraf-
sky, 2020).
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In particular, it was recently shown that self-
attention networks cannot process various kinds of
formal languages (Hahn, 2020; Bhattamishra et al.,
2020a), among which particularly notable is Dyck,,
the language of well-balanced brackets of k types.
By the Chomsky-Schiitzenberger Theorem (Chom-
sky and Schiitzenberger, 1959), any context-free
language can be obtained from a Dyck;, language
through intersections with regular languages and
homomorphisms. In other words, this simple lan-
guage contains the essence of all context-free lan-
guages, i.e. hierarchical structure, center embed-
ding, and recursion — features which have been long
claimed to be at the foundation of human language
syntax (Chomsky, 1956).

Consider for example the long-range and nested
dependencies in English subject-verb agreement:

= N N
(Laws (the lawmaker) [writes] [and revises]) [pass].

The sentence structure is captured by Dycks, string
(OMIDII- Given the state-of-the-art performance of
Transformers in parsing natural language (Zhang
et al., 2020; He and Choi, 2019), the Dyck;, blind
spot seems very suggestive. If the world’s best
NLP models cannot deal with this simple language
— generated by a grammar with k£ + 2 rules and
recognized by a single-state pushdown automaton
— does this not mean that the role of hierarchy and
recursion in natural language must be limited? This
question has of course, been extensively debated
by linguists on the basis of both theoretical and psy-
cholinguistic evidence (Hauser et al., 2002; Frank
et al., 2012; Nelson et al., 2017; Brennan and Hale,
2019; Frank and Christiansen, 2018).

So, what can self-attention networks tell us about
natural language and recursion? Here we pro-
vide a new twist to this question by considering
Dyck;, p, the subset of Dyck,, with nesting depth
at most D, and show that Transformers can process
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Figure 1: Illustrations of our self-attention network constructions to recognize and generate Dyck, . In construc-
tion (a), at each layer, the innermost brackets attend to their matching brackets and “cancel” each other, yielding
“shallower” spans for successive layers to process. In construction (b), the first layer computes the depth of each
token by attending to all previous tokens, while the second layer uses depth information to find the most recent

unclosed open bractket in the history.

it. Dyck;, p models bounded (or finite) recursion,
thus captures the hierarchical structure of human
language much more realistically. For example,
center-embedding depth of natural language sen-
tences is known to rarely exceed three (Karlsson,
2007; Jin et al., 2018), and while pragmatics, dis-
course, and narrative can result in deeper recursion
in language (Levinson, 2014), there is arguably a
relatively small limit to the depth as well.

In particular, we prove that self-attention net-
works can both recognize and generate Dyck;, p,
with two conceptually simple yet different construc-
tions (Figure 1). The first network requires D + 1
layers and a memory size of O(log k) (per layer per
token) to recognize Dycky, p, using a distributed
mechanism of parenthesis matching. The second
network has two layers and memory size O(log k).
It works by attending to all previous tokens to count
the depth for each token in the first layer, and then
uses this depth information to attend to the most
recent unclosed open bracket in the second layer.
Our constructions help reconcile the result in Hahn
(2020) with the success of Transformers in han-
dling natural languages.

Our proof requires certain assumptions about the
positional encodings, an issue that is often consid-
ered in empirical papers (Ke et al., 2021; Shaw
et al., 2018; Wang et al., 2020; Shiv and Quirk,
2019) but not in the more theoretical literature.
First, positional encodings must have logn bits
when the input length is n, as otherwise differ-
ent positions would share the same representation.
More importantly, positional encodings should sup-
port easy position comparisons, since token order

is vital in formal language processing. Our exper-
iments show that two standard practices, namely
learnable or fixed sine/cosine positional encodings,
cannot generalize well on Dyck;, , beyond the
training input lengths. In contrast, using a single
fixed scalar monotonic positional encoding such
as pos/n achieves near-perfect accuracy even on
inputs significantly longer than the training ones.
Our findings provide a novel perspective on the
function of positional encodings, and implies that
different applications of self-attention networks (in
this case, natural vs. formal language) may require
different model choices.

Our theoretical results also bring about interest-
ing comparisons to recurrent networks (e.g. RNNs,
LSTMs) in terms of the resource need to process
hierarchical structure. While recurrent networks
with finite precision need at least (D log k) mem-
ory to process Dyck;, p (Hewitt et al., 2020), our
second construction requires only O(log k) mem-
ory but a O(log n) precision. In experiments where
precision is not an issue for practical input lengths
(< 10%), we confirm that a Transformer requires
less memory than a LSTM to reach high test accu-
racies. This may help explain why Transformers
outperform RNNs/LSTMs in syntactical tasks in
NLP, and shed light into fundamental differences
between recurrent and non-recurrent sequence pro-
cessing.

2 Related work

Our work primarily relates to the ongoing effort
of characterizing theoretical abilities (Pérez et al.,
2019; Bhattamishra et al., 2020b; Yun et al., 2020)
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and limitations of self-attention networks, partic-
ularly through formal hierarchical structures like
Dyck;. Hahn (2020) proves that (even with posi-
tional encodings) hard-attention Transformers can-
not model Dyck,, and soft-attention Transformers
with bounded Lipschitz continuity cannot model
Dyck; with perfect cross entropy. Bhattamishra
et al. (2020a) prove a soft-attention network with
positional masking (but no positional encodings)
can solve Dyck; but not Dyck,. Despite the expres-
sivity issues theoretically posed by the above work,
empirical findings have shown Transformers can
learn Dyck;, from finite samples and outperform
LSTM (Ebrahimi et al., 2020). Our work addresses
the theory-practice discrepancy by using positional
encodings and modeling Dyck;, p.

