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Introduction

Welcome to the 1st Joint Workshop on Narrative Understanding, Storylines, and Events!

This workshop brings together an interdisciplinary group of researchers from NLP, ML, and other
computational fields with authors and scholars from the humanities to discuss methods to improve
automatic capabilities for narrative understanding, storylines, and event recognition and modeling.

We are happy to present 15 papers on this topic (along with 2 non-archival papers to be presented only at
the workshop). These papers take on the complex challenges presented by diverse texts including spoken
narratives, dialogue, literature, and journalism as they look to improve methods for event extraction,
emotion and bias recognition, discourse evaluation, script induction, quality assessment, cross-document
event coreference, and other tasks related to the workshop theme. We would like to thank everyone who
submitted their work to this workshop and the program committee for their helpful feedback.

We would also like to thank our invited speakers for their participation in this workshop: Angela Fan,
Mark Finlayson, Andrew Gordon, Alexander Hauptmann, Kathleen McKeown, Ellen Riloff, and Ted
Underwood.

We are excited to showcase this work and for this opportunity to bring together researchers working on
challenges in understanding narratives, storylines, and events. Thank you to the ACL Workshop Co-
Chairs, Milica Gašić, Saif M. Mohammad, Dilek Hakkani-Tur, and Ves Stoyanov, and to all who made
this workshop possible.

—Claire, Tommaso, Snigdha, Elizabeth, Ruihong, Mohit, Alejandro, Heng, Lara, Ben, Teruko, Nanyun,
and Joel
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New Insights into Cross-Document Event Coreference:
Systematic Comparison and a Simplified Approach

Andres Cremisini & Mark A. Finlayson
School of Computing and Information Sciences
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11200 S.W. 8th Street, CASE Building, Room 362, Miami, FL 33199
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Abstract

Cross-Document Event Coreference (CDEC)
is the task of finding coreference relationships
between events in separate documents, most
commonly assessed using the Event Corefer-
ence Bank+ corpus (ECB+). At least two
different approaches have been proposed for
CDEC on ECB+ that use only event triggers,
and at least four have been proposed that use
both triggers and entities. Comparing these
approaches is complicated by variation in the
systems’ use of gold vs. computed labels, as
well as variation in the document clustering
pre-processing step. We present an approach
that matches or slightly beats state-of-the-art
performance on CDEC over ECB+ with only
event trigger annotations, but with a signifi-
cantly simpler framework and much smaller
feature set relative to prior work. This study
allows us to directly compare with prior sys-
tems and draw conclusions about the effective-
ness of various strategies. Additionally, we
provide the first cross-validated evaluation on
the ECB+ dataset; the first explicit evaluation
of the pairwise event coreference classification
step; and the first quantification of the effect of
document clustering on system performance.
The last in particular reveals that while doc-
ument clustering is a crucial pre-processing
step, improvements can at most provide for a
3 point improvement in CDEC performance,
though this might be attributable to ease of
document clustering on ECB+.

1 Introduction

Cross-Document Event Coreference (CDEC) is a
clustering problem with a seemingly straightfor-
ward objective: Assign every event mention in a
corpus to exactly one set in which every mention in
the set refers to the same real-world event. CDEC

The data and code for the experiments described herein
is available at https://doi.org/10.34703/gzx1-9v95/FQVNQY.

is often contrasted with Within-Document Event
Coreference (WDEC), where all the event men-
tions are drawn from the same document. All sys-
tems previously described in the literature approach
CDEC in two steps: first, grouping documents into
topical clusters (document clustering), followed
by grouping events within each document cluster
(event clustering). The CDEC literature defines
events (probably incompletely) as linguistic ob-
jects comprised of a trigger and a set of arguments.
The trigger is the word or phrase (usually a verb,
though also commonly a noun phrase) that most
closely describes the event, and the arguments are
modifiers that would distinguish two events with
identical triggers. Arguments are always entities,
including things like times, locations, and human
or non-human participants.

For example, consider the statements “Yanitza
went for a run” and “Juan went for a run,” de-
scribing two distinct events. Note that names of
the human participants, Yanitza and Juan, are argu-
ments that distinguish otherwise identical events.
The events often also have internal structure: the
event trigger contains a light verb construction us-
ing went in combination with run. Add the com-
plexity that these event mentions might be found
in completely different contexts from completely
different documents, and this simple example illus-
trates why event annotation—and the related task
of event coreference, cross-document or not—is
difficult and prone to error.

In seeking to build a CDEC system for our own
use, we began with a thorough review of prior work.
We discovered that prior systems were not well
compared or evaluated, and that the performance
of the key step of document clustering was often
not reported. On the basis of these insights, we
developed a system with a focus on simplicity and
explainability. We identify issues in the CDEC lit-
erature that make comparing prior work difficult

1



and suggest best practices to remedy this situation
going forward. Our system is modeled on the BAG

OF EVENTS system described by Vossen and Cy-
bulska (2018), primarily because of its simplicity
and strong performance. However, we use a differ-
ent and significantly smaller feature set to predict
pairwise event coreference (4 features instead of
19), we employ a different document clustering
scheme independent of gold-standard annotations,
we ingest only event trigger annotations (instead of
both triggers and entities), and we develop a differ-
ent event clustering technique while maintaining
comparable state-of-the-art performance.

The paper proceeds as follows. We begin with
an extensive review of the area: the two major
corpora, prior work in CDEC, as well as some rele-
vant WDEC work (§2). We then describe our own,
simplified approach, with careful attention to evalu-
ating all stages of the pipeline (§3). We discuss our
cross-validated results for various scenarios (§4)
and conclude with a list of contributions (§5).

2 Prior Work

2.1 Data: The ECB & ECB+ Corpora

Most CDEC systems have been developed and eval-
uated on the EventCorefBank (ECB) and Event-
CorefBank+ (ECB+) corpora, with most using
ECB+ because it is larger. ECB was the first cor-
pus developed specifically for CDEC (Bejan and
Harabagiu, 2010). It comprises 482 documents se-
lected from GoogleNews, clustered into 43 topics,
with each topic containing documents on a specific
event, such as the 2009 Indonesian earthquake or
the 2008 riots in Greece over a teenager’s death.
The corpus is annotated using a “bag of events” and
entities approach, where co-referring events are all
placed into the same group along with their related
entities, but relationships between specific entities
and events are not recorded. A limitation of this
annotation scheme is that it makes it impossible to
differentiate events based on their arguments.

ECB+ extends ECB with 500 articles (bringing
the total to 982) that refer to similar but unrelated
events across the same 43 topics (Cybulska and
Vossen, 2014). For example, the topic with the
2009 Indonesian earthquake was expanded with
texts referring to the 2013 Indonesian earthquake.
These extra texts were marked with a different sub-
topic. In the release notes of ECB+, the authors
recommend using a subset of 1,840 sentences that
were additionally checked for correctness of coref-

Figure 1: Boxplot of Coreference Chain Lengths in
ECB+

erence annotations. We restrict our experiments
to these double-checked sentences; they contain
5,726 events and 897 coreference chains with an
average length of 5.5 events per chain (σ = 6.1).
Figure 1 shows a boxplot of chain lengths, which
shows that most coreference chains in the data are
quite short, with only a handful (around 20) greater
than 15 events in length.

Other datasets are available for the WDEC task
only, namely KBP and ACE (Getman et al., 2018;
Doddington et al., 2004). These datasets employ a
different, richer event annotation than ECB/+, in-
cluding types of events and temporal relationships
between events. However, these corpora provide
only WDEC annotations (and are also not free, be-
ing distributed by the Linguistic Data Consortium).

All extant CDEC systems begin with document
clustering followed by event clustering, either
by computing document clusters or using gold-
standard topic or sub-topic labels. Most CDEC
systems approach document clustering with off-
the-shelf algorithms, and in the experimental setups
used with the ECB+ corpus these algorithms tend
to work quite well, though we discuss some sub-
tleties in Section 4.2. All approaches make use of
event trigger or event trigger combined with entity
information, either gold-standard or computed.

2.2 Early Approaches

Early CDEC resolution systems used approaches
that have not been carried into more recent work.
Bejan and Harabagiu (2010) used a Bayesian ap-
proach that used a Dirichlet Process with a Chinese
Restaurant prior to find the configuration of event
clusters with greatest probability given the data.
They used gold-standard document clusters, but
did not make use of gold-standard event annota-
tions, rather using an event and entity extractor
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developed in earlier work and augmenting the pre-
dicted events using a semantic parser. They tested
their model on the ECB dataset, and achieved an
overall performance of 0.52 CoNLL F1. Notably,
this is the only system in prior work that reports
cross-validation results, but they did not report the
performance of their event detection system.

Chen and Ji (2009), in contrast, developed an
approach that formulates Within-Document Event
Coreference (WDEC) as a spectral graph clustering
problem. Although this system was tested on the
ACE dataset, which only includes WDEC annota-
tions (not CDEC), its performance of 0.836 Con-
strained Entity-Alignment F -measure (Luo, 2005)
(CEAF, a.k.a., the ECM, or Entity Constrained-
Mention, F -measure) is of interest to work on
CDEC.

