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Abstract

Learning probabilistic context-free grammars

(PCFGs) from strings is a classic problem in

computational linguistics since Horning (1969).

Here we present an algorithm based on distri-

butional learning that is a consistent estimator

for a large class of PCFGs that satisfy certain

natural conditions including being anchored

(Stratos et al., 2016). We proceed via a

reparameterization of (top–down) PCFGs that

we call a bottom–up weighted context-free

grammar. We show that if the grammar is

anchored and satisfies additional restrictions

on its ambiguity, then the parameters can be

directly related to distributional properties of

the anchoring strings; we show the asymptotic

correctness of a naive estimator and present

some simulations using synthetic data that

show that algorithms based on this approach

have good finite sample behavior.

1 Introduction

This paper presents an approach for strongly learn-

ing a linguistically interesting subclass of prob-

abilistic context-free grammars (PCFGs) from

strings in the realizable case. Unpacking this, we

assume that we have some PCFG that we are

interested in learning and that we have access

only to a sample of strings generated by the

PCFG (i.e., sampled from the distribution defined

by the context-free grammar). Crucially, we do

not observe the derivation trees—the hierarchical

latent structure. Strong learning means that we

want the learned grammar to define the same

distribution over labeled trees as the original

grammar and not just the same distribution over

strings.

Clearly, there can be many structurally different

PCFGs that define the same distribution over

strings. Consider for example the distribution that

generates a single string of length 3 with prob-

ability one and the various PCFGs that give rise to

that same distribution; for these obvious reasons,

that we discuss in more detail later, we cannot

have an algorithm that does this for all PCFGs.

Accordingly, we define some sufficient conditions

on PCFGs for this algorithm to perform correctly.

More precisely, we define some simple structural

conditions on the underlying CFGs (in Section 3),

and we will show that the resulting class of PCFGs

is identifiable from strings, in the sense that any

two PCFGs that define the same distribution over

strings will be isomorphic.

We then provide a computationally trivial learn-

ing algorithm in Section 4, together with a

proof that it will strongly learn every grammar

in this class. The algorithm is not intended

to be a realistic algorithm, but merely to

illustrate the fundamental correctness of this

general approach. We then show that general

PCFGs in Chomsky normal form (CNF) that

approximate the observable properties of natural

language syntax are efficiently learnable using

some simulations with synthetic data in Section 5.

Our primary scientific motivation is to under-

stand the process of first-language acquisition, in

particular the early phases of the acquisition of

syntactic structure. Importantly, the grammar is

not just a decision procedure that classifies strings

as being grammatical or ungrammatical, but addi-

tionally assigns a tree structure to the grammatical

sentences, a structure the primary role of which is

to support semantic interpretation. The standard

view is that children learn the syntactic structure

of their languages not by purely syntactic means,

but rather by using information about the range

of available interpretations, derived from the

situational context of the sentences they hear and

inferences about the intentions and goals of the

speaker (e.g., Abend et al., 2017). Indeed there

is ample direct evidence from the developmental

psycholinguistics literature that this does in fact

happen at certain stages of language acquisition:
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For example, Gropen et al. (1991) showed that

the acquisition of argument structure of verbs

exploits semantic information about the verb and

the arguments. However, the children in these

experiments—the youngest cohort being nearly 4

years old—have already acquired a great deal of

knowledge about English syntax.

Here, we are exploring an alternative or perhaps

complementary hypothesis: namely, that the ac-

quisition of the syntactic categories and rules of the

language can to a certain extent be learned using

only information derived from the surface strings

without any appeal to external information about

the hierarchical structure of the language that is

being learned. In other words, the initial phases of

language acquisition are based on purely syntactic

information rather than the semantic bootstrapping

discussed above.

The contributions of this paper are as follows.

First, we provide a reparameterization of PCFGs

within the space of weighted context-free gram-

mars (WCFGs) that we call Bottom–up WCFGs.

Next, we define three structural conditions on

CFGs and show that they imply the identifiability

of the class of all PCFGs based on those grammars.

We then present a naive computationally trivial

estimator and prove its asymptotic consistency

for that class of PCFGs. We present some exper-

iments on synthetic grammars that show that a

variant of this algorithm has good finite sample

behavior. Finally, we examine the extent to which

these conditions are plausible, using a corpus of

child-directed speech.

2 Definitions

We assume we have a finite set of atomic symbols

Σ. The set of finite strings over this set is written

Σ∗, nonempty finite strings are denoted by Σ+,

and the empty string is λ. We will typically write

a, b, c, . . . for elements of Σ and u, v, w, . . . for

elements of Σ∗. A (formal) language L is a subset

of Σ∗. A context is an ordered pair of strings, that

is, an element of Σ∗ × Σ∗ that we write as l, r.

If U, V are languages, then their concatenation is

UV defined in the normal way, and we will also

write uV where u is a string instead of {u}V and

so on. Given a fixed language L, we define for a

set of strings U a set of contexts U⊲ as

U⊲ = {l, r | lUr ⊆ L}

If U = {u} we will write u⊲ for the distribution

of u—the set of contexts in which it can occur.

A stochastic language is a function P from

Σ∗ → [0, 1], such that
∑

w∈Σ∗ P(w) = 1. Note

that the support of this distribution is a formal

language as defined above. We assume for the

rest of the paper that the expected length of strings

drawn from this distribution is finite.

We can define for some u ∈ Σ+, the expected

number of times that u will occur as a substring in

a string distributed according to P.1

E(u) =
∑

l,r∈Σ∗×Σ∗
P(lur)

We can also define, for a string u, its context

distribution, which is a probability distribution

over its contexts writtenD(u), whose support will

be u⊲, given for l, r ∈ Σ∗ ×Σ∗ by

D(u)[l, r] = P(lur)

E(u)
.