A parallel line of work with much lengthier tra-
dition (Elman, 1990; Das et al., 1992; Steijvers and
Griinwald, 1996) investigates the abilities and limi-
tations of recurrent networks to process hierarchi-
cal structures. In particular, RNNs or LSTMs are
proved capable of solving context-free languages
like Dyck; given infinite precision (Korsky and
Berwick, 2019) or external memory (Suzgun et al.,
2019; Merrill et al., 2020). However, Merrill et al.
(2020) also prove RNNs/LSTMs cannot process
Dyck;, without such assumptions, which aligns
with experimental findings that recurrent networks
perform or generalize poorly on Dyck;, (Bernardy,
2018; Sennhauser and Berwick, 2018; Yu et al.,
2019). Hewitt et al. (2020) propose to consider
Dycky, p as it better captures natural language, and
show finite-precision RNNs can solve Dyck;, p
with ©(D log k) memory.

For the broader NLP community, our results
also contribute to settling whether self-attention
networks are restricted to model hierarchical struc-
tures due to non-recurrence, a concern (Tran et al.,
2018) often turned into proposals to equip Trans-
formers with recurrence (Dehghani et al., 2019;
Shen et al., 2018; Chen et al., 2018; Hao et al.,
2019). On one hand, Transformers are shown to en-
code syntactic (Lin et al., 2019; Tenney et al., 2019;
Manning et al., 2020) and word order (Yang et al.,
2019) information, and dominate syntactical tasks
in NLP such as constituency (Zhang et al., 2020)
and dependency (He and Choi, 2019) parsing. On
the other hand, on several linguistically-motivated
tasks like English subject-verb agreement (Tran
et al., 2018), recurrent models are reported to out-
perform Transformers. Our results help address

the issue by confirming that distributed and recur-
rent sequence processing can both model hierarchi-
cal structure, albeit with different mechanisms and
tradeoffs.

3 Preliminaries

3.1 Dyck Languages

Consider the vocabulary of k types of open and
close brackets ¥ = Uc{(i,)i}, and define
Dyck;, C vX*w (v, w being special start and end
tokens) to be the formal language of well-nested
brackets of k types. It is generated starting from
~vXw through the following context-free grammar:

X—oel( X)X (i€lk]) (D
where e denotes the empty string.

Intuitively, Dyck,, can be recognized by sequen-
tial scanning with a stack (i.e., a pushdown au-
tomaton). Open brackets are pushed into the stack,
while a close bracket causes the stack to pop, and
the popped open bracket is compared with the cur-
rent close bracket (they should be of the same type).
The depth of a string wy.,, at position 7 is the stack
size after scanning w4, that is, the number of open
brackets left in the stack:

d(wy.;) = count(wy.j, () — count(wr.i,)) (2)

Finally, we define Dyck;, p to be the subset of
Dyck,, strings with depth bounded by D:

Dycky p = {wl:n € Dycky,

max d(wy;) < D }

i€[n]

That is, a string in Dyck, p only requires a stack
with bounded size D to process.

3.2 Self-attention Networks

We consider the encoder part of the original Trans-
former (Vaswani et al., 2017), which has multiple
layers of two blocks each: (i) a self-attention block
and (ii) a feed-forward network (FFN). For an input
string wy., € X%, each input token w; is converted
into a token embedding via f, : X — Rmodel then
added with a position encoding p; € R%model Let
Xi¢ € R%model be the i-th representation of the /-th
layer (i € [n], £ € [L]). Then

X0 = fe(w;i) + pi 3)
A = Atté(Qf(Xi)a Kf(x)v W(X)) (4)
X; 011 = Foa;g) 5)
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Attention In each head of a self-attention block,
the input vectors xi., undergo linear transforms
Q, K,V yielding query, key, and value vectors.
They are taken as input to a self-attention mod-
ule, whose ¢-th output, Att(Qx;, Kx,Vx), is
a vector a; = Zje[T} a;Vx;, where ay, =
softmax((@x;, Kx1), -+, (Qx;, Kx,)). The fi-
nal attention output is the concatenation of multi-
head attention outputs. We also consider variants
of the basic model along these directions:

(i) Hard attention, as opposed to soft attention
described above, where hardmax is used in place
for softmax (ie. Att(Qx;, Kx,Vx) = Vxj
where j/ = argmax;(Qx;, Kx;)). Though im-
practical for NLP, it has been used to model formal
languages (Hahn, 2020).

(i) Positional masking, where «v1.; (past) or .,
(future) is masked for position ¢. Future-positional
masking is usually used to train auto-regressive
models like GPT-2 (Radford et al., 2019).

Feed-forward network A feed-forward network
F' transforms each self-attention output vector
a; — F'(a;) individually. It is usually implemented
as a multi-layer perceptron (MLP) with ReLLU ac-
tivations. Residual connections (He et al., 2016)
and layer normalization (Ba et al., 2016) are two
optional components to aid learning.

Positional encodings Vaswani et al. (2017) pro-
poses two kinds of positional encoding: (i) Fourier
features (Rahimi and Recht, 2007), i.e. sine/cosine
values of different frequencies; (ii) learnable fea-
tures for each position. In this work we propose to
use a single scalar i/n to encode position i € [n],
and show that it helps process formal languages
like Dyck;, p, both theoretically and empirically.

Precision and memory size We define precision
to be the number of binary bits used to represent
each scalar, and memory size per layer (dmodel) tO
be the number of scalars used to represent each
token at each layer. The memory size (L - dmodel)
is the total memory used for each token.