2.3 Later Approaches

All recent CDEC systems divide into event-only
clustering and joint event-entity clustering. Event-
only systems only perform event clustering (though
some use entity information to augment their fea-
ture sets) while joint event-entity systems resolve
event and entity coreference simultaneously.

2.3.1 Event-Only Clustering
Kenyon-Dean et al. (2018) describe an event-only
clustering approach that generates event embed-
dings for clustering within the hidden layer of a
neural network. The paper does not specify if doc-
ument clustering was performed before CDEC, or
if they used gold-standard labels. Using only event
trigger annotations, the authors trained a neural net-
work with a single hidden layer to predict the event
cluster of an event given its feature representation
(e.g. word2vec embeddings). Since their interest
was clustering and not classification, however, they
constrained the training loss function in such a way
as to produce more clusterable event embeddings
in the model’s hidden layer. As a final step, they
use the event embeddings of test set events as input
to an agglomerative clustering algorithm.

Vossen and Cybulska (2018) describe two
event-only systems, NEWSREADER and BAG OF

EVENTS. The NEWSREADER system is a pipeline
designed to track events in the news, with extensive
use of rule-based components as well as machine-
learning-based components. The Bag of Events
system is a simpler, event-only clustering approach
that achieves strong performance on ECB+; be-
cause of this we chose it as the starting point for our

system, and as such we describe it in greater detail
than other prior work. BAG OF EVENTS is based
on a pairwise decision tree classifier trained at both
the document and event level. The document-level
classifier is trained to predict if two documents
contain at least one pair of coreferring events, and
the event-level classifier is trained to predict if two
events corefer. The first step of BAG OF EVENTS

is to run the document-level classifier on every pair
of documents in the test set, placing those docu-
ments that are predicted as coreferent together in
the same set. Once documents are clustered, the
event-level classifier is run on every pair of events
in the cluster, followed by computing the transitive
closure to find the final event clusters.

Both the document-level and event-level classi-
fiers use the same features, but are computed at
different levels of granularity by comparing a pair
of document or event “templates.” A template is de-
fined by the “bag of events” principle, where each
event is represented as a collection of slots (action,
time, location, etc., see Table 1) where each slot
contains the union of items that fill slot across all
event mentions in the relevant unit of discourse. A
document template’s unit of discourse is the docu-
ment itself, and an event’s unit of discourse are the
sentence where it appears. For example, if we take
the two sentences in Example (1) as a document,
we can derive the document and event templates as
shown in Table 1.

(1) The “American Pie” actress has entered
Promises for undisclosed reasons. The ac-
tress, 33, reportedly headed to a Malibu
treatment facility on Tuesday.

The feature vector for a pair of templates is de-
rived by computing 19 overlap features between
the corresponding slots of each template. 5 features
are derived from event triggers, and the remaining
14 from entities. This approach is attractive be-
cause of its conceptual uniformity and simplicity,
essentially repeating the same step at two levels of
granularity. The drawbacks are a large feature set,
dependence on both trigger and entity annotations,
and an extremely simple clustering procedure; we
designed our system to address these issues.

2.4 Joint Event-Entity Clustering

In contrast to event-only clustering, joint event-
entity clustering attempts to resolve event and en-
tity coreference simultaneously, using information
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Templates
Slot Event 1 Event 2 Document

Action entered headed entered,
headed

Time - on Tues-
day

on Tues-
day

Location Promises Malibu
treatment
facility

Promises,
Malibu
treatment
facility

Human
Partici-
pant

actress actress actress

non-
Human
Partici-
pant

- - -

Table 1: Event and Document Templates in Exam-
ple (1)

from either step to inform the decisions made by
the other. Lu and Ng (2017) described a sys-
tem that jointly learns event triggers, anaphoric
event relationships, and non-anaphoric event coref-
erence relationships. They only perform Within-
Document Event Coreference (WDEC) and eval-
uate their model on the KBP 2016 English and
Chinese datasets for event coreference. Their for-
mulation makes explicit use of discourse informa-
tion within the document to construct a conditional
random field (CRF) that performs the classifica-
tion. Given the conceptual differences between
KBP 2016 and ECB+ it is difficult to compare re-
sults across the two datasets. However, Lu and
Ng (2017) reported state-of-the-art performance on
KBP 2016 at the time.

Lee et al. (2012) described a system that com-
putes event triggers and entities using a publicly
available system that performs nominal, pronomi-
nal, and verbal mention extraction. After extracting
all candidate event or entity mentions, they make
use of a publicly available WDEC resolution sys-
tem that applies a series of high precision determin-
istic rules to decide coreference. Using this initial
clustering, they trained a linear regressor that pre-
dicts the quality of merging two clusters (where
quality is defined as the number of correct pairwise
links divided by the number of total pairwise links),

merging clusters in decreasing order of predicted
quality. They did not distinguish between events
and entities at clustering time, but rather perform
cluster merges using features derived from the re-
lationships between the mentions in two candidate
clusters, relying heavily on a semantic role labeler
(SRL). They use the ECB dataset, adding a series
of event and entity coreference annotations.

Barhom et al. (2019) describe a system inspired
by Lee et al. (2012), developed on ECB+. The sys-
tem performs document clustering using K-means
and then uses gold-standard event trigger and en-
tity annotations to generate vector embeddings
for events and entities, including both character-,
word-, and context-embeddings (ELMo is used for
the context embeddings; Peters et al., 2018). To-
gether with these vectors the system uses a depen-
dency vector, which is the concatenation of a set
of vectors designed to capture inter-dependency
between event and entity mentions. For entities,
this set includes an embedding for the event head
that the entity modifies as well as the embeddings
for the event heads of all coreferring events. For
events, the set includes entity embeddings for each
of four event roles (ARG0, ARG1, TMP, LOC)
that combine the embedding for the modifying en-
tity mention and the embeddings of all other entity
mentions that corefer with the modifying entity.
The system computes event and entity clusters it-
eratively, recomputing the dependency vectors as
clusters are merged. They employ an agglomera-
tive clustering algorithm furnished with two trained
pairwise prediction functions that output the likeli-
hood that two pairs of events or entities corefer.

3 Simplified Approach

We based our approach on the BAG OF EVENTS

system described by Vossen and Cybulska (2018)
and discussed above in Section 2.3, primarily be-
cause of its simplicity and strong performance.
However, we made several modifications based
on what we learned in our literature survey:
• We use a different and significantly smaller

feature set to predict pairwise event corefer-
ence (4 features instead of 19);
• We employ a different document clustering

scheme independent of gold-standard annota-
tions;
• We ingest only event trigger annotations, in-

stead of both triggers and entities; and,
• We developed a different event clustering tech-
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nique.
These modifications simplified the approach

while maintaining comparable performance. At
a high level, our pipeline first performs document
clustering and then uses a trained pairwise event
coreference classifier as the essential component in
an event clustering procedure that generates CDEC
chains.

3.1 Document Clustering
Like all extant systems, we first perform docu-
ment clustering to assemble clusters within which
event coreference will be performed. We repre-
sent our documents as a bag-of-words vector with
tf-idf weights and perform clustering using affin-
ity propagation (Frey and Dueck, 2007) with the
damping parameter set to 0.5. On the test set used
by Vossen and Cybulska (2018)BoE we achieve
near perfect document clustering performance, as
detailed in Section 4.2. This strong document clus-
tering performance is reported by other researchers
as well (Barhom et al., 2019; Choubey and Huang,
2017); Vossen and Cybulska (2018)BoE do not pro-
vide these numbers. The document clustering step,
employed in some form by all CDEC systems, is
essentially a high recall, low precision class balanc-
ing scheme that significantly reduces the number
of false event coreference pairs while retaining a
high percentage of true coreference pairs. This re-
duces the search space of event pairs before build-
ing CDEC chains and makes it easier to train a
classifier with a more balanced training set.

3.2 Pairwise Event Coreference Classifier
The training data for our pairwise event corefer-
ence classifier comprises all possible event pairs
within a gold-standard ECB+ sub-topic document
cluster, labeled as either coreferring or not. We
use a shallow, fully-connected neural network with
one hidden layer composed of two nodes to pre-
dict coreference between two events. We choose
this classifier because neural networks of this sort
are adept at modeling the class probability of a
prediction, which is a feature we make use of in
our event clustering scheme by picking a cutoff for
true predictions (Scikit-Learn, 2019). We tried a
number of other classifier types (e.g., RDF, SVM,
regression, more complex MLP architectures), but
they all equivalent or worse performance. After
training the classifier we use a held-out develop-
ment set (20% of the training samples) to perform
grid search to find a confidence threshold that max-

imizes the classifier’s Fβ score. The value of β
we used and the reasoning behind our choice is
detailed in Section 4.4. Note that at testing time,
we use computed document clusters to generate
the dataset of event pairs, inevitably losing some
corefering event pairs that are erroneously placed
in different document clusters. The classifier uses
four features, listed below, to predict pairwise event
coreference.