Context-Free Grammars

We consider context-free grammars (CFGs) in

Chomsky normal form 〈Σ, V, S, P 〉 where Σ is a

nonempty finite set of terminal symbols; V is a

nonempty finite set, disjoint from Σ of nontermi-

nal symbols, S is a distinguished element of V ,

the start symbol and P is a finite nonempty set

of productions each of which is either of the form

A → a where A ∈ V and a ∈ Σ or A → BC
where A ∈ V and B,C ∈ V \ {S}.2

We write A,B,C, . . . for elements of V and

α for strings over V ∪ Σ. A derivation tree τ is

a singly rooted ordered tree where every node is

labeled with an element of V ∪ Σ and each local

tree is in P . The yield of a derivation is the string

of symbols of leaves of the tree taken left to right;

we write this as y(τ). The set of all derivations

licensed by G and rooted by a nonterminal A, and

with a yield in a set Γ is written as Ω(G,A,Γ);
here we follow the notation of Smith and Johnson

(2007) among others. We will omit G when it is

clear.

1This is the expectation because if u occurs n times in

a string w, there will be n distinct contexts l, r such that

lur = w.
2We follow the classical definition of Chomsky normal

form in not allowing S to occur on the right-hand side of

any rules. This simplifies various parts of the analysis, and

makes the learning problem slightly harder, but it is not hard

to remove this restriction if it is desired. Note that we do not

allow an empty right-hand side of a production.
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We want to be able to combine trees using tree

substitution; thus, if we have a tree τ1 whose yield

is lBr, where l and r are strings over Σ, and a tree

τ2 whose root is B and whose yield is α, we can

combine them to get a tree τ1 ⊗ τ2 whose yield is

lαr.

We define the string language defined by a

nonterminal A to be

L(G,A) =
{

y(τ) : τ ∈ Ω(G,A,Σ+)
}

.

The string language defined by a CFG G is

L(G) = L(G, S).
For a tree τ and a production A → α we

write f(A → α; τ) for the number of times the

production occurs in t. We write |τ | for the number

of nonterminal symbols in a tree, and |w| for the

length of a string.

2.1 WCFGs

We will now consider the probabilistic case where

we have a (discrete) probability distribution over

trees, that is, over Ω(G, S,Σ+), which will then

define a stochastic language, whose support will

be a context-free language. We will only consider

those distributions which satisfy some simple

conditional independence assumptions and can

be represented by weighted CFGs.

A weighted CFG (WCFG) is a CFG together

with a parameter function θ : P → R that maps

productions to nonnegative real values; we will

write this as G; θ. The weight or score of a tree τ
is the product of the weights of each production.

Formally s : Ω(G)→ R is defined as

s(τ ; θ) =
∏

A→α∈P
θ(A→ α)f(A→α;τ )

Note that s(τ1 ⊗ τ2) = s(τ1)s(τ2). In general we

will define the score of a set of trees Ω to be the

sum of the scores of the trees in that set: s(Ω)
=

∑

τ∈Ω s(τ). The weight of a string w is the sum

of the weights of each derivation tree which yields

w; s(w) = s(Ω(G,S,w)).

Definition 2.1. The inside value of a nonterminal

A, written I(A) is

I(A) = s(Ω(G,A,Σ+))

Note that this quantity is sometimes called the par-

tition function, written Z(A). The outside value,

O(A), is defined likewise as

O(A) = s(Ω(G,S,Σ∗AΣ∗))

Note that O(S) = 1 by definition, since

Ω(G,S,Σ∗SΣ∗) is a single element set consisting

of the trivial tree with one node S, which has

score 1.

A WCFG is globally normalized if I(S) = 1. In

this case it defines a probability distribution over

trees, we can identify the probability of a tree with

its score: P(τ) = s(τ), and via that a stochastic

language.

2.2 Expectations

We define expectations of nonterminals, termi-

nals, and productions, with respect to the distribu-

tion over trees defined by a globally normalized

WCFGs.

Given a globally normalized WCFG, the quan-

tity E(A → α) is the expected number of times

the production A → α occurs in a tree generated

by the distribution induced by the grammar:

E(A→ α) =
∑

τ∈Ω(G,S,Σ+)

s(τ)f(A→ α; τ)

Using this we define the expectation of a

nonterminal:

E(A) =
∑

α:A→α∈P
E(A→ α)

Note that E(S) = 1 (because it can only occur at

the root of every tree).

For nonterminals A,B,C and terminals a, the

following identities relate the expectations and the

inside and outside values, which can be established

using the methods of, for example, Chi (1999).

E(A) = I(A)O(A) (1)

E(A→ a) = O(A)θ(A→ a)

E(A→ BC) = O(A)θ(A→ BC)I(B)I(C)

Note that for any nonterminal A that is not S,

and any β > 0, we can scale all parameters for

productions with A on the left-hand side by β, and

every production with A on the right-hand side by

β−1 (or β−2 if A occurs twice on the right-hand

side), and the score of every tree will remain the

same. There are two natural ways of resolving this

arbitrariness: one is to stipulate that for all non-

terminals I(A) = 1, which gives us the familiar

PCFG. The parameters of a tight PCFG satisfy

θ(A→ α) =
E(A→ α)

E(A)
. (2)

411



The learning approach we take here is based on

modeling the context distribution, and it is there-

fore more mathematically convenient to use the

second normalization method where we stipulate

that O(A) = 1 for all nonterminals. We now

define this alternative parameterization, which we

call a bottom–up WCFG, in contrast to the top–

down generative process associated with a PCFG.

Definition 2.2 (bottom–up WCFG). We say that a

WCFG is in bottom–up form if I(S) = 1, and for

all nonterminals A, O(A) = 1.

If a WCFG is in bottom–up form then the

parameters satisfy:

θ(A→ BC) =
E(A→ BC)

E(B)E(C)
(3)

θ(A→ a) = E(A→ a).