3.3 Language Generation and Recognition

For a Transformer with L layers and input wy.;, we
can use a decoder (MLP + softmax) on the final
token output x; 7, to predict w;41. This defines
a language model fy(w;11|w;) where 6 denotes
Transformer and decoder parameters. We follow
previous work (Hewitt et al., 2020) to define how a
language model can generate a formal language:

Definition 3.1 (Language generation). Language
model fg over 3* generates a language L C > if
there exists € > 0 such that L = {w1., € ¥* | Vi €
(], fo(wilwi:i—1) > €}

We also consider language recognition by a lan-
guage classifier gg(w1.;), where a decoder on x; 1,
instead predicts a binary label.

Definition 3.2 (Language recognition). Language
classifier gy over X* recognizes a language L C
¥ lfﬁ = {wl;n =3 |gg(w1:n) = 1}.

4 Theoretical Results

In this section we state our theoretical results along
with some remarks. Proof sketches are provided in
the next section, and details in Appendix A,B,C.

Theorem 4.1 (Hard-attention, Dyck;, p, recogni-
tion). For all k, D € N*, there exists a (D + 1)-
layer hard-attention network that can recognize
Dycky, p- It uses both future and past positional
masking heads, positional encoding of the form i /n
for position i, O(log k) memory size per layer, and
O(logn) precision, where n is the input length.
Theorem 4.2 (Soft-attention, Dyck;, ;, generation).
For all k,D € N7, there exists a 2-layer soft-
attention network that can generate Dycky, p. It
uses future positional masking, positional encod-
ing of form i/n for position i, O(log k) memory
size per layer, and O(logn) precision, where n is
the input length. The feed-forward networks use
residual connection and layer normalization.

Theorem 4.3 (Precision lower bound). For all
k € N7, no hard-attention network with o(logn)
precision can recognize Dycky, o where n is the
input length.

Required precision Both constructions require
a precision increasing with input length, as indi-
cated by Theorem 4.3. The proof of the lower
bound is inspired by the proof in Hahn (2020),
but several technical improvements are necessary;
see Appendix C. Intuitively, a vector with a fixed
dimension and o(logn) precision cannot even rep-
resent n positions uniquely. The required precision
is not unreasonable, since log n is a small overhead
to the n tokens the system has to store.

Comparison to recurrent processing Hewitt
et al. (2020) constructs a 1-layer RNN to gener-
ate Dycky, p with ©(D log k) memory, and proves
it is optimal for any recurrent network. Thus The-
orem 4.2 establishes a memory advantage of self-
attention networks over recurrent ones. However,
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this is based on two tradeoffs: (i) Precision. Hewitt
et al. (2020) assumes O(1) precision while we re-
quire O(logn). (ii) Runtime. Runtime of recurrent
and self-attention networks usually scale linearly
and quadratically in n, respectively.

Comparison between two constructions Theo-
rem 4.2 requires fewer layers (2 vs. D) and memory
size (O(log k) vs. O(D log k)) than Theorem 4.1,
thanks to the use of soft-attention, residual con-
nection and layer normalization. Though the two
constructions are more suited to the tasks of recog-
nition and generation respectively (Section 5), each
of them can also be modified for the other task.

Connection to Dyck;, In Hahn (2020) it is shown
that no hard-attention network can recognize
Dyck,, even for k& = 1. Theorem 4.1 establishes
that this impossibility can be circumvented by
bounding the depth of the Dyck language. Hahn
(2020) also points out soft-attention networks can
be limited due to bounded Lipschitz continuity.
In fact, our Theorem 4.2 construction can also
work on Dyck;, with some additional assumptions
(e.g.feed n also in input embeddings), and we cir-
cumvent the impossibility by using laying normal-
ization, which may have an O(n) Lipschitz con-
stant. More details are in Appendix B.4.

5 Constructions

5.1 (D + 1)-layer Hard-Attention Network

Our insight underlying the construction in Theo-
rem 4.1 is that, by recursively removing matched
brackets from innermost positions to outside, each
token only needs to attend to nearest unmatched
brackets to find its matching bracket or detect er-
ror within D layers. Specifically, at each layer
¢ < D, each token will be in one of three states
(Figure 2 (¢)): (1) Matched, (ii) Error, (iii) Un-
matched, and we leverage hard-attention to imple-
ment a dynamic state updating process to recognize
Dycky, p-

Representation For an input wy., € 7¥*w, the
representation at position ¢ of layer £ has five parts
X0 = [ti, 05,05, Mi 0, € 0] (i) a bracket type em-
bedding t; € RM°8*1 that denotes which bracket
type (1 - - - k) the token is (or if the token is start/end
token); (ii) a bracket openness bit o; € {0,1},
where 1 denotes open brackets (or start token) and
0 denotes close one (or end token); (iii) a posi-
tional encoding scalar p; = i/n; (iv) a match bit

m; ¢ € {0,1}, where 1 denotes matched and 0 un-
matched; (v) an error bit ¢; o € {0,1}, where 1
denotes error and 0 no error. Token identity parts
t;, 0;, p; are maintained unchanged throughout lay-
ers. The match and error bits are initialized as
ei0 =m0 = 0.

The first D layers have identical self-attention
blocks and feed-forward networks, detailed below.

Attention Consider the /-th self-attention layer
(¢ € [D]), and denote x; = X; o1, M; = M1,
a; = a;y¢, y; = X;y for short. We have 3 atten-
tion heads: (i) an identity head Att, where each
token only attends to itself with attention output
all = x;; (ii) a left head Att"*® with future po-
sitional masking; (iii) a right head Att"&" with
past positional masking. The query, key, and value
vectors for Att'*® are defined as Qx; = 1 € R,
Kx;=p;—m; e R,Vx; =x%; € Rémodel | 0 that

a;” = Xj, jl :argmaX(J/n_m])
1<t

is the representation of the nearest unmatched token
to ¢ on its left side. Similarly

j2 = argmax(1 — j/n —my)
7>

is the representation of the nearest unmatched to-

ken to ¢ on its right side. The attention output for

position ¢ is the concatenation of these three out-
id left right

puts: a; = [a, 8", a; % | = [Xi, Xj,, Xj].