Feature 1: Head Phrase Word Similarity (Vec)
This feature captures the semantic similarity of
two events by measuring the average cosine sim-
ilarity of each word in two events’ triggers using
pre-trained Fasttext word embeddings (Bojanowski
et al., 2016). Our experiments (shown below) indi-
cate that this feature accounts for the majority of
the performance of the pairwise classifier.

Feature 2: Event Word Distribution (WD)
This feature captures the lexical similarity between
the overall textual expression of the event, includ-
ing modifiers and slot fillers. Starting from the gold-
standard trigger annotations provided by ECB+, we
identify the event text—the set of words related to
each event—by collecting all of the event’s trigger
words and their dependent words as found in the
dependency graph of the sentence (we computed
the dependency graphs using Stanford CoreNLP;
Manning et al., 2014). For both events we con-
struct a vector where each element represents a
surface form found in the union of both sentences,
and the value of each cell is the term frequency
of that form: the number of tokens of that form
found in the event text, divided the total number of
tokens across both sentences. We found that term
frequency worked better than a tf-idf type measure.
The feature itself is the cosine similarity between
the two vectors. This is the second most useful
feature.

Feature 3: Relative Sentence Similarity (SS)
Whereas the event word distribution feature is
meant to capture the relative lexical similarity of
events themselves, relative sentence similarity is
designed to capture the relative lexical similarity
of their sentence contexts. The sentences in each
event’s document are treated themselves as docu-
ments in order to compute a tf-idf vector for each
event’s sentence. For example, if two events appear
in the same sentence their tf-idf vectors are iden-
tical. As for the event word distribution feature,
the relative sentence similarity feature itself is the
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B3 CEAFe MUC CoNLL
Feature Set P R F1 P R F1 P R F1 F1

POS only 99.9 18.2 30.7 9.6 51.5 16.1 20.0 0.1 0.2 15.6
SS only 23.7 82.7 36.7 25.6 13.3 17.5 74.5 83.4 78.7 45.9

WD only 38.3 75.5 50.6 36.2 32.0 33.8 81.9 83.8 82.8 55.7
VEC only 78.6 74.4 76.1 52.2 68.9 59.2 92.2 85.4 88.7 74.6

All except Vec 61.4 66.0 63.2 37.4 57.6 45.3 87.6 76.9 81.8 63.4
All except SS 80.9 72.6 76 50.3 70.5 58.5 92.7 84.2 88.2 74.3

All except POS 80.6 73.0 76.2 51.2 70.1 59.1 92.4 84.4 88.2 74.5
All except WD 80.5 73.3 76.4 51.4 70.7 59.3 92.5 84.8 88.4 74.7

All (Vec, WD, SS, POS) 82.2 72.5 76.8 51.3 71.2 59.4 92.5 84.5 88.3 74.8

Table 2: Feature Ablation Study on CDEC Performance (5-fold CV), using Gold triggers and Gold document
clusters.

cosine similarity between the vectors of the two
sentences. This is the third most useful feature.

Feature 4: Head Phrase Part of Speech (POS)
This is a binary feature that is assigned a value of 1
if two events’ triggers have the same part of speech
(noun, verb, or other) and a 0 if they differ. This is
the least useful feature.

3.3 Event Clustering

Final event clustering relies on the pairwise event
classifier prediction confidence. First, we use the
pairwise event classifier to predict a coreference
confidence for all event pairs in the set and rank the
pairs in decreasing order of classifier confidence.
Confidences above a certain the cutoff are clustered
using transitive closure. We chose the cutoff to
maximize an intermediate measure, Fβ , where β
is chosen by tuning on the development set. All
events not assigned to a cluster in this step were
assigned to singleton clusters. We attempted to use
affinity propagation as a clustering scheme with
our trained classifier as a distance function, but this
performed significantly worse. Nevertheless, one
drawback of relying on pairwise distances (rather
than embedding in a metric space) for clustering
is that we cannot use clustering algorithms that
perform vector arithmetic between single instances,
significantly limiting our design choices.

The relative contributions of the different fea-
tures to the overall performance is shown in Table 2.
We performed this ablation study with gold event
triggers and gold document clusters.

4 Results

4.1 CDEC

Table 3 shows results for all combinations of gold
and computed labels using 5-fold cross validation.
We use 5-fold cross validation because it generates
test sets of roughly the same size as a commonly
used test set amongst systems that use ECB+ (top-
ics 36-45). Ours is the first study to report cross-
validated results on ECB+, though we report our
system’s performance on two different test sets in
Section 4.6 in order to compare with prior work.

4.2 Document Clustering

Our experiments show that on average, document
clustering on ECB+ is responsible for about 3
CoNLL F1 points, as shown in the difference be-
tween rows 1 and 2 in Table 3. Despite this modest
performance loss, there is cause to doubt that this
generalizes to document collections “in the wild,”
since ECB+ document clusters correspond to fairly
distinct events with little lexical overlap that are
probably relatively easy to cluster. In any case,
document clustering is an important step for CDEC
resolution. Without document clustering, the test-
ing false/true ratio on ECB+ over 5 cross-validation
folds is 89:1 (544,157 false pairs and 6,113 true
pairs) on average. With document clustering, the
false/true ratio drops to 6:1 (26,416 false pairs and
4,836 true pairs); the cost is that we lose some
corefering event pairs—13% on average—but we
gain a procedure with a tractable running time and
higher performance. Details of the clustering per-
formance are shown in Table 4.

6



Doc. Ev. B3 CEAFe MUC CoNLL
Clust. Trig. P R F1 P R F1 P R F1 F1

Gold Gold 82.2 72.5 76.8 51.3 71.2 59.4 92.5 84.5 88.3 74.8
Pred. Gold 78.5 68.4 72.8 48.3 68.8 56.6 90.5 81.8 85.8 71.7
Gold Pred. 44.3 26.2 32.9 18.8 37.0 24.8 64.3 34.3 44.6 34.1
Pred. Pred. 45.2 24.6 31.7 18.1 37.9 24.4 64.0 32.4 42.8 33.0

Table 3: CDEC Performance (5-fold CV)

ARI V-Measure Homogeneity Completeness

0.85 0.94 0.97 0.91

Table 4: Document Clustering Performance (5-fold
CV)

4.3 Computed Event Triggers

The most striking performance drop occurs when
we remove gold-standard event triggers, showing
that trigger detection is a major performance bottle-
neck for CDEC, responsible for about 40 CoNLL
F1 points on average. To detect triggers we use the
freely available pre-trained CAEVO Event Trigger
extraction system (Chambers et al., 2014), which
achieves modest performance on ECB+ of 0.62 pre-
cision, 0.43 recall, and 0.51 F1. The CAEVO sys-
tem achieved state-of-the-art performance at time
of publication, and was in our experience the sim-
plest event extraction system to integrate.

4.4 Pairwise Event Coreference Classifier

Using a cutoff of 0.72, the pairwise event classifier
achieved a maximum in vitro performance (that is,
in isolation from the rest of the system) of 0.64
precision, 0.55 recall, 0.59 F1, and 0.95 accuracy.
The cutoff is the confidence level above which a
pairwise event coreference judgement is retained.
We tuned the cutoff on the development set1.

4.5 Feature Analysis

We perform logistic regression on the entire ECB+
dataset in order to investigate the predictive power
of our feature set. While we do not use logistic
regression as our classifier, given that our shallow
neural network is a concatenation of gated logistic
regressions trained by minimizing overall classifi-

1An interesting aside is that, through additional experi-
mentation we found that if one wished to tune the pairwise
event coreference classifier in isolation to maximize CDEC
performance, the appropriate metric to maximize is F0.8 for
the pairwise classifier, rather than F1.

Feature Coef. Std. Err. p-value

Vec 7.12 0.068 0.000
WD 0.89 0.072 0.000
SS -0.50 0.069 0.000

POS -0.31 0.045 0.000

constant -3.18 0.045 0.000

Table 5: Logistic Regression Coefficients (all ECB+).
The p-value is computed for α = 0.05.

cation error, analysis of logistic regression provides
useful insight into our feature set.

The regression coefficients in Table 5 clearly
show that the most powerful feature is the word
vector feature (Vec), the word embedding head
phrase similarity. In fact, training a simple logistic
regression with only an intercept and the word vec-
tor feature gives a 5-fold cross-validated CoNLL
F1 of 70.7 and 69.2 on topics 36-45.

4.6 Comparison with Prior Work
Comparing the performance of existing ECB+
CDEC systems is unfortunately quite difficult due
to a wide variation in testing schemes and usage
of gold-standard annotations. Because of this, it
is not possible to clearly determine which system
achieves state-of-the-art performance. In an at-
tempt to provide a fair comparison amongst ex-
isting systems, Table 6 shows performance of all
prior work evaluated on ECB+ grouped by test
sets and gold-standard annotations. Minding these
conditions, we can currently only determine state-
of-the-art performance on a given test set using a
given set of gold-standard annotations.