Note that in this form, we condition the parame-

ters on the right-hand side of the production not

on the left-hand side as is done with a PCFG.

There is a unique bijection between the class

of tight PCFGs and bottom–up WCFGs; we can

easily convert from one form to the other. We can

efficiently compute the inside and outside values

of a convergent WCFG using standard techniques

(Hutchins, 1972; Nederhof and Satta, 2008;

Etessami et al., 2012); these involve solving a

system of quadratic equations (since the grammar

is in Chomsky normal form) in the case of the

inside values, which can be done using the Newton

method or a fixed point iteration, and a linear

system in the case of the outside values. The expec-

tations of each production can then be computed

using Equation 1 and then converted into a PCFG

or bottom up WCFG as desired using Equations 2

and 3, respectively.

3 Identifiability

We assume that we have a sequence of strings

generated independently and identically distrib-

uted (i.i.d.) from some distribution generated by

an unknown PCFG or WCFG, which we call the

target grammar.

We are interested in the problem of producing a

PCFG from this input data that is close to the target

PCFG; namely, the underlying CFG is isomorphic

to the underlying CFG of the target grammar and

additionally the parameters are within ǫ of the cor-

responding parameters of the target grammar: we

call this being ǫ-close. Two CFGs are isomorphic

if they are identical apart from the labels of the

nonterminals; the isomorphism is just a bijection

between the nonterminals and productions in the

natural way.

Definition 3.1. Two WCFGs, G; θ and G′; θ′, are

ǫ-close if there is an CFG-isomorphism φ from G
to G′ such that for all A→ α in the grammars,

|θ(A→ α) − θ′(φ(A→ α))| < ǫ

More precisely, we say that a learning algorithm

A is a consistent estimator for a class of globally

normalized WCFGs,G, if for every WCFG,G∗, θ∗
in the class, for every ǫ, δ > 0, there is an N
such that if the algorithm receives a sample of

m strings, sampled i.i.d. where m ≥ N then it

outputs a WCFG Ĝ, θ̂ such that with probability at

least 1− δ we have that Ĝ, θ̂ is ǫ-close to G∗, θ∗.

3.1 Structural Conditions on Grammars

We now define three structural conditions on

PCFGs that will be sufficient to guarantee

identifiability of the class from strings.

Condition 3.1. A grammar G is anchored if for

every nonterminal A, there exists a terminal a
such that A → a ∈ P and, if B → a ∈ P then

B = A. In other words a occurs on the right-hand

side of exactly one production.

We will call such a terminal a characterizing

terminal of A, and if a characterizes A we will

sometimes write [[a]] for A.
This condition is very close to a number of

conditions that have been proposed in the literature

both for topic modeling and for grammatical

inference: We use here the terminology of Stratos

et al. (2016), but similar ideas occur in, for

example, Adriaans’s (1999) approach to learning

CFGs and Denis et al.’s (2004) approach to

learning regular languages. This is also very

closely related to what is called the 1-Finite Kernel

Property in distributional learning of CFGs (Clark

and Yoshinaka, 2016).

The key idea behind the learning algorithm is

this: If every nonterminal has a characterizing

terminal then we can infer the probabilities of the

productions of the grammar from distributional

properties of the strings of corresponding termi-

nals. Thus if A, B, and C are nonterminals chara-

cterized by a, b, and c, respectively, then we can

infer something about the parameter of the produc-

tion A → BC by looking at the distributional

properties of a and bc. And if A is a nonterminal
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characterized by a and b is any terminal, then we

can infer something about the parameter of the

production A→ b by looking at the distributional

properties of a and b.

3.2 Divergences

We start by defining some quantities that depend

only on a distribution over strings. Recall that

the Rényi α-divergence (Rényi, 1961) between

two discrete distributions P and Q is defined for

α =∞

R∞ (P‖Q) = log sup
x

P (x)

Q(x)
(4)

Given two strings u, v we will be concerned

with ρ(u→ v),

ρ(u→ v) = R∞ (D(u)‖D(v)) (5)

This is an asymmetric nonnegative measure of

‘‘distance’’ between the context distributions of u
and v, which takes the value 0 only when they are

identical. Note that, because u⊲ is the support of

D(u),

e−ρ(u→v) =
E(u)

E(v)
inf

l,r∈u⊲

P(lvr)

P(lur)

We can now state a foundational result, which

relates the parameters of a production to these

divergences. We will start by proving an inequal-

ity, that we will later strengthen to an equality

under additional conditions.

Theorem 3.1. Suppose G; θ is a bottom–up

WCFG, and G is anchored. Let D be the distribu-

tion it defines, and P the set of productions.

Suppose that a, b, c are characterizing terminals

for nonterminals A,B,C respectively. Then for

any terminal d if A→ d ∈ P

θ(A→ d) ≤ E(d)e−ρ(a→d)

and if A→ BC ∈ P

θ(A→ BC) ≤ E(bc)

E(b)E(c)
e−ρ(a→bc)

Proof. Suppose A is a nonterminal in G that is

characterized by a. Then, for every context l, r,

since the only way that we can derive an a is via

A, P(lar) = s(Ω(S, lAr))θ(A → a). Summing

both sides with respect to l, r we obtain

E(a) = O(A)θ(A→ a)

Since O(A) = 1 in a bottom-up WCFG we

have that

θ(A→ a) = E(a) (6)

and therefore

s(Ω(S, lAr)) =
P(lar)

E(a)
(7)

Now consider lexical rules. Consider some

production A → d in the grammar, where a
characterizes A. Consider some l, r ∈ a⊲. Since a
is an anchor ofA, we know that s(Ω(S, lAr)) > 0,

and therefore P(ldr) > 0. Clearly

P(ldr) ≥ s(Ω(S, lAr))θ(A→ d) (8)

since the probability on the left-hand side is a sum

over the scores of many possible derivations, and

the right-hand side is a sum over a subset of those

derivations.