Feed-forward network (FFN) Following the
notation above, the feed-forward network F' : a; —
y; serves to update each position’s state using in-
formation from x;, , x;,. The high level logic (Fig-
ure 2 (c)) is that, if w; is an open bracket, its po-
tential matching half should be w; = wj, (j2 > 1),
otherwise it should be w; = w;, (j1 < 7). If w; and
w; are one open and one close, they either match
(same type) or cause error (different types). If w;
and w; are both open or both close, no state update
is done for position 7. Besides, token identity parts
t, 0;, p; are copied from aiid to pass on. The idea
can be translated into a language of logical opera-
tions (A, V, —) plus a SAME(t, t’) operation, which
returns 1 if vectors t = t’ and 0 otherwise:

yi = [ti, 04, pi, M, €]

=m;V (Oi A 704, A 81) vV (—|02' Noj A 82)
=e; V (Oi A 704, N —|81) V (ﬂOZ' Noj A —\82)
$1 = SAME(t;, t;,) s2 = SAME(t;,t;,)

m

SN SL~

(&
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Figure 2: Our construction for Theorem 4.1. (a) The network has multiple identical layers to match brackets and
detect errors. (b) Each layer consists of three hard-attention heads so that a token attends to itself and the nearest
unmatched tokens on both sides, and uses representations from these positions to update its state. (c) Each position

can be in three states: matched, error, or unmatched.

As we show in Appendix A, a multi-layer percep-
tion with ReL.U activations can simulate all oper-
ations (A, V, -, SAME), thus the existence of our
desired FFN.

Final layer At the (D + 1)-th layer, the self at-
tention is designed as Qx; = 1 € R, Kx; =
ei+1—m; € R, Vx; = (e;,m;) € R2. If all brack-
ets are matched without error ((e;, m;) = (0,1)),
all keys would be 0, and the attention output of the
last token a,, would be (0, 1). If any bracket finds
error (e; = 1) or is not matched (m; = 0), the key
would be at least 1 and a,, would not be (0, 1). An
FNN that emulates (a, b) — —a A b will deliver y,,
as the recognition answer.

5.2 Two-layer Soft-Attention Network

Our Theorem 4.2 construction takes advantage of
soft attention, residual connection, and layer nor-
malization to calculate each token depth and trans-
late it into a vector form at the first layer. Using the
depth information, at the second layer each w; can
attend to the stack-top open bracket at the position,
in order to decide if open brackets or which type of
close brackets can be generated as the next token
(Figure 3).

Representation The representation at position ¢,
layer £ has four parts x; ¢ = [t;, 0, pi, d; ¢|, with

bracket type embedding t;, bracket openness bit
0;, position encoding p; already specified in Sec-
tion 5.1. The last part d; ; € R2? is used to store
depth information for position ¢, and initialized as
d;o = (0,0).

First Layer — Depth Counting The first self-
attention layer has two heads, where an Att'd head
is still used to inherit t;, 0;, p;, and a future po-
sitional masking head? Att¢ aims to count depth
with Qx; = Kx; = 1 and Vx; = 20; — 1, result-
ing in uniform attention scores and attention output
af = ngi % . (20j — 1) = d(wl;i)/i.

However, our goal is to enable matching based
on depth d; = d(wy.;), and the attention output
d;/i isn’t readily usable for such a purpose: the
denominator ¢ is undesirable, and even a scalar d;
cannot easily attend to the same value using dot-
product attention. Thus in the first feed-forward
network, we leverage residual connection and layer
normalization to transform

d;/i— d; = (cos(6(d;)),sin(6(d;)))  (6)
where 6(d) = arctan (ﬁ) has an unique

2Here we assume w; 1.5, is masked for position 4, just for
+
convenience of description.
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Figure 3: Our construction for Theorem 4.2. The first self-attention layer calculates token depths, while the second
layer uses them so that each token attends to the closest unmatched open bracket ign the history, which is useful

for next token prediction.

value for every d € {0,---, D + 1}, so that
d; = d

d; - d;
di # d;

The representation by the end of first layeris x; 1 =
[ti, 04, i, d;]. The full detail for the first FFN is in
Appendix B.1.

=1

<1- @

1
10D2

Second layer — Depth Matching The second
self-attention layer has a depth matching hard-
attention head Att™*“" with query, key, value
vectors as Qx; = [20D? - d;, 1,2] € R*, Kx;
[d;, pi,0;] € RY, Vx; = x;, so that attention score

(Qxi, Kx;) = 20Dd; - d; + j/n + 20,
{: 20D% +2+j/n di=dj05=1

<20D%+1

would achieve its maximum when w; (j < 7) is the
open bracket (or start token) closest to w; with d; =
d;. The attention output is a; = [ald, amatch] =
[Xi,X]’] where j = max{j < i|d; = dj Noj = 1}.

With such a [x;, x;], the second-layer FFN can
readily predict what w;4; could be. It could be
any open bracket when d; < D (i.e. cos(0(d;)) >
cos(6(D))), and it could be a close bracket with
type as t; (or end token if wj is start token). The
detailed construction for such a FFN is in Ap-
pendix B.2.

otherwise

On Dyck;, Generation In fact, this theoretical
construction can also generate Dyck,,, as intuitively
the O(logn) precision assumption allows counting

depth up to O(n). But it involves extra conditions
like feeding n into network input, and may not
be effectively learned in practice. Please refer to
details in Appendix B.4.