4.6.1 Test Sets and Gold-Standard
Annotations

Unfortunately, none of the existing CDEC papers
provide a reasoning behind their choice of test set;
in fact, the choices seem quite arbitrary. Standard
practice in NLP suggests that multi-fold cross val-
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B3 CEAFe MUC CoNLL
Gold Test P R F1 P R F1 P R F1 F1

OURS
T 36–45

74.3 69.2 71.6 49.6 60.7 54.6 89.4 84.9 87.1 71.1
KD2018 71 67 69 71 67 69 67 71 69 69

OURS
T 24–43

73.6 65.8 69.5 40.8 60.3 48.7 88.7 80.7 84.5 67.6
CH2017 56.2 66.6 61 59 54.2 56.5 67.5 80.4 73.4 63.6

Bh2019
T+E 36–45

76.1 85.1 80.3 81 73.8 77.3 77.6 84.5 80.9 79.1
CV2018 (BoE) 71 78 74 - - 64 71 75 73 73

CV2018 (NwR) T+E 24–43 72.8 64.2 68.3 55 65.4 59.7 77.4 69.7 73.3 67.1

YC2015* - 24–43 78.5 40.6 53.5 38.6 68.9 49.5 80.3 67.1 73.1 58.7

Table 6: CDEC Performance on Single Test Set. KD2018 = Kenyon-Dean et al. (2018); CH2017 = Choubey and
Huang (2017); Bh2019 = Barhom et al. (2019); CV2018 = Vossen and Cybulska (2018); YC2015 = Yang et al.
(2015). *YC2015 computes event triggers and entities

idation (CV) should clearly be used. In our ex-
periments, we used 5-fold CV, after noting that
our system performed similarly using 10-fold cross
validation as well as with 10 runs of randomized
5-fold and 10-fold cross validation, respectively. 5-
fold cross validation is also useful for comparison
with published systems because it generates test
sets of roughly the same size as the previously used
test set of topics 36-45. Using 2-fold cross valida-
tion to approximate the size of test set 24-43 (the
other previously used test set) seems less useful.

Comparing the performance between trigger-
only CDEC systems and CDEC systems that use
triggers & entities is more difficult. Computing
entities as well as event triggers adds an additional
potential source of error, and if researchers did
not report evaluation of their entity extraction sys-
tems independently of the rest of the pipeline, the
contribution of those components cannot be sepa-
rated from the whole. Current state-of-the-art en-
tity detection systems perform at around 0.90 F1

on the OntoNotes 5.0 corpus (Strubell et al., 2017),
whereas state-of-the-art trigger detection systems
perform at around 0.80 F1 on the ACE2005 dataset
(Yang et al., 2019). Of course, finding implementa-
tions of state-of-the-art systems or implementing
them from scratch is a task onto itself. There is
currently no evaluation of trigger or entity detec-
tion performance on the entire ECB+ dataset. Yang
et al. (2015) describe the only system that makes
exclusive use of computed trigger and entity labels
on ECB+. They report that their trigger and en-
tity detection system correctly identifies 95% of
actions, 90% of participants, 94% of times and

74% of locations, but these results apply only to a
development set comprised of topics 21-23; they
do not provide the system’s performance on any
other subset of ECB+. Despite these difficulties,
the results of Barhom et al. (2019) do seem to sug-
gest that adding in entities results in a substantial
improvement in performance.

4.6.2 Document Clustering
Reporting of the source of document cluster la-
bels is inconsistent across the literature. Yang
et al. (2015) is the the only ECB+ system that does
not use document clustering as a pre-processing
step, instead using gold-standard labels to restrict
the search space for CDEC. Kenyon-Dean et al.
(2018) do not specify if they use computed or gold-
standard document clusters. We believe it is reason-
able to separate document clustering performance
from CDEC performance—events and documents
are fairly distinct objects with different structures
that require different techniques to determine their
similarity. Practically, however, it seems that docu-
ment clustering is a necessary pre-processing step
in order to make CDEC tractable, as outlined in
Section 4.2. For these reasons, we suggest that
future CDEC systems report on performance both
with and without gold-standard document clusters.

5 Contributions

We have presented a simple, event-trigger-only
CDEC system that achieves strong performance
on ECB+ compared with other trigger-only CDEC
systems. We have compared our approach, where
possible, with prior work and highlighted the diffi-
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culties in comparing existing ECB+ systems, pro-
viding suggestions for evaluation criteria in future
work. We presented performance results of all com-
ponents of our pipeline and quantified how error on
each component propagates to downstream CDEC
performance. We also provided cross validated
results, the first ECB+ CDEC study to do so.
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Abstract

Deciding which scripts to turn into movies is
a costly and time-consuming process for film-
makers. Thus, building a tool to aid script se-
lection, an initial phase in movie production,
can be very beneficial. Toward that goal, in
this work, we present a method to evaluate
the quality of a screenplay based on linguis-
tic cues. We address this in a two-fold ap-
proach: (1) we define the task as predicting
nominations of scripts at major film awards
with the hypothesis that the peer-recognized
scripts should have a greater chance to succeed.
(2) based on industry opinions and narratology,
we extract and integrate domain-specific fea-
tures into common classification techniques.
We face two challenges (1) scripts are much
longer than other document datasets (2) nom-
inated scripts are limited and thus difficult to
collect. However, with narratology-inspired
modeling and domain features, our approach
offers clear improvements over strong base-
lines. Our work provides a new approach for
future work in screenplay analysis.

1 Introduction

The motion picture industry is a multi-billion dollar
business worldwide (Lash and Zhao, 2016). Deci-
sions in selecting movies to be produced are criti-
cal to the profitability of a movie studio. However,
the selection of the screenplay that happens at the
initial phase of a movie production pipeline and
has a large influence on the financial budget and
quality of the final movie production, has a large
subjective element. For example, a typical script
review service costs a studio $80 to $150 to receive
a report containing a short summary of the script
and opinion as to its quality (Follows et al., 2019).
Considering the amount of scripts a studio needs to
filter through, it can be overwhelming. Thus, an ob-
jective and reliable tool to help evaluate and narrow
down the candidate scripts is of vital importance to

aid the “green-lighting” (deciding which scripts to
turn into movies) process.

Consider this scenario, if a tool can facilate the
script review process and provide the chance of suc-
cess, wouldn’t this make an impact and cut down
lots of budgeting decisions in the production pro-
cess? The main idea of this work is to develop such
a tool which gather custom analyses from various
aspects, e.g., screenplay writing theory, character-
focused linguistic behavior, to help assess the qual-
ity of the script.

In general, movie script writing can follow a
well-defined Three Act structure (Field, 2007; Mc-
Kee, 1997). Also, Weiland (Weiland, 2013, 2018)
specifies a more fine-grained storytelling plan, start-
ing from hook, inciting event, 1st plot point, 1st
pinch point, midpoint, 2nd pinch point, 3rd plot
point, climax to resolution, what are called Struc-
tural Points (SP). We believe knowledge like the
above in strucuring a screenplay can bring benefits
in selecting the most relevant textual properties for
the prediction of script quality.

Aside from the event positioning, Follows et al.
(2019) reported that how writers develop characters
and events, i.e., Characterization and Plot, are two
main foci of industry reviewers. We thus devise
our domain specific features in these two aspects.
We hope to offer an enhanced understanding of the
essential elements in high-quality movie scripts.

To perform quality assessment, based on an as-
sumption that the nominated scripts are recognized
writings and thus should have had higher chance
of passing green-lighting, we propose to perform
an evaluation in a two-fold approach. First, we
use award-nomination prediction as a proxy to the
green-lighting process. Second, we examine our
domain features and models by integrating them
into existing document classification methods.

We acknowlodge the constraints of our metric in
that the number of award venues has its limits, and
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not necessarily those without nomination would
be any worse than the nominated. But due to the
difficulty in collecting unproduced scripts with peer
reviews, we adopt our current approach.

Our main contributions are as follows: (1) We
defined a quality metric for screenplays and col-
lected ground truths from peer-reviewed venues.
(2) Based on structural knowledge of screenplay
narratology, we developed a simple narratology-
inspired model for our task. (3) Motivated by indus-
try opinions and narratology, we devised domain-
specific features to achieve our objective. (4) We
tested that for long document classification, a sim-
ple feature-based approach can work better than
state-of-the-art models.

2 Related Works

Literary works-related research has gained interest
in recent years. Bamman et al. (2013, 2014) have
succeeded to learn latent character types in film
and novels; Iyyer et al. (2016); Chaturvedi et al.
(2016); Elson et al. (2010) try to model character
relations in novels. Papalampidi et al. (2019) ana-
lyze narrative structure of movies by using turning
points, and Chambers and Jurafsky (2008); Sims
et al. (2019) seek to detect events in narratives. On
text quality assessment, Mesgar and Strube (2018)
encode local change patterns to assess readability
and score essays; Toledo et al. (2019) collect argu-
ment pairs that was originally built for an automatic
quality assessor for debate.