Therefore:

θ(A→ d) ≤ P(ldr)

s(Ω(S, lAr))

Now using Equation 7, we obtain

θ(A→ d) ≤ E(a)
P(ldr)

P(lar)

Because this is true for all l, r ∈ a⊲ we have

θ(A→ d)

E(d)
≤ E(a)

E(d)
inf

l,r∈a⊲
P(ldr)

P(lar)
= e−ρ(a→d)

The same argument goes through for the binary

rules. Suppose we have A,B,C nonterminals

characterized by a, b, c, respectively, and a

production A → BC with parameter θ(A →
BC). Let l, r be some context in a⊲, then

P(lar) > 0 and P(lbcr) > 0. Clearly

P(lbcr) ≥
s(Ω(S, lAr))θ(A→ BC)θ(B → b)θ(C → c)

(9)

Therefore θ(A→ BC) is smaller than or equal to

P(lbcr)

s(Ω(S, lAr))θ(B → b)θ(C → c)
.

Using Equation 6 twice, and Equation 7 we get

θ(A→ BC) ≤ E(bc)

E(b)E(c)

E(a)

E(bc)

P(lbcr)

P(lar)

Again, because this is true for all l, r ∈ a⊲ we

have

θ(A→ BC) ≤ E(bc)

E(b)E(c)
e−ρ(a→bc)
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This shows us that we have an upper bound on

the parameters from a distributional property. But

looking at Equations 8 and 9, we can consider the

circumstances under which this inequality will be

tight, in which case we can recover the parameters

directly.

In particular, if the grammar is unambiguous

(i.e., if every string has at most one derivation

tree) then if the left-hand side of the inequality is

nonzero we can immediately see that the inequality

will become an equality. As it happens, there

will also be equality under some much weaker

conditions that we now define.

3.3 Ambiguity

We now define two closely related conditions that

are both related to the degree of ambiguity of the

grammar.

Condition 3.2. Suppose a CFG G contains a

production A → α. We say that G has an

unambiguous context for that production if there

is a string w and strings l, u, r such that w = lur,

Ω(G, S,w) is nonempty and

Ω(G, S,w) = Ω(G, S, lAr)⊗ Ω(G,A, u)

and all elements ofΩ(G,A, u) have an occurrence

of A → α at the root. A CFG is locally

unambiguous if it has an unambiguous context

for every production in its set of productions.

Informally this condition says that for every

production there is some string which, although it

can be ambiguous, always uses that production at

the same point. Note that if G is locally unam-

biguous and is anchored, then for every binary

production, [[a]]→ [[b]][[c]] there will be a context

l, r such that lbcr satisfies the condition; and for

every production [[a]] → b there will be a context

l, r such that lbr satisfies the condition.

If a grammar is unambiguous, then every con-

text is an unambiguous context for every deriva-

tion that uses it, but this condition is much weaker

than that; indeed, we don’t need there to be any

unambiguous strings, sinceΩ(G, S, lAr) can have

more than one element.

Lemma 3.1. If G; θ is a bottom–up WCFG and

G is anchored and is locally unambiguous, then if

[[a]]→ b ∈ P

θ([[a]]→ b) = E(b)e−ρ(a→b)

and if [[a]]→ [[b]][[c]] ∈ P

θ([[a]]→ [[b]][[c]]) =
E(bc)

E(b)E(c)
e−ρ(a→b,c)

Proof. If we have a production [[a]]→ [[b]][[c]] in

the grammar, we know there is a context such that

Ω(S, lwr) = Ω(S, l[[a]]r) ⊗Ω([[a]], w) where all

the elements of Ω(A,w) have an occurrence of

[[a]]→ [[b]][[c]] at the root. Because we know that

Ω([[a]], bc) consists of a single tree using [[a]] →
[[b]][[c]]; and Ω(S, l[[b]][[c]]r) = Ω(S, l[[a]]r) ⊗
Ω([[a]], [[b]][[c]]), therefore Ω(S, lbcr) =
Ω(S, l[[a]]r) ⊗ Ω(A, bc). Now we apply the same

manipulations to get that for this l, r

θ([[a]]→ [[b]][[c]]) =
E(a)

E(b)E(c)

P(lbcr)

P(lar)

and therefore

θ([[a]]→ [[b]][[c]]) =
E(bc)

E(b)E(c)
e−ρ(a→bc).

The argument for lexical rules is analogous.

We can understand this better by taking the log.

log θ([[a]]→ [[b]][[c]])

= log E(bc)
E(b)E(c) − ρ(a→ bc)

(10)

The natural parameter is then the sum of two

terms: The first is just the pointwise mutual

information (Church and Hanks, 1990) between b
and c.3 The second term penalizes cases where the

right-hand side is distributionally dissimilar from

the left-hand side. For the lexical productions,

similarly we have two terms:

log θ([[a]]→ b) = logE(b)− ρ(a→ b) (11)

3.4 Upward Monotonicity

We need one more condition, however. There

may be many different grammars that define the

same distribution over strings that satisfy these

two conditions because we may have multiple

nonterminals that could be merged together.

Condition 3.3. A grammar G = 〈Σ, V, S, P 〉 is

strictly upward monotonic if for all Q ⊃ P ,

L(〈Σ, V, S,Q〉) ⊃ L(G). (Where Q is restricted

to CNF productions of V × (Σ ∪ V 2).)

3With an adjustment of logE(|w|) because they are

expectations and not probabilities.
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Informally, if we add a new production to the

grammar, then the language defined increases.

Note that of course all grammars have the property

that if Q ⊇ P , then L(〈Σ, V, S,Q〉 ⊇ L(G). Here

we require this monotonicity to be strict.