Connection to Empirical Findings Our theo-
retical construction explains the observation in
Ebrahimi et al. (2020): the second layer of a two-
layer Transformer trained on Dyck,, often produces
virtually hard attention, where tokens attend to the
stack-top open bracket (or start token). It also ex-
plains why such a pattern is found less systemati-
cally as input depth increases, as (6) is hard to learn
and generalize to unbounded depth in practice.

6 Experiments

Our constructions show the existence of self-
attention networks that are capable of recognizing
and generating Dyck;, p. Now we bridge theoret-
ical insights into experiments, and study whether
such networks can be learned from finite samples
and generalize to longer input. The answer is af-
firmative when the right positional encodings and
memory size are chosen according to our theory.
We first present results on Dyckg, (Sec-
tion 6.1) as an example Dyck;, p, language to in-
vestigate the effect of different positional encod-
ing schemes, number of layers, and hidden size
on the Transformer performance, and to compare
with the LSTM performance. We then extend
the Transformer vs. LSTM comparison on more
Dycky, p languages (k € {2,8,32,128}, D €
{3,5,10,15}) in Section 6.2. Finally, we apply

3776



(a) Transformers
(Dyck-(8, 10) Test)

|

7

\.

/

\
.

Close Accuracy
o
[e ]

Close Accuracy
\

Positional Encoding
—e— cos
learn
—=— pos/N

o
3

0.8

o
o

x

12 3 45 10 20
# Layers

(b) Transformer v. LSTM
(Dyck-(8, 10) Validation)

—
X
=

o

o

.
N

) Model
/+ Transformer (pos/N)
—»— LSTM

Memory Dim.

(c) Transformer v. LSTM
(Dyck-(8, 10) Test)

s e
'\-’—;4*‘. <e—eo—o—

//

(e X

~L.
.
™~

Close Accuracy
.

Model
—o— Transformer (pos/N)
—»— LSTM

o
@

%

60 80 100 20 40 60 80 100
Memory Dim.

Figure 4: Results on Dyck&10 validation set (same input lengths as training) and test set (longer inputs). (a)
compares Transformers of different layers (L € {1,2,3,4,5,10}) and with different positional encodings (COS,
LEARN,POS/N) on the test set. (b) and (¢) compare a 2-layer Transformer (POS/N) with a 1-layer LSTM over
varying memory sizes on the validation and test sets respectively.

the novel scalar positional encoding to natural lan-
guage modeling with some preliminary findings
(Section 6.3).

6.1 Evaluation on Dyckg ;

Setup For Dyckg 4, we generate training and val-
idation sets with input length n < 700, and test set
with length 700 < n < 1400. We train randomly
initialized Transformers using the Huggingface li-
brary (Wolf et al., 2019), with one future positional
masking head, L € {1,2,3,4,5,10} layers, and
a default memory size dpyoqe1 = 30. We search
for learning rates in {0.01,0.001}, run each model
with 3 trials, and report the average accuracy of
generating close brackets, the major challenge of
Dycky, p- More setup details are in Appendix D.1I.

Positional Encodings We compare 3 types of po-
sitional encodings: (i) Fourier features (COS); (ii)
learnable features (LEARN); (iii) a scalar /6000
for position ¢ (POS/N). Note that (i, ii) are original
proposals in Vaswani et al. (2017), where positional
encoding vectors are added to the token embed-
dings, while our proposal (iii) encodes the position
as a fixed scalar separated from token embeddings.

On the validation set of Dyckg, (see Ap-
pendix D.2), all three models achieve near-perfect
accuracy with L > 2 layers. On the test set (Fig-
ure 4(a)) however, only POS/N maintains near-
perfect accuracy, even with L = 10 layers. Mean-
while, LEARN and COS fail to generalize, because
encodings for position 700 < 7 < 1400 are not
learned (for LEARN) or experienced (for COS) dur-
ing training. The result validates our theoretical
construction, and points to the need for separate

and systemic positional encodings for processing
long and order-sensitive sequences like Dyck;, p.

Memory Size and Comparison with LSTM
We compare a two-layer Transformer (POS/N) with
a one-layer LSTM? (Hochreiter and Schmidhu-
ber, 1997) using varying per-layer memory sizes
dmodel € {10,20,---,100}. As Figure 4 (b)
shows, the Transformer consistently outperforms
the LSTM on the validation set. On the test set
(Figure 4 (c)), the Transformer and the LSTM first
achieve a > 90% accuracy using d,oqe; = 20 and
40 respectively, and an accuracy of > 95% with
dmodel = 30 and 50, respectively. These findings
agree with our theoretical characterization that self-
attention networks have a memory advantage over
recurrent ones.

6.2 Evaluation on More Dyck,, , Languages

Setup In order to generalize some of the above
results, we generate a wide range of Dyck; p
languages with different vocabulary sizes (k &
{2,8,32,128}) and recursion bounds (D €
{3,5,10,15}). We continue to compare the one-
layer LSTM versus the two-layer Transformer
(POS/N). For each model on each language, we
perform a hyperparameter search for learning rate
in {0.01, 0.001} and memory size dyodel €
{10, 30,50}, and report results from the best set-
ting based on two trials for each setting.

3LSTMs only need one layer to process Dyck r,p (Hewitt
et al., 2020), while Transformers at least need two in our
constructions. We also experimented with two-layer LSTMs
but did not find improved performance.