A noteworthy attempt in measuring quality of
literary works we know of is made by Kao and
Jurafsky (2012), who quantitatively analyze vari-
ous indicators for discerning professional poems
from amateurs’. However, in script writing, the cin-
ematic success criteria lack evaluative consensus
(Simonton, 2009) — previous works on evalua-
tion of movies have largely focused on forecasting
revenue or profit of movies using production, dis-
tribution, and advertising data (Ghiassi et al., 2015;
Lash et al., 2015) or basic textual and human anno-
tated features (Eliashberg et al., 2014).

The main differences between our work and pre-
vious works are: (1) our approach aims to process
automatically without human annotated features.
(2) our metrics and methods are geared towards
evaluation that based solely on textual properties.

3 Data and Problem Setting

Data collection. We evaluated our method us-
ing ScriptBase (Gorinski and Lapata, 2018) and
Movie Screenplay Corpus (MSC) Ramakrishna
et al. (2017) datasets. ScriptBase provides 917
scripts and MSC contains 945 Hollywood movies.
We kept 897 and 868 suitable ones which have
enough character utterances for our approach from
each dataset respectively. Similar to Underwood
(2019), which analyzes high-prestige novels as
works that have been reviewed by top journals,
we collected the screenplays that have histories
of nominations as quality “ground truth”. The
venues we collect from are well-known profes-
sional prizes, which include “Writers Guild of
America Award”, “Academy Awards”, “Golden
Globe Awards”, and “British Academy of Film and
Television Arts Awards”. We assume the nomi-
nated scripts are of higher quality by professional
standards. Since we focus on textual properties for
success, we only gleaned nominations in the “orig-
inal screenplay” and “adapted screenplay” cate-
gories. In the end, we obtained 212 (23.6%) movies
out of ScriptBase and 113 (13.0%) from MSC as
quality “ground truth” labels.

Problem Setup. Our work focuses on measuring
quality as whether or not a movie would be nomi-
nated at a peer-reviewed venue. The basic assump-
tion for using this approach as success metrics is
simple — a screenplay that receives nominations
by critical reviewers should have had higher chance
of getting through green-lighting.

Challenges. By nature, a movie should be tough to
be cleanly categorized, due to its length, complex
storyline and turns, and the lack of evaluative crite-
ria. Prior works in document classification (Yang
et al., 2016; Liu et al., 2017; Adhikari et al., 2019;
Johnson and Zhang, 2015) evaluated on datasets
with small document size (Reuters, IMDB, Yelp,
etc.). However, our document size on average is at
least 65 times longer, which may be challenging for
NN-based models to train due to long sequences
and the associated computational burden. Besides,
the number of training data we have is at most
1000 times smaller than other datasets. With our
datasets being long, fewer and skewed, state-of-
the-art deep learning techniques may not work well.
Summary of the comparisons is shown in Table 1.
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Dataset documents average #w %pos

Reuters 10,789 144.3 -
IMDB 135,669 393.8 -
Yelp 2014 1,125,457 148.8 -

ScriptBase 897 27,539.7 23.6
MSC 868 27,067.4 13.0

Table 1: Dataset statistics and comparisons of
datasets. #w denotes the number of words and %pos
denotes the percentage of positive class.

4 Analysis of Domain Features

In this section, we introduce our domain features
that are divised to achieve our goal and provide
analysis based on our problem setup.

Characterization and Plot are major aspects of
focus in the industry; inspired by which, we de-
vised 6 novel features. For each, we provide intu-
itive motivations, and then detail how we converted
them computationally. We chose the top two most
speaking characters of each movie to analyze for
characterization.

According to Weiland (2018), a script can place
9 SPs roughly equally distributed, creating eight
equal-lengthed development segments (DS) in be-
tween. We hypothesize that such structural hints
should help to achieve our objective. Based on the
statistics of both datasets, to leverage the SPs, we
collected a context window of 1% (∼270 words)
centered at SPs for all scripts. Larger windows may
contain more information and should improve the
results, and we leave that for future experiments.

By the definition of characterization, we hypoth-
esized that by measuring pattern change of char-
acters, we may see how writers develop the char-
acters’ personality. We sought pattern change via
two kinds of changes writers would make between
SPs - linguistic (speaking pattern) change and emo-
tional change. To do this, we proposed Linguistic
& Emotional Activity Curve.
Linguistic & Emotional Activity Curve (ling,
emo). For linguistic change, we extracted the de-
pendency trees of characters; for emotional change
we used normalized Empath (Fast et al., 2016) to
get characters’ emotion status. We combined the
linguistic distribution, Empath distribution of sen-
tences in each DS with activity curve (Dawadi et al.,
2016), which uses a Permutation-based Change De-
tection in Activity Routine (PCAR) algorithm, to
measure the change between two DSs of distribu-

tions.
Type-token ratio (tt). As Kao and Jurafsky (2012)
show, in poetry, the type-token ratio related most
positively to the quality of a poem. We believed
this concept should work similarly on character
analysis, and can show how much effort writers
devoted in characterization. We defined this feature
as the number of unique words used by a character
divided by the total number of words.
Valence-Arousal-Dominance (VAD). Moham-
mad (2018a) performed extensive study in getting
an objective score for words in VAD dimensional
space (Russell, 1980, 2003). We used average
scores over the context window of each SP to rep-
resent level of emotion.
Emotion Intensity (int). Similar to VAD, we used
the NRC Affect Intensity Lexicon (Mohammad,
2018b) over the SPs to score emotion intensity
along four basic emotion classes (Plutchik, 1980).

Also, since events are usually addressed in units
of scenes, we wanted to get a picture of how
many different emotionally similar scenes across
the dataset appear in a movie.
Empath Clustering (clus). We retrieved lexical
categories for each uttrance from Empath and then
clustered the lexical category distributions of all ut-
terances with deep embedded clustering (Xie et al.,
2016). We obtained the cluster distribution based
on the lexical categories within a movie as a feature
representation.

We visualized partial features in a “nomination
vs non-nomination” fashion, as in Fig. 1, to show
the potential of our features. For some we can
easily observe clear differences from one to the
other, while some are more subtle. For instance, in
VAD, the arousal of MICA is ambiguous between
the two, and yet we can easily discern nominated
scripts along the same axis for ScirptBase.

5 Predictive Modeling

In this section, we define our prediction task, and
then propose our base model and then move on
to a paradigm which integrates domain features
proposed in previous section.
Task Formulation. As a proxy to the original qual-
ity assessment task, we define a binary classifica-
tion task as to predicting the nomination of a script.
Narratology-inspired Model. Inspired by narra-
tology, we propose Tfidf-SVMnarr — instead of
using all texts in an entire document, we extract
words in context window of SPs for each docu-
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Figure 1: Nomination vs Non-nomination of arousal
level along percentage of scripts. Upper: ScriptBase.
Lower: MSC.

ment, compute the tf-idf representations, and feed
them into a SVM classifier. The main components
of Tfidf-SVMnarr are shown in Fig. 2. Due to the
large amount of unique tokens, we chose only the
top 500 important features ranked by Tf-idf to rep-
resent a document. We test the results without
choosing 500 features and our setting is better.
Feature-based Prediction. To examine the pre-
dictive power of proposed features, on top of Tfidf-
SVMnarr, we add domain features along with tf-idf
to SVM to see the efficacy of domain features.

Figure 2: Narratology-inspired model workflow.

6 Experimental Setups

Dataset usage. We performed random sampling
on both datasets such that 80% is used for training,
10% for validation, and 10% for test.
Baselines. We adopted HAN (Yang et al., 2016),
BERTbase, BERTlarge (Devlin et al., 2019) as our
baselines. Since a script is subdivided into scenes,

Method / Dataset ScriptBase MSC

HANscene 45.12 45.62
BERTbase 42.67 46.29
BERTlarge 42.67 46.29
Tfidf-SVM 47.01 59.21

TFIDF-SVMnarr 57.43 59.21
+ emo + VAD 56.52 55.29
+ ling + emo + tt 62.35 62.73
+ int + ling + emo + clus 60.87 64.79

Table 2: F1 scores (%) of model predictions.

our HAN implementation, HANscence, uses scence
as the second hierarchy instead of sentence.
Implementation details. We use Scikit-learn
0.21.3 to implement feature-based models, and Py-
Torch 1.3.1 for deep neural models. With Hug-
ginface (Wolf et al., 2019), we overcome BERT’s
510-token limit by applying averaging pooling on
the sequence of BERT h[CLS] hidden states of sub-
chunks of the script to get a global context vector,
and then fine-tune the task end-to-end. And since
the binary labels in both datasets are imbalanced,
we weight the positive class by inverse frequency
of class labels in the training set.
Hyper-parameters. To ensure a fair comparison,
we tuned the hyper-parameters for all models. On
feature-based models, we performed grid search.
For NN models, we use embedding size 100 and
Adam optimizer with 0.001 learning rate.