We define the set of derivation contexts of a

nonterminal A to be

C(G,A) = {l, r : Ω(G, S, lAr) 6= ∅} .
Lemma 3.2. Suppose G is anchored and

upward monotonic: If A,B are nonterminals and

C(G,A) = C(G,B) then A = B.

Proof. Let a be an anchor for A; we can clearly

add the production B → a without increasing the

language generated. Therefore, B → a is in the

grammar, and so A = B as a is an anchor.

Lemma 3.3. Suppose G is anchored and upward

monotonic: Then

[[a]]→ b ∈ P iff a⊲ ⊆ b⊲

and

[[a]]→ [[b]][[c]] ∈ P iff a⊲ ⊆ (bc)⊲

Using the same condition we can show

that productions not in the grammar will have

parameters zero, because of an infinite divergence

term.

Lemma 3.4. Suppose G is anchored, and upward

monotonic, then

• If [[a]] → b is not in the grammar, then

ρ(a→ b) =∞.

• If [[a]] → [[b]][[c]] is not in the grammar, then

ρ(a→ bc) =∞.

Proof. If A → b is not in the grammar, then by

Lemma 3.3, there is some l, r such that lar is in

the language but lbr is not in the language and so

ρ(a→ b) =∞. Similarly for binary rules.

3.5 Selecting Nonterminals

The preceding discussion shows that if we have

a set of terminals that are anchors for the true

nonterminals in the original grammar, then the

productions and the (bottom–up) parameters of

the associated productions will be fixed correctly,

but it says nothing about parameters that might

be associated to productions that use other

nonterminals. However, it is easy to show that

under these assumptions there can be no other

nonterminals.

Lemma 3.5. Suppose G1 and G2 are anchored

and strictly monotonic, and are weakly equivalent.

Then they are isomorphic, and there is a unique

isomorphism between them.

Proof. Let A be a nonterminal in G1, and let a
be an anchor for A. Suppose B → a be some

production in G2. Let b be an anchor for B.

Therefore a⊲ ⊇ b⊲. By a similar argument there

must be a nonterminal C in G1 and a terminal

c that anchors C such that b⊲ ⊇ c⊲. But because

a⊲ ⊇ c⊲, we must have a production C → a in

G1. Since a is an anchor C = A, and therefore

a⊲ = b⊲ = c⊲. Therefore C(G1, A) = C(G2, B).
Let φ then be the CFG-morphism from G1 →

G2, defined by φ(A) = A′ iff C(G1, A) =
C(G2, A

′). This is well defined by Lemma 3.2,

and is clearly a bijection. Given this bijection,

by Lemma 3.3, they will have the same set of

productions, and thus be isomorphic.

3.6 Identifiability

We can now define the classes of grammars

that we are interested in. Let GA be the set

of all trim CFGs that are in Chomsky normal

form, anchored (Condition 3.1), are locally

unambiguous (Condition 3.2), and are strictly

upward monotonic (Condition 3.3).

Let PA be the set of all tight PCFGs with finite

expectations, with CFGs in GA, and let WA be the

set of all WCFGs in bottom–up form with CFGs

in GA.

Theorem 3.2. Suppose G1; θ1 and G2; θ2 are in

WA and are stochastically equivalent: In other

words, for all w ∈ Σ+, P(w;G1) = P(w;G2),
then G1 is isomorphic to G2, and if φ is

the unique such morphism, for all A → α,

θ1(A→ α) = θ2(φ(A→ α)).

Proof. Because they are stochastically equivalent,

the support of their distributions is equal, and

thus G1 and G2 are weakly equivalent. Therefore

by Lemma 3.5 there is a unique isomorphism

between them, φ. By Lemma 3.1 the parameters

of corresponding productions must also be

equal.

Because there is a bijection between WA and

PA, PA is also identifiable from strings.

4 Naive Estimators

We now analyze the properties of a particular

estimator that we call the naive plugin estimator,
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which we will show can learn all grammars in WA

and PA. This approach uses a trivial manner of

estimating the ρ values, and from this we derive

a consistent estimator for the class. This approach

has poor sample complexity but is algorithmically

trivial.

We will need to estimate the ρ divergences

from a sample of strings drawn i.i.d. from the

distribution defined by the grammar. Given a

sample of strings, the most naive approach is

to estimate P(w) and E(a) by the empirical

distribution, to estimate the ratio as the ratio of

these estimates, and to take the supremum over the

frequent contexts of a rather than over the infinite

set a⊲.

We are interested in convergence in probability,

which we will write as X̂N
N→∞−−−→ X; in other

words, for any ǫ, δ > 0, there is an n such that for

all N > n, with probability greater than 1− δ we

have |X̂N −X| < ǫ.
Let w1, . . . , wN be the sample of N strings

drawn i.i.d from a target PCFG, and let n(w)
be the number of times that w occurs in the

sample (as a whole string), and let m(w) be

the number of times substring occurs as a

substring; clearly,
∑

l,r n(lwr) = m(w). Define

P̂(w) = n(w)/N to be the empirical probability

of w and Ê(u) = m(w)/N to be the empirical

expectation of u. Clearly, for any string w we have

P̂(w)
N→∞−−−→ P(w) and Ê(w)

N→∞−−−→ E(w).
The naive plugin estimator is given by:

Definition 4.1. For a, b, c ∈ Σ we define

ρ̂N (a→ bc) = log
Ê(bc)

Ê(a)
max

l,r:n(lar)>
√
N

n(lar)

n(lbcr)
(12)

And for a, b ∈ Σ we define

ρ̂N (a→ b) = log
Ê(b)

Ê(a)
max

l,r:n(lar)>
√
N

n(lar)

n(lbr)
(13)

Note that ρ̂N (a → bc) = ∞ if there is

some context l, r such that n(lar) >
√
N , and

n(lbcr) = 0.