37717



(a) Dyck-(k, D) Validation

(b) Dyck-(k, D) Test

RoBERTa (WikiText-103)

10
1.00 - d— *Y&: 1.00 Positional Encoding
0.95 \ 0.95 8 learn
3 3 —— pos/N
< hodet £ 0.90 Split
3 090 | o transformer 3 ® 6 Pl T
o Q o —— Train
<085 LSTM <085 - L
2 k 2 \ ---- Validation
4
ke e 2 o 080
G080 o o o.
. 32 2
075 o 5 075
3 5 10 15 3 5 10 15 0 50E Ochmo 150
D D p
Figure 5: Results on more Dyck;, , languages. Figure 6: Results on WikiText-103.
Results The validation and test accuracy of the  ing for future work to explore how POS/N performs

models are reported in Figure 5, and more fine-
grained results for each dyoge € {10,30,50}
are in Appendix D.2. The Transformer attains a
> 99.9% validation accuracy and a > 94% test
accuracy across all languages, strengthening the
main claim that self-attention networks can learn
Dycky, p languages and generalize to longer input.
On the other hand, the validation and test accu-
racy of the LSTM model are less than 80% when
the vocabulary size and recursion depth are large,
ie. (k,D) € {(32,15),(128,10),(128,15)}*,
which reconfirms Transformers’ memory advan-
tage under limited memory (doqe1 < 50).

6.3 Evaluation on WikiText-103

In Section 6.1, we show a Transformer with the
scalar positional encoding scheme (POS/N) can
learn Dyck;, p, and generalize to longer input, while
traditional positional encoding schemes ((COS),
(LEARN)) lead to degraded test performance. To
investigate whether such a novel scheme is also use-
ful in NLP tasks, we train two RoOBERTa® models
(POS/N, LEARN) from scratch on the WikiText-
103 dataset (Merity et al., 2017) for 150 epochs.
Figure 6 shows the masked language modeling
loss on both training and validation sets. By the end
of the training, POS/N has a slightly larger valida-
tion loss (1.55) than LEARN (1.31). But throughout
the optimization, POS/N shows a gradual decrease
of loss while LEARN has a sudden drop of loss
around 20-30 epochs. We believe it will be interest-

*Note that Hewitt et al. (2020) only reports D € {3,5}.

We also tried language modeling with GPT-2 models, and
POS/N has slightly larger train/validation losses than LEARN
throughout the training. Interestingly, using no positional en-
coding leads to the same loss curves as LEARN, as positional
masking leaks positional information.

on different downstream tasks, and why POS/N
seems slightly worse than LEARN (at least on this
MLM task), though theoretically it provides the
complete positional information for Transformers.
These topics will contribute to a deeper understand-
ing of positional encodings and how Transformers
leverage positional information to succeed on dif-
ferent tasks.

7 Discussion

In this paper, we theoretically and experimen-
tally demonstrate that self-attention networks can
process bounded hierarchical languages Dyck;, p,
even with a memory advantage over recurrent net-
works, despite performing distributed processing
of sequences without explicit recursive elements.
Our results may explain their widespread success at
modeling long pieces of text with hierarchical struc-
tures and long-range, nested dependencies, includ-
ing coreference, discourse and narratives. We hope
these insights can enhance knowledge about the
nature of recurrence and parallelism in sequence
processing, and lead to better NLP models.
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A Construction Details of Section 5.1

We provide missing details on the construction of
(D + 1)-layer Transformer with hard attention. In
particular, we prove that neural networks are capa-
ble of simulating logic gates: AND, OR, NOT, SAME
and arithmic gates: GREATERTHAN and EQUAL
gate. For input x,y € R, the GREATERTHAN sat-
isfies that GREATERTHAN(z,y) = lifx > y + ¢
and GREATERTHAN(z,y) = 0 when z < y; the
EQUAL gate satisfies EQUAL(z,y) = 1lifx =y
and EQUAL(z,y) = 0whenz < y—corz > y+c.
Here c is a constant independent of z, .

Lemma A.1. A constant layer neural network can
simulate logic gates: AND, OR, NOT, SAME and
arithmic gates: GREATERTHAN, EQUAL.

Proof. Our construction is as follows.

(1) AND gate. Given input 21, . .., 2, € {0,1},
we compute z = max{x; +- -+ x,;, —m+1,0}.
We conclude that z = 1 iff x1 = ---
and z = 0 otherwise.

(2) NOT gate. Given input z € {0, 1}, it suffices
to compute z = max{1 — z,0}.

(3) OR gate. Given input x1, ...,z € {0,1},
we compute z = max{l — max{l —x; — -+ —
ZTm,0},0}. It is easy to see that z = 1 iff one of
x; = 1 (i € [m]) and z = 0 otherwise.

(3) SAME gate. Giveninput z1, ..., z,, € {0,1}
and y1,...,ym € {0,1}. The SAME gate is
equivalentto z = ((x1 Vy) A(Z1 Vy1)) V-V
((m V) A (T V Ym)). We can construct it us-
ing logic gates: AND, OR, NOT .

(4) GREATERTHAN gate. Given z,y € R, com-
pute z; = < max{c — max{z —y,0},0}, we have
that z; = 0 when z > y + cand z = 1 when
x < y. Taking z = max{1 — 21,0} completes the
construction.

(5) EQUAL gate.

=z, =1

Given z,y € R. Let

z1 = GREATEREQUAL(z,y) and zy =
GREATEREQUAL(y, z). It suffices to take z =
—z1 A\ 29, L]

With some extra effort, one can extend the con-

struction for recognition task to generation task
and prove that a D-layer Transformer is capable of
generating Dyck, p.
Corollary A.2. Vk,D € N, there exists a D-
layer hard-attention network that can generate
Dycky, p. 1t uses both a future-position masking
head and a past-position masking head, a O(log k)
memory size, and O(logn) precision for process-
ing input length up to n.

Soft attention Both Theorem 4.1 and Corol-
lary A.2 can be adapted to soft attention, by setting
the temperature parameter 7 in softmax operator
to be sufficient large, say n = Q(nlognD). Then
one can use soft attention to simulate hard attention.
In order to fit the precision, for the soft attention
distribution p = [p1,- -+ , pm], We round p; to the
closest multiple of &, where C is a large constant.