7 Results and Discussion

We report the macro-averaged F1 scores of each
model in Table 2, interestingly, from which we see
that NN-based document classification methods
are no better than our proposed simple narratology-
based model. We suppose the length of document
could be the main reason, RNNs or transformers
may not handle “super long-term depdendencies”
well for complex compositions like movie scripts.
For NN models, both BERTlarge and BERTbase

are better than HANscene, which is expected pro-
vided the capacity of BERT is significantly larger
than HAN; we are not sure why BERTlarge did not
outperform BERTbase by even a slight margin.

In Fig. 3, we show the effect of each indi-
vidual feature. Linguistic & Emotional Activity
Curve show improvements on both datasets, and
yet the rest do not consistently help, especially
on MSC, we think it may be because (1) the tfidf
has 500 dimensions so individual feature may be
overwhelmed, but, more features combined such
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as adding int+ling+tt can generate consistent im-
provements, (2) the efficacy of feature can be
dataset-dependent, e.g., we do not observe signifi-
cant differences in Arousal of MSC as in its Script-
Base counterpart (Fig. 1), and so does the classifier.
Besides, adding features with negative correlations
can damage the performance, e.g., adding emo &
vad.

Figure 3: Individual feature effect. F1 scores of Tfidf-
SVMnarr and adding proposed features individually.

8 Conclusion and Future Work

We present a novel approach and features to sys-
tematically analyze the quality of a screenplay in
terms of its festival nomination-worthiness. This
can serve as a preliminary tool to help filmmakers
in their decision-making, or on the other hand, an
objective way for writers to compare their works
with others. Our results also show that simple
lightweight approach can outperform state-of-the-
art document classification methods. This also
points out the current deficiency for long document
classification research in the community.

In the future, in addition to textual properties,
we intend to develop a more fine-grained approach
by incorporating more metadata such as gender of
characters, film genres, and then experiment on
different award categories to evaluate our approach
and gain more insights.
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Abstract

Identifying the discourse structure of docu-
ments is an important task in understanding
written text. Building on prior work, we
demonstrate an improved approach to auto-
matically identifying the discourse function of
paragraphs in news articles. We start with the
hierarchical theory of news discourse devel-
oped by van Dijk (1988) which proposes how
paragraphs function within news articles. This
discourse information is a level intermediate
between phrase- or sentence-sized discourse
segments and document genre, characterizing
how individual paragraphs convey information
about the events in the storyline of the arti-
cle. Specifically, the theory categorizes the
relationships between narrated events and (1)
the overall storyline (such as MAIN EVENTS,
BACKGROUND, or CONSEQUENCES) as well
as (2) commentary (such as VERBAL REAC-
TIONS and EVALUATIONS). We trained and
tested a linear chain conditional random field
(CRF) with new features to model van Dijk’s
labels and compared it against several machine
learning models presented in previous work.
Our model significantly outperformed all base-
lines and prior approaches, achieving an av-
erage of 0.71 F1 score which represents a
31.5% improvement over the previously best-
performing support vector machine model.

1 Introduction

News articles usually follow strong principles of
journalistic structure. By design, they often begin
with a introductory summary of main events, fol-
lowed by detailed exposition of the main events and
consequences, interspersed in a stereotyped fash-
ion with relevant background information, current
and past evidence, and reported speech. Yarlott
et al. (2018) demonstrated the feasibility of de-
tecting this type of discourse structure for news
articles using an established hierarchical theory of

news discourse (van Dijk, 1988). In their study,
they showed that it was feasible to identify the dis-
course function of news paragraphs using a support
vector machine (SVM) model and a small set of
simple linguistic features, with a performance of
0.54 F1.

Similar to Yarlott et al.’s (2018) approach, we
demonstrate an improved approach to automati-
cally labeling news article paragraphs with the van
Dijk discourse functions Yarlott et al. (2018) ap-
plied in their study. Our work uses a conditional
random field (CRF) model, along with new fea-
tures, to obtain an improved performance of 0.71
F1. Most importantly, our model is able to pre-
cisely capture the interdependencies between the
various discourse label types, which flows from
our hypothesis that each paragraph in an article is
dependent not only on the previous one but rather
on a longer sequence of previous paragraphs.

The remainder of this paper is structured as fol-
lows. We first provide a definition of van Dijk’s
theory as was presented in (Yarlott et al., 2018) (§2).
Second, we describe the dataset we used in training
and testing our CRF model (§3). We then detail the
discourse label identification methods, including
the CRF model and how it captures both section
ordering and section content, how the model is
trained, and the features it leverages (§4). We next
compare the performance of the CRF model with
various baselines, demonstrating that it performs
better than prior models (§5). We then discuss re-
lated work (§6), and conclude with a summary of
contributions (§7).

2 Van Dijk’s Theory of News Discourse

Van Dijk (1988) described a hierarchical theory of
news discourse, the categories of which are shown
in Figure 1, which we apply to a subset of the news
articles of the ACE Phase 2 corpus. In this section,
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Figure 1: The hierarchical discourse structure of news proposed by van Dijk (van Dijk, 1988). Boxes indicate
labels that were directly annotated on the documents; other labels can be inferred. From Yarlott et al. (2018),
Figure 1.

we repeat our descriptions of the leaf categories
from our prior paper, as well as their parent cate-
gories when appropriate, for ease of reference.

SUMMARY elements express the major subject
of the article, with the HEADLINE being the actual
headline of the article, and the LEAD being the first
sentence, which is often a summary of the main
events of the article.

SITUATION elements are the actual events
that comprise the major subject of the article.
EPISODES concern MAIN EVENTS, which are
those events that directly relate to the major sub-
ject of the article, and the CONSEQUENCES of
those events. The BACKGROUND provides impor-
tant information about the relation of each para-
graph with respect to the central events of a news
story. Background includes the CONTEXT, of
which CIRCUMSTANCES are temporally or spa-
tially non-specific states that contribute to under-
standing the subject, while PREVIOUS EVENTS are
specific recent events that enhance understanding
of the main events. HISTORY paragraphs are an-
other type of Background describing events that
have not occurred recently, typically referenced in
terms of years prior, rather than months, weeks, or
days.

COMMENTS provide further supporting context
for the central events of an article. Comments may
include VERBAL REACTIONS solicited from an
external source, such as a person involved in the
events, or an expert. CONCLUSIONS, by contrast,
are comments made by a journalistic entity (the
newspaper, reporter, etc.) regarding the subject.
Conclusions can be separated into EXPECTATIONS

about the resolution or consequences of an event,
or EVALUATIONS of the current situation.

3 Dataset

We used a gold-standard corpus previously devel-
oped by Yarlott et al. (2018) of van Dijk’s labels ap-
plied to a subset of the Automated Content Extrac-
tion (ACE) Phase 2 corpus (NIST, 2002). The ACE
Phase 2 corpus is a major standard corpora of news
articles that boasts three advantages: it is widely-
used, has relevance to other tasks, and was readily
available to researchers. This dataset comprises 50
documents containing 28,236 words divided in 644
paragraphs.Table 1 shows the corpus-wide statis-
tics for the number of words and paragraphs, where
each paragraph is given a single type in accordance
to van Dijk’s theory.

Words Paragraphs

Total 28,236 644
Average 564.7 12.9
Std. Dev. 322.1 4.9

Table 1: Corpus-wide statistics for the annotated data.
Adapted from Yarlott et al. (2018), Table 1.

Yarlott et al. (2018) doubly annotated 50 ran-
domly selected news articles, divided into ten sets
of five documents each. Within these sets, docu-
ments were swapped or replaced in order to obtain
uniform sets in terms of total document lengths.
The majority of texts were already divided into
paragraphs in an obvious manner, either with empty
lines or with indentation. The remaining texts were
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divided by the adjudicator based on either contex-
tual or structural clues, such as abrupt change in
topic or unnatural line breaks. The authors report
an all-around high agreement with the gold stan-
dard (F1 = 0.85, κ = 0.75) which demonstrates
that the gold-standard was not dominated by a sin-
gle annotator.

Although the dataset discussed was annotated
for all labels discussed here, the HEADLINE label
could be computed automatically from the structure
of ACE Phase 2 corpus, as the files has the headline
separate as part of its markup scheme.

Table 2 provides the resulting distribution of van
Dijk’s labels. Verbal reactions and circumstances
dominate the labels. Although the distribution of
labels is highly skewed, we find that this is roughly
in-line with the style of reporting featured in the
ACE Phase 2 corpus, which seeks comments and
analysis from experts within the field as well as
explaining the immediate context that has an effect
on the main event.