We can show the convergence of the estimators

when one side is anchored, starting with the case

when the divergence is infinite.

Lemma 4.1. For some G; θ ∈WA suppose that a
is an anchor for a nonterminal A and suppose that

for some b ∈ Σ, ρ(a → b) = ∞. Then for every

δ > 0, there is an N such that with probability at

least 1 − δ, ρ̂N (a → b) = ∞. Similarly, if there

is a c if ρ(c → a) = ∞, there is an N such that

with probability at least 1− δ, ρ̂N (c→ a) =∞.

Lemma 4.2. For some G; θ ∈ WA suppose that

a is an anchor for a nonterminal A, b for B, and

c for C . If ρ(a→ bc) =∞, then for every δ > 0,

there is an N such that with probability at least

1− δ ρ̂N (a→ bc) =∞.

Proof. If A → BC were in P then ρ(a → bc)
would be finite. So A → BC is not in P . By

Condition 3.3, there must be some context l∗, r∗
in a⊲ but not in (bc)⊲, and so for sufficiently large

N , l∗ar∗ will occur more than
√
N times.

Lemma 4.3. For some G; θ ∈WA suppose that a
is an anchor for a nonterminal A. Suppose ρ(a→
b) is finite; then ρ̂N (a→ b)

N→∞−−−→ ρ(a→ b).

Lemma 4.4. For some G; θ ∈ WA suppose

that a is an anchor for a nonterminal A, b for

B, and c for C; if ρ(a → bc) is finite, then

ρ̂N (a→ bc)
N→∞−−−→ ρ(a→ bc).

When ρ is finite the convergence is

straightforward since |{l, r : n(lar) >
√
N}| ≤√

N and so we can use Chernoff bounds in a

standard way.

4.1 Definition of the Algorithm

We can now define the algorithm, taking as input

a sequence of strings 〈w1, . . . , wN 〉 and using the

trivial plugin estimators ρ̂N . The pseudocode is

presented in Algorithm A. The algorithm starts by

identifying the set of terminals that are anchors,

which is illustrated in Figure 1. If a terminal d
is not an anchor then there will be some terminal

a which is an anchor such that ρ(a → d) < ∞
and ρ(d → a) = ∞; in other words, such that

a⊲ ⊂ d⊲. If the ρ̂N estimates are infinite iff ρ is

infinite, then we can see that Γ will be the set of

possible anchors; that is, those terminals that occur

on the right-hand side of exactly one production.

Clearly, if a and b are anchors for the same

nonterminal then ρ(a→ b) = ρ(b→ a) = 0, and

if they are anchors for different nonterminals then

ρ(a→ b) = ρ(b→ a) =∞, so we can just group

them into equivalence classes and pick the most

frequent one from each class as the anchor. The

start symbol will be anchored by the symbol that

occurs most frequently as a whole sentence.
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Figure 1: Diagram showing the terminal selection

algorithm for a grammar with three nonterminals with

anchors a, b, c. This diagram represents the space of

context distributions: All terminals have a context

distibution in the convex hull of the anchors. d 6∈ Γ
because ρ(a → d) < ∞ but ρ(d → a) = ∞, and it is

therefore in the interior of the convex hull.

We can now prove that this algorithm is a

consistent estimator for the class of WCFGs that

we consider, WA.

Theorem 4.1. For every grammar G∗, θ∗ ∈WA,

for every ǫ, δ > 0, there is an n such that when

Algorithm A is run on a sample of N strings,

N > n, generated i.i.d. from G∗; θ∗ it produces

a WCFG G; θ such that with probability at least

1− δ

• G∗ is CFG-isomorphic to G, and if φ is an

isomorphism from G∗ to G

• |θ∗(A→ α)− θ(φ(A→ α))| < ǫ

Proof. (Sketch) Assume first thatN is sufficiently

large that ρ̂N (a → b) is close to ρ(a → b) for all

a, b such that either a or b is an anchor; we can

then show that Γ in Line 2 is just the set of possible

anchors; and a ∼ b will be true iff a, b are anchors

for the same nonterminal. We define a bijection

between the nonterminals of the hypothesis and

the target. Line 5 picks the start symbol to be the

unique anchor that can occur in a length 1 string.

The grammar will have the right productions via

Lemma 3.3, and the parameters will converge via

Lemmas 4.3 and 4.4.

The output of this is a WCFG that may be

divergent: We therefore define Algorithm B that

Input: A sequence of strings

D = w1, w2, . . . , wN

Output: A WCFG G; θ
1 Compute ρ̂N (a→ b) for all a, b ∈ Σ;

2 Γ← {a ∈ Σ | ∀b ∈ Σ, ρ̂N (a→ b) <
∞∨ ρ̂N (b→ a) =∞} ;

3 Define the equivalence relation on Γ given

by a ∼ b iff ρ̂N (a→ b) <∞ and

ρ̂N (b→ a) <∞. Let ∆ be the set formed by

picking the terminal a with maximal m(a)
from each equivalence class in Γ/ ∼ ;

4 V ← {[[a]] | a ∈ ∆};
5 s← argmax{n(a) | a ∈ ∆} ;

6 PL ← {[[a]] → b | a ∈ ∆, b ∈ Σ, ρ̂N (a →
b) <∞} ;

7 Compute ρ̂N (a→ bc) for all a, b, c ∈ ∆ ;

8 PB ← {[[a]]→ [[b]][[c]] | a, b, c ∈
∆, ρ̂N (a→ bc) <∞} ;

9 G← 〈Σ, V, [[s]], PL ∪ PB〉 ;

10 θ([[a]]→ b)← e−ρ̂N (a→b)
Ê(b) ;

11 θ([[a]]→ [[b]][[c]]) ←
e−ρ̂N (a→bc)

Ê(bc)/Ê(b)Ê(c) ;

12 return G; θ

Algorithm A: WCFG learner.

uses the inside outside (IO) algorithm (Eisner,

2016) to normalize the WCFG produced by

Algorithm A; we take the output WCFG and run

one iteration of the IO algorithm on the same data

to estimate the expectations of all the rules that

are then normalized to produce a PCFG. Proving

the convergence of this estimator requires a little

bit of care. Chi (1999) shows that the result of this

procedure will always be a tight PCFG; the finite

expectation of |τ | allows us to apply a variant

of the dominated convergence theorem combined

with the law of large numbers to show that this is

a consistent estimator for the class of grammars

PA.