B Construction Details of Section 5.2

We provide missing details of the construction in
Section 5.2.

B.1 First Layer FFN

Recall the output of the first attention layer is
a;1 = [ti,0i,pi,d;1], where t;, o;, p; are the
bracket type embedding, the bracket openness bit
and the position encoding. d; 1 € R? contains the
information d; /i, where d; = d(w1.;) equals the
depth at position i. For ease of presentation, we
assume it also contains an entry with 1/4, this can
be derived with an extra attention head in the first
layer or be inherited from an extra position encod-

ing. Define 0(d) = arctan (ﬁ). We prove

Lemma B.1. With residual connection and layer
normalization, a two-layer MLP can perform the
following transformation

(di/i,1/i) — d; = (cos(0(d;)),sin(0(d;)))

while keeping t;, o;, p; unchanged.

Proof. Consider the following series of operations.

d; 1
<ti7 Oi, Pis 7.’57 ) 07 O>
1 1

~ <0’0’0aCl.iydi_l.)_Qad-ivD—i_?_di)
1 1 1 (3

— (0, 0,0, —% sin(A(dy)), —% cos(0(d;)),

1. 1

3 sin(6(d;)), 3 COS(Q(dz‘))>
1
2

= <0,0,0,0,0,;sin(9(di)), cos(@(di)))

E N

o (o 54 sn0(a), g cos(0(d)
(b3, 04, pi, cos(0(d; ), sin(6(ds)), 0,0))

The first steps can be achieved with a linear trans-
formation, the second step can be achieved by layer
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normalization and the third step follows from the
ReLU activation gate, the fourth step comes from
the residual connection and the last step can be ob-
tained with an extra layer of MLP. We conclude the
proof here. 0

B.2 Second Layer FFN

We can choose between k open brackets and the
matched close bracket, with the exception on a
few boundary cases: (1) The depth of the current
bracket reaches the maximum; (2) The length of
the sequence is about to reach the maximum. Let
m,; be the bracket type of the matched bracket at
position ¢, we implement the last layer as follow.

yi = [0i, 2, Zi]

0; = ~(d;, = sin(8(D))) A ~(ds, = sin(6(D)))
D = min{n —i,D +1}

z; = ~(d;; = 0) Am;

z,=1—1z,;.

We elaborate on a few details here. (1) We can
derive the term sin(#(D)) via the similar method
in Lemma B.1. (2) Since | sin(6(7)) —sin(0(j))| =
Q (Bz) holds forany i # j € {0,1,--- , D + 1},
we know that the input gap (i.e. the constant c
in Lemma A.1) for of all three EQUAL gates is
at least 2 (57 ). Thus we can apply Lemma A.1.
(3) We can obtain n — ¢ by either augmenting the
position encoding with n and ¢, or normalizing

(i/n,1 —1i/n) (see Lemma B.1).

Output mechanism The final output is deter-
mined by on Vyr,g, where V € R2Fx2[logk]+1
satisfies V51 = 0 and V ;. is the binary encod-
ing of the i-th close bracket and its complement
wheni e {1,--- k}; Vi1 = [logk]and V; ; =0
when ¢ < {k +1,---,2k} and j > 1. Let
S C [2k] denote the index of valid output, we
conclude that (Vyr42); = [logk| fori € S and
(VyT+2)Z' < flog k—‘ — 1for: ¢ S.

B.3 Extension to Recognition task

Our construction can be adapted to recognition task
with some extra efforts.

Corollary B.2. For all k,D € N7, there exists
a 3-layer soft-attention network that can generate
Dycky, p. It uses future positional masking, posi-
tional encoding of form i /n for position i, O(log k)
memory size per layer, and O(logn) precision
where n is the input length. The feed-forward

networks use residual connection and layer nor-
malization.

B.4 Extension to Dyck;

We can extend the above construction to recognize
language Dyck;. Our construction bypasses the
lower bound in Hahn (2020) since the layer nor-
malization operation is not constant Lipschitz (it
can be O(n) in the proof).

Theorem B.3 (Soft-attention, Dyck,, generation).
For all k € N, there exists a 2-layer soft-attention
network that can generate Dyck,,. It uses future po-
sitional masking, O(log k) memory size per layer,
and O(log n) precision where n is the input length.
The feed-forward networks use residual connection
and layer normalization.

Due to space limits, we omit the detailed proof
and only outline the major difference from the
proof of Theorem 4.2.

1. We need position encoding i/n? instead of
i/n, and add an extra position encoding of 7.

2. For the first FNN, we replace D with n. In
particular, for Lemma B.1, we need an extra
input of n /i, this can be derived with either
an extra attention head or an extra position
encoding.

3. For the second FNN, we make some adjust-
ment to the input of the EQUAL gate, since the
gap between two input could be very small,
i.e., O(1/n?). Nevertheless, we can use the
same trick of Lemma B.1 to amplify the gap
between two input a, b to be of order (1),
the later one suffices to our purpose.

C Theoretical limits for finite position
encoding

We prove that a Transformer with finite preci-
sion can not recognize Dyck; p language. In
fact, we show a stronger result: no transformer
with o(log n) precision can recognize Dyck;, , lan-
guage of length more than n.

Theorem C.1 (Formal statement of Theorem 4.3).
For any k € N, using hard attention, no trans-
former with o(log n) encoding precision can rec-
ognize Dycky, o language with input length n.