Label Count Label Count

HEADLINE 50 LEAD 42
MAIN EVENTS 60 CONSEQUENCES 19
CIRCUMSTANCES 103 PREVIOUS EVENTS 64
HISTORY 27 VERBAL REACTIONS 252
EXPECTATIONS 21 EVALUATIONS 56

Table 2: Distribution of the labels within the annotated
corpus, with 644 labels total. The majority of para-
graphs fall under the categories of verbal reactions or
circumstances. From (Yarlott et al., 2018)

4 Identifying Discourse Labels

In contrast to the approach reported by (Yarlott
et al., 2018), we the treated label identification
for paragraphs as a sequence modeling task. For-
mally, the task is as follows: given a news report
with n discourse labels and m paragraphs, where
the paragraphs are unlabeled, identify the opti-
mal sequence (order) of discourse labels H∗ =
(L∗

1, . . . , L
∗
n) from among all possible label se-

quences, and assign every paragraph a discourse
label H∗ = (H1, . . . ,Hm) consistent with L∗. Se-
quence labeling problems in NLP, medical infor-
matics, and discourse parsing have been studied
by both generative and discriminative approaches,
including Hidden Markov Models (HMMs; gen-
erative) and Conditional Random Fields (CRFs;
discriminative). Li et al. (2010) used HMM and
n-gram models to detect the orders or labels of

sections within clinical reports, while modeling
the observation probabilities at the section level.
Sherman and Liu (2008) used HMMs as well as
n-gram models to detect topic shifts in meeting
minutes, and, in contrast to Li et al., modeled the
observation probabilities on the sentence level.

Our approach was inspired by the method de-
scribed in Banisakher et al. (2018) which identifies
section labels in clinical psychiatric reports. Their
approach combined a Hierarchical Hidden Markov
Model (HHMM)—which used section statistics as
the model’s transition probabilities—with n-grams
for the observation probabilities of words. In this
paper we substitute a CRF for the HHMM. Genera-
tive models such as HMMs have more explanatory
power when compared with their discriminative
counterparts such as CRFs. However, HMMs, rely
on the assumption that observations are statistically
independent from one another. For our problem,
this means that an HMM assumes that the presence
of certain paragraphs corresponding to a certain
discourse label or function A is independent from
other paragraphs within another section B. In prac-
tice, however, this is not the case: for example a
paragraph following the MAIN EVENTS are often
either CONSEQUENCES or CIRCUMSTANCES.

4.1 Linear Chain Conditional Random Fields

Conditional Random Fields (CRFs) are undirected
graphical models (Lafferty et al., 2001; Konkol and
Konopı́k, 2013) that can be used for discriminative
sequence labeling. CRFs have proved useful for
many sequence labeling problems in NLP and com-
puter vision (Lin and Wu, 2009), including Named
Entity Recognition (NER) and image classification.
There are several CRF variations such as the tree
CRF and the hierarchical CRF which are mostly
used for computer vision related tasks.

We built and trained a linear chain CRF mod-
eled on Banisakher et al.’s HHMM approach. In
contrast to an HHMM, the CRF encodes labels
as nodes in the CRF graphical representation (in-
stead of HMM states), and uses weighted feature
functions for transitions between nodes (instead of
the HMM transition and emission probabilities).
Additionally, the CRF model captures the “true”
desired probability distribution, that is the condi-
tional distribution of labels given the observations
P (Y |X), instead of modeling the joint distribu-
tion of observations and labels P (X,Y ). This a
known advantage of CRFs in general over HMMs
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and is mainly due to, again, removing the inde-
pendence assumption. Thus, CRFs can have an
arbitrary number of dependencies as opposed to
the limited dependency structure of HMMs. Our
model benefits from this as it does not only record
the dependence of a discourse label only on its
predecessor and observations, but on additional de-
pendencies given the entire sequence of labels (i.e.,
paragraph discourse functions) and observations
(i.e., paragraphs).

The CRF probability distribution is defined by
Equation 1. Let l be the sequence of discourse
labels, p be the sequence of paragraphs (i.e., the
observations) in a given report, and L be the set of
all possible label sequences. Our model follows
a typical linear chain CRF where the conditional
distribution is:

P (l|p, λ) = exp(
∑

i

∑
j λjFj(li−1,li,p,i))∑

l′∈L exp(
∑

i

∑
j λjFj(l′i−1,l

′
i,p,i))

(1)

where λ is a set of model parameters, and each λj
is a weight associated with each feature function
Fj . Each feature function represents a dependency
within the model. We used the L-BFGS method
to estimate each λj (Nocedal, 1980). The model’s
probability distribution is thus generated by sum-
ming over the entire observation sequence, where
each observation is indexed by the variable i and
the entire feature function space index by the vari-
able j. The denominator sums over all possible
label sequences L.

The most critical component in the design of
CRF models is the feature function space. In our
model, each feature function is:

Fj(li−1, li, p, i) =

Hj(li−1, li, p, i) · SFj(li−1, li, p, i)
(2)

where Hj models the discourse labels’ order, and
SFj models the labels’ content. These are similar
to an HMM’s transition and emission probability
distributions, respectively. In contrast to HMMs,
however, the feature functions are evaluated over
the entire observation sequence p taking into ac-
count the neighboring labels li and li−1. This con-
ditions the probability of a given discourse label
type on the content and order of the entire sequence.
We outline the intuition behind and implementation
of our feature functions in the following sections.

4.2 Modeling the Discourse Labels’ Order
The feature function Fj incorporates section or-
dering through the section ordering function

H(li−1, li, p, i). As discussed above, there is a fea-
ture function for each of the dependencies defined
in the model. We encode the interdependent order
of labels (i.e., which labels depend upon each other)
using a binary matrix. To achieve this, we first used
the van Dijk discourse labels shown in Tables 2 and
discussed in §2. Then we created a binary matrix
Vli−1,li whose entries represent whether a label fol-
lows another or not. For example if label HISTORY

(indexed as label 6) was observed in the data di-
rectly before VERBAL REACTIONS (indexed as
label 7), then the entry V6,7 would contain a value
of 1. The matrix contained N2 entries, where N
is the total number of labels. Thus our CRF mod-
els contained 9 nodes in total. We formulated the
section order feature function as follows:

Hj(li−1, li, s, i) = Vli−1,li (3)

Note that for each label si, the model sums the total
entries for the entire sequence of labels and obser-
vations as shown in Equation 1, thus conditioning
each label on the entire sequence.

4.3 Modeling the Discourse Labels’ Content

Similarly, the feature function Fj incorporates the
discourse label type content via the feature func-
tion SF (li−1, li, p, i). These functions model the
dependency between a label type and its content.
Importantly, the feature function should not be con-
fused with the linguistic features that are extracted
from the text and input into the section feature func-
tion. To capture label content (i.e., to model dis-
course label type-specific language) we extracted
the following set of features:

Features from Yarlott et al. (2018): Unigrams
(i.e., bag of words), the tf-idf count vector of the top
3 words (across the corpus) per label type, bag-of-
words, and paragraph vectors using the Doc2Vec
approach (Le and Mikolov, 2014). As pointed out
by Yarlott et al., the tf-idf and paragraph vectors ap-
proximate topics within a given paragraph. Yarlott
et al. also used the previous paragraph’s label as an
explicit feature; this is included by default in the
CRF model.

Lexical: Bigrams to capture the type of lan-
guage per discourse label type.

Positional: Size of paragraphs represented by
number sentences present. As well as the para-
graph position relative to the document head.

Syntactic: A POS count vector which encodes
the number of times each part of speech (POS)
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(specifically, nouns, verbs, adjectives, and adverbs)
appears in the paragraph.

Semantic: Here we incorporated four additional
features: a reported speech feature, a majority event
tense feature, a subevent relation count vector, and
NER vectors representing a select set of named en-
tities. For the reported speech feature, we extracted
quotations and sentences with tagged as reported
speech by the textacy library (DeWilde, 2020)
and labeled the containing paragraph as VERBAL

REACTIONS. For the majority event tense feature,
we extracted the events in each paragraph using the
CAEVO event extraction system (Chambers et al.,
2014), noted their POS tags using a dependency
tree, and recorded the majority verb tense in that
paragraph. For the subevent relation feature, we
used Aldawsari and Finlayson’s subevent extrac-
tion system (2019) to capture relationships between
paragraphs. For this, we used a vector for each
paragraph corresponding to the number of para-
graphs of the article with the maximum number of
paragraphs in the corpus. Aldawsari and Finlayson
(2019) presented a supervised model for automati-
cally identifying when one event is a subevent of
another using narrative and discourse features. For
each event relation found by this system between
two distinct paragraphs, we recorded a +1 in that
corresponding vector cell, while we discarded rela-
tionships found within a single paragraph. For the
NER vectors, we applied Named Entity Recogni-
tion (NER) and extracted the first 13 named entity
types found by the Spacy library (AI, 2020) in-
cluding PERSON, LOCATION, DATE, and TIME.
These 13 types were represented in a numerical
vector for each discourse label type such that, for
each type, we recorded the number of entity occur-
rences.