5 Experiments

The contributions of this paper are primarily

theoretical but the reader may have legitimate

concerns about the practicality of this approach

given the naive estimator, the assumptions that

are required, and the asymptotic nature of the

correctness result. Here we present some compu-

tational simulations that address these issues,

using synthetic PCFGs that mimic to a certain
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extent the observable properties of child-directed

speech (Pearl and Sprouse, 2012). We generate

CFGs that have 10 nonterminals, 1,000 terminal

symbols, and all possible rules in CNF; none of

these grammars are in GA. To obtain a PCFG, we

sample the parameters for the binary productions

and an extra parameter for the lexical rules from a

symmetric Dirichlet distribution with parameterα,

which we vary to control the degree of ambiguity

of the grammar. We then train these parameters

using the IO algorithm to get a distribution of

lengths close to a zero-truncated Poisson with

parameter 5. We then sample the conditional

lexical parameters from a multivariate log normal

distribution with σ = 5.4

To obtain a practical algorithm we follow

Stratos et al. (2016). We consider only the local

context—the immediate preceding and following

word including a distinguished sentence boundary

marker—and use Ney-Essen clustering (Ney et al.,

1994) with 20 clusters to get a low-dimensional

feature space. We give the learning algorithm the

true number of nonterminals as a hyperparameter

(in contrast to Algorithm A, which learns the

number of nonterminals) and run the NMF

algorithm of Stratos et al. (2016) to find the

anchors, considering only those that occur at

least 1,000 times. We set the lexical parameters

using the Frank-Wolfe algorithm, and the binary

parameters using the Renyi divergence with

α = 5. To alleviate data sparsity with estimating

the distribution of the anchor bigrams when

computing the binary rule parameters, we use all

bigrams consisting of words that have probability

at least 0.9 of being derived from the respective

nonterminal. This produces a WCFG (A) which

may be divergent. We then run one iteration of

the IO algorithm5 to obtain a PCFG (B), and then
a further 10 iterations to get another PCFG (C);

this is guaranteed to increase the likelihood of the

model; if the PCFG B is sufficiently close to the

target then this will converge towards the global

optimum, the ML estimate; if not it will only

converge to a local optimum.

For efficiency reasons we only run the IO

algorithm on sentences of length at most 10; and

we evaluate on lengths up to 20. The performance

continues to improve with further iterations.

4This gives a Zipfian long-tailed distribution. We

experimented also with a truncation of a Pitman Yor process

with similar results.
5We are grateful to Mark Johnson for his efficient C

implementation.

Figure 2: Box and whisker plot showing labeled exact

match for 100 grammars sampled with α = 0.01. We

compare algorithms A, B, and C against gold (the

target PCFG) and ML (the maximum likelihood PCFG

learned by supervised learning from the training data).

Figure 3: Box and whisker plot showing unlabeled

accuracy. We add trivial baselines of left and right

branching and random trees. 100 grammars sampled

with α = 0.01.

5.1 Results

After fixing the hyperparameters, we generate 100

different PCFGs for each condition, and sample

106 sentences from each. We evaluate the results

according to how well they recover the true tree

structures. We sample 1,000 trees from the target

PCFG and evaluate the Viterbi parse of the yield

of the tree using labeled exact match in Figure 2

and micro-averaged unlabeled precision/recall in

Figure 3.6 In all cases we exclude all forced

choices so it is possible to score zero. The

performance of the original grammar is a measure

of the ambiguity of the grammar.

To see the effect of varying the degree of

ambiguity, Figure 4 plots unlabeled exact match

against the supervised baseline for values of

α ∈ {0.01, 0.1, 1.0}. For α = 1 both are close to

6Because both trees are binary, precision is equal to recall.
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Figure 4: Scatter plot showing unlabeled exact match

with the x-axis showing the ML model and the y-axis

showing the algorithm C for three different values

of the Dirichlet hyperparameter for the binary rules,

α = 0.01, 0.1, and 1.0. The diagonal line is the

theoretical upper bound.

the random baseline; apart from that extreme case

we find the performance degrading smoothly as

predicted by theory. The labeled exact match (not

shown here) in contrast shows a more pronounced

decrease.

These grammars are about an order of magni-

tude smaller than plausible natural language gram-

mars for child-directed speech as derived from the

treebank in Pearl and Sprouse (2012), but this

is largely for resource limitations because whereas

Algorithm A is very fast, the IO algorithm is

computationally expensive, and running these

experiments on hundreds of synthetic gram-

mars/languages at a time would be prohibitively

expensive. It is certainly computationally feasible

to run these experiments on single grammars with

up to 100 nonterminals and 20,000 terminals. In

small-scale experiments the results appear compa-

rable with those we report here. The major failure

mode is when there are nonterminals A where
∑

a E(A → a) is very small. In those cases,

though the grammar may be technically anchored,

the anchors will be below the frequency threshold

being considered.7

6 Applicability to Natural Language

Corpora

An important question is whether this approach

is directly applicable to natural language corpora

either of transcribed child-directed speech or of

7Full code for reproducing these experiments is available

athttps://github.com/alexc17/locallearner.

text; a number of the assumptions we make are

clearly false. First, even looking at English, we can

see that the anchoring assumption is too strong.