Our proof is inspired by Hahn (2020) but with
several different technique ingredient: (1) we allow
arbitrary attention masking (both future and past
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position masking); (2) we allow arbitrary position
encoding (3) our lower bounds holds for bounded
depth language Dyck;, p; (4) we provide an quanti-
tative bound for precision in terms of input length
n. In general, our lower bound is incomparable
with Hahn (2020), we prove a fine grained bound
on the precision requirement for bounded depth
language Dyck;, p, while the proof in Hahn (2020)
applies only for language with Depth {2(n) but al-
lows arbitrary precision on position encoding.

The high level intuition behind our proof is that
the attention head can only catch o(n) input posi-
tions when we properly fix a small number of sym-
bol in the input sequence. This limits the capability
of a Transformer and makes it fail to recognize
Dyck, p language.

We consider a L-layer transformer and assume
3H attention heads in total: H normal attention
heads, H attention heads with future position mask-
ing, H attention heads with past position mask-
ing. To make our hardness result general, we allow
residual connection for the attention layer, and we
assume the FNN can be arbitrary function defining
on the attention outcome. In the proof, we would
gradually fix o(n) positions of the input sequence.
We only perform the follow two kinds of assign-
ment (1) we assign matching brackets to position
1,7 + 1 where 7 is odd; (2) we assign matching
brackets (e.g., we assign ‘[’, ‘C, ©)’, ]’) to position
1,1+ 1,74 2,7+ 3 for odd ¢. A partial assignment
to the input sequence is said to be well-aligned if it
follows these two rules. Throughout the proof, we
guarantee that for any ¢ € [n], ¢ € [L], the output
of the /-th layer x; , depends only the input symbol
at position ¢. This is clearly satisfied for £ = 0,
given the it is composed by position embedding
and word embedding only. We gradually fix the
input and conduction induction on ¢. We use ¢y to
denote the number of positions we fixed before the
£-th layer, and we use sy to denote the number of
consecutive assigned blocks of the input sequence.
It is clear that s, < 2¢y. The following Lemma is
key to our analysis. Due to space limits, we omit
the detailed proof.

Lemma C.2. For any ¢ € {1,---,L}, given a
well-aligned partially assigned input sequence,
suppose the input of (-th layer x;¢_1 depends
on the symbol at position © only. Then by fixing
ceH? (k + 1)) 20HY) qqditional positions of
the input sequence, we guarantee that the output of
(-th layer x; 4 also depends solely on the symbol at

position 1.

Proof of Theorem C.1. We apply Lemma C.2 and
compute the number of positions c7,1 we need to
restrict, in order to guarantee that the output of L-th
layer x; 11 depends only on the input at position
(i € [n]). Since iy < cgH?(k + 1)0¢H)20(¢Hp)
and ¢; = O(1), we have

crp1 < HOW (f + 1)O(E*H)g0(L*Hp)

By taking
HOW) (4 1)OE* 0L Hp) < 01p,

We know the partial assigned sequence is well-
aligned, has depth at most two, and the number of
assignment is only 0.01. Thus, we assert that that
when p = o(logn), the output of Transformer is
completely determined by the partial assignment
and it do not detect whether there exists error in the
unassigned positions and thus can not recognize
Dycky, o language. We conclude the proof here.

O

D Experiment Details

D.1 Setup

Data We follow Hewitt et al. (2020) to gener-
ate Dyck;, p by randomly sampling stack decisions
(push, pop, or end) and maintaining length condi-
tions (Table 1) for a O(D?) hitting time of differ-
ent DFA states. The number of tokens for train,
validation, and test set is 2 X 106,2 x 10°, 106
respectively.

D | 3 | 5 | 10 | 15
Train/val lengths | 1:84 1:180 1:700 1:1620
Test lengths 85:168 | 181:360 | 701:1400 | 1621:3240

Table 1: Input lengths for Dyck,, ,, with different D.

Models We use the LSTM model implemented
in Hewitt et al. (2020). For Transformer models,
we turn off all drop outs as we find them to hurt
performance greatly. We also use only 1 head as
we find more heads to hurt performance. We use
Adam optimizer with initial learning rate being
0.01 or 0.001, and choose the better learning rate in
terms of validation accuracy for each experiment.
We train for at most 100 epochs but allow early
stopping if the validation loss converges.
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Metric We follow Hewitt et al. (2020) and use
the accuracy of correct close bracket predictions:

p0;)
2.ip0)i)

Let p; be the empirical probability that the model
confidently predicts a close bracket (defined as
p();])) > .8), conditioned on it being separated
from its open bracket by [ tokens. Unlike Hewitt
et al. (2020) where mean;p; is reported, we report
E;p; for two reasons: (i) when [ is large p; might
be only defined by one trail, thus mean;p; amplifies
the randomness; (ii) the findings remain similar
with either metrics.

pO;l)) =

D.2 More Results

In Figure 7, we show the validation performance
for Transformers of different positional encoding
schemes. They all reach near-perfect accuracy
when having at least 2 layers.

In Figure 8, we break down the results in Sec-
tion 6.2 when dp0qe € {10,30,50}. We also
add results for a five-layer Transformer, which per-
forms similarly as the two-layer Transformer. This
shows (i) a two-layer Transformer, as suggested
by our theory, is enough to process Dyck;, p, and
(ii) Transformers with more layers can also learn
to process Dyck;, p without overfitting or degraded
performance.

Transformers
(Dyck-(8, 10) Validation)
1.0
309
o
=
Q
£08
o x Positional Encoding
5 0.7 —®— COos
© —#— learn
0.6 —=— pos/N
12 3 45 10
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Figure 7: Validation results on Dyckg ;.
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Transformers v. LSTM (Dyck-(k, D) Test)
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Figure 8: Validation and test results on Dyck, p, (k €
{2,8,32,128} and D € {3,5,10,15}). Enlarge for
details.

3785