For example, the expletive pronouns in English,

there and it, are both ambiguous, since there is

also an adverb and it is also a personal pronoun,

and so if there is a nonterminal representing such

pronouns, then it will not be anchored.

When we consider phrasal categories, the ques-

tion of whether such nonterminals are anchored

requires asking two questions: first, whether such

nonterminals generate single words at all, and

secondly whether among those words we can

find anchors. The existence of pro-forms, such as

pronouns in the case of noun phrases, guarantees

this for at least some categories. Clearly, this is

genre-dependent, because it is sensitive to sen-

tence length. Here we look at the Adam corpus of

child-directed speech in English as syntactically

annotated in the Penn treebank style by Pearl

and Sprouse (2012). Table 1 shows the results.

We can see that nonclausal categories are mostly

anchored at this crude level of analysis, but that

clausal categories are not. This implies that simple

sentences without embedded clauses can be

learned using this approach, but that learning

complex clausal structures will require this

approach to be extended at least to anchors of

length more than one.
Most fundamentally, simple PCFGs of the type

that we consider here are very poor models

of natural language syntax. In order to obtain

reasonable results, such grammars need to be

lexicalized because otherwise the independence

assumptions of the PCFG are violated because of

semantic relations, for example, between a verb

and its subject. Thus the realizability assumption

the approach relies on is dramatically false.

7 Discussion and Conclusion

There are two ways of thinking about PCFGs:

one is as a nontrivial CFG with parameters

attached, where the support of the distribution is

the language generated by the CFG, and the other

is where the CFG is trivial, containing all possible

productions, and where the support is the set of all

strings; we can call these sparse and dense PCFGs,

respectively. Hsu et al. (2013) show that in the

dense case the class of PCFGs is not identifiable

without additional constraints, even when one

can exclude a set of grammars of measure
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t P (l = 1) wmax P (t|wmax)

ADJP 0.67 careful 0.85

ADVP 0.84 already 1.0

FRAG 0.3 seal 0.2

INTJ 0.87 hmm 1.0

NP 0.7 he 1.0

PP 0.078 for 0.13

PRT 0.99 off 0.72

S 0.017 - -

SBAR 0.0046 if 0.0024

SBARQ 0.0 - -

SQ 0.021 - -

VP 0.11 crying 0.82

WHADVP 0.98 when 1.0

WHNP 0.8 who 0.95

Table 1: Phrasal categories from the corpus of

child-directed speech in Pearl and Sprouse (2012)

showing that the proportion of length 1 yields the

best anchor with frequency at least 10 and the

proportion of tokens of that word that occurs as a

yield of that tag.

zero.8 The class of sparse PCFGs we consider,

PA, has measure zero in their framework, and

thus there is no incompatibility between their

result and Theorem 3.2. However, there is some

incompatibility between the empirical results in

Section 5 and Hsu et al. (2013)’s result. With

the protocol used in Section 5 we are indeed

trying to learn a nonidentifiable class because the

PCFGs are dense. However, the grammars are

approximately anchored in the sense that for each

nonterminal A there is a terminal a such that

E(A → a) is very close to E(a). In these cases,

even though there are different parameter settings

that give rise to the same distribution over strings,

they will all be quite close to each other.

There have been many different attempts to

solve this problem over the decades since the

learning problem was initially introduced by

Horning (1969); a useful survey of older work

on learning CFGs is contained in Lee (1996). One

strand of research looks at using the IO algorithm

to train some heuristically initialized grammar

(Baker, 1979; Lari and Young, 1990; Pereira and

Schabes, 1992; de Marcken, 1999). However, this

8For technical reasons they consider only grammars where

all probability mass is evenly distributed over all possible

binary trees of a given length, and which are as a result highly

ambiguous.

approach is only guaranteed to converge to a local

maximum of the likelihood, and does not work

well in practice. A related problem that we do not

discuss in this paper is learning when the labeled

tree structures are observed—essentially that of

estimating a PCFG from a treebank, a problem

which is algorithmically trivial and statistically

well behaved, as Cohen and Smith (2012) show.

The approach we take is most closely related to

the work by Stratos et al. (2016) and work on

weakly learning CFGs from samples generated

by PCFGs developed by Shibata and Yoshinaka

(2016). However, there are very few approaches

to learning PCFGs with any nontrivial theoretical

guarantees.
The approach here is essentially an exemplar-

based model: The syntactic categories are based

on single strings of length 1. This can be

naturally extended, mutatis mutandis, to sets of

exemplars, and to exemplars with length greater

than 1. The extension beyond CFGs to mildly

context sensitive grammars such as MCFGs (Seki

et al., 1991) seems to present some problems

that do not occur in the nonprobabilistic case

(Clark and Yoshinaka, 2016); although the same

bounds on the bottom up parameters can be

derived, identifying the set of anchors seems to be

challenging.

The variant of Algorithm A discussed in

Section 5 is also interesting because it only uses

local information in the initial phase: Indeed, it

only uses the bigram and trigram counts, and it

is only in the use of the IO algorithm that a pass

through the data using the full sentence is used;

this is compatible with psycholinguistic evidence

about infants’ abilities to track transitional

probabilities (e.g., work following Saffran et al.,

1996). Of course the original version in Section 4

uses complete sentences and not just the low-order

counts.

Note that Equation 10 provides some theoret-

ical justification for the long literature (Harris,

1955; McCauley and Christiansen, 2019) on using

mutual information as a heuristic for unsupervised

chunking. Although it is intuitively reasonable

that chunks should correspond to subsequences

that have high pointwise mutual information, it

is gratifying to finally have some mathematical

basis for these intuitions.
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