4.4 Inference

We applied the usual inference process for linear
chain CRFs operating at the paragraph level (For-
ney, 1973). Inference in linear chain CRFs follows
a similar algorithm to Viterbi, which is used in de-
coding HMM models. While not stated explicitly
in the Equation 1 above, the normalization fac-
tor Z(S) is calculated as is often done using the
Gaussian prior as it was introduced in (Chen and
Rosenfeld, 1999).

5 Results and Discussion

In order to test our model, we randomly split each
corpus into training and testing sets in a cross-
validation setup, using five folds, resulting in 40
news reports for training and 10 for testing in each
fold. Our model was trained to learn a total of 9
distinct discourse label types as represented in 2
(all leaf labels minus HEADLINE). In this section
we describe our baseline comparisons and overall
experiments and results.

5.1 Baseline Methods

We followed Yarlott et al. (2018) in their base-
line comparisons. We compared our model’s per-
formance against five other methods: two base-
lines including the most frequent class (MFC)
and a support vector machine using bag-of-words
(SVM+BoW); third, a decision tree classifier;
fourth, a random forest classifier; and fifth, Yarlott
et al. (2018)’s best performing model, a support
vector machine. As described above, the latter
three models incorporate a the following set of four
features: bag-of-words, tf-idf, paragraph vectors,
and previous paragraph labels. We used the same
experimental setup for all of these models. Yarlott
et al. (2018) obtained the best experimental results
using grid search to maximize the micro-averaged
performance of each classifier, as measured across
five folds. Following Yarlott et al. (2018), the SVM
classifier uses a linear kernel with C = 10 and
the class weights balanced based on the training
data; the decision tree classifier uses the default
parameters with the class weights balanced; the
random forest uses 50 estimators with balanced
class weights.

5.2 Results

Our CRF model outperformed all other classifiers
and baselines achieving a 0.71 F1 score. Table 3
shows the micro-averaged precision (P ), recall (R),
and F1 scores for the five models from (Yarlott
et al., 2018) as well as our current CRF approach.
Our experimental results show that our CRF ap-
proach is a substantial improvement over the previ-
ously best performing model.

For CRF, we performed 8 feature combination
experiments (shown in Table 3) to evaluate the
effect of feature classes as well as the individual
semantic features. As discussed before, the SVM
as well as the decision tree and random forest clas-
sifiers only leveraged Yarlott et al.’s original four
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Model Features P R F1

MFC - 0.39 0.39 0.39
HHMM Bigrams 0.42 0.45 0.43
SVM BoW 0.46 0.46 0.46

DT Yarlott et al. 0.41 0.41 0.41
RDF Yarlott et al. 0.43 0.43 0.43
SVM Yarlott et al. 0.54 0.54 0.54

CRF Yarlott et al. 0.58 0.60 0.59
CRF +Lexical 0.61 0.63 0.62
CRF +Positional 0.62 0.66 0.64
CRF +Syntactic 0.65 0.69 0.67
CRF +subevent relation 0.65 0.0.70 0.67
CRF +majority event tense 0.67 0.71 0.68
CRF +reported speech 0.68 0.72 0.70
CRF All (+Remaining Sem.) 0.69 0.73 0.71

Table 3: Experimental results for discourse label iden-
tification. All results are micro-averaged across in-
stances, including precision (P ), recall (R), and bal-
anced F-measure (F1). The Decision Tree, Random
Forest, and SVM classifiers used the features outlined
in (Yarlott et al., 2018). For the middle three lines of
the CRF section, these indicate features groups added
to the previous line’s model. We present the results for
the smenatic features individually. The CRF model in
the last line (CRF with ALL features) includes all the
features from the previous lines as well as all remaining
semantic features.

features: bag-of-words, tf-idf, paragraph vectors,
and previous paragraph labels. While our CRF ap-
proach uses a more sophisticated set of features
leveraging additional syntactic and semantic fea-
tures as outlined in 4.3. Most importantly, our
model treats the problem as a sequence labeling
task and therefore captures the sequential depen-
dencies between the paragraphs as well as the la-
bels within each report. This is evidenced by the
CRF model that uses only Yarlott et al.’s features,
which achieves a higher performance than the orig-
inal SVM classifier.

Our CRF model achieved the largest increase
in performance after adding the semantic features.
This was expected: we anticipated a boost in per-
formance on the VERBAL REACTIONS class given
detection of reported speech, and a similar increase
in performance on the MAIN EVENTS and PREVI-
OUS EVENTS classes given the addition of event
and subevent features. Of the semantic features,
the reported speech feature had the biggest im-
pact on the model’s performance as the verbal reac-
tions section was predominant in the dataset. Here
textacy performed quite well in automatically
identifying reported speech as the model achieved
a 0.91 F1 score for the VERBAL REACTIONS class.

The subevent relation and majority event tense fea-
tures improved the performance by about one point
F1 each, with the second contributing slightly more
to the overall performance. The majority event
tense feature contributed heavily to the PREVIOUS

EVENTS and HISTORY, we suspect due to the rela-
tively more frequent use of past tense verbs in para-
graphs belonging to those classes. As discussed
before, we used automated systems to detect events
and subevent relations. Naturally, these systems
do not boast a perfect performance and therefore
error propagation is expected. Thus, we expect that
our model can further achieve higher performance
using more refined event detection solutions, as
well as a larger corpus.

Table 4 presents the per-label results from our
experiments. The relatively strong performance
on CIRCUMSTANCES and VERBAL REACTIONS

is not surprising, given their relative prevalence
in our corpus. Similarly it is not surprising that
we have low performance on labels that occur, on
average, about once (or less) a document (HIS-
TORY, EXPECTATIONS). However, these label
types saw a significant performance boost in our
model compared to the previous approaches as our
features have captured more of their distinct lan-
guage. For CONSEQUENCES HISTORY, EXPEC-
TATIONS, and EVALUATIONS, the syntactic and
positional features were most helpful. Similar to
(Yarlott et al., 2018), we observe an unexpected–
but not surprising–level of performance on LEAD

paragraphs, given their relative scarcity in the
dataset: we find that leads, with a single excep-
tion, occur once at the start of the document.

Again, similar to (Yarlott et al., 2018), we ex-
pected the tree-oriented methods—decision trees
and random forests—to at least outperform the
SVM classifier. However, this was not the case in
practice and they were outperformed by one of the
baselines. We believe that this partially attributed
to the fact that these models did not leverage the
full set of hierarchical labels in van Dijk’s discourse
theory: they were only presented with the leaf la-
bels.

6 Related Work

There has been substantial work describing how
the structure of news operates with regards to the
chronology of real-world events. Much news fol-
lows an inverted chronology—called the inverted
pyramid (Bell, 1998; Delin, 2000) or relevance
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Label Type F1 Label Type F1

HEADLINE - LEAD 0.95
MAIN EVENTS 0.69 CONSEQUENCES 0.29
CIRCUMSTANCES 0.72 PREVIOUS EVENTS 0.51
HISTORY 0.24 VERBAL REACTIONS 0.91
EXPECTATIONS 0.26 EVALUATIONS 0.51

Macro Average 0.56

Table 4: Per-label F1 results. The last row shows
the macro average over all label types. Best perfor-
mance occurs for the LEAD, MAIN EVENTS, CIRCUM-
STANCES, and VERBAL REACTIONS.

ordering (Van Dijk, 1986)—where the most impor-
tant and typically the most recent events come first.
Bell claims that “news stories. . . are seldom if ever
told in chronological order” (Bell, 1994, p. 105),
which is demonstrated by Rafiee et al. for both
Western (Dutch) and non-Western (Iranian) news
(2018). Rafiee et al. also show that many stories
follow a hybrid structure, which combines char-
acteristics from both inverted and chronological
structures.

Our approach was inspired by Banisakher et al.
(2018)’s HHMM approach to section identification
in clinical notes. In turn, their work extend an ear-
lier study on section identification of psychiatric
evaluation reports that combined the work of Li
et al. (2010) on identifying section types within
clinical reports and that of Sherman and Liu (2008)
on text segmentation of meeting minutes. Li et al.
modeled HMM emissions at the section level us-
ing bigrams, while Sherman and Liu modeled the
emissions at the sentence level and used unigrams
and trigrams. Other approaches followed similar
strategies in segmenting story text and in creating
generative models for detecting story boundaries
(Mulbregt et al., 1998; Yamron et al., 1998). More
recently, Yu et al. (2016) used a hybrid deep neural
network combined with a Hidden Markov Model
(DNN-HMM) to segment speech transcripts from
broadcast news to a sequence of stories. Similar to
our approach, (Sprugnoli et al., 2017) used CRFs
and SVMs for the classification of automatic clas-
sification of Content Types, a novel task that was
introduced to provide cues to access the structure
of a document’s types of functional content.

Discussing van Dijk’s theory of news discourse,
Bekalu stated that analysis of “the processes in-
volved in the production of news discourses and
their structures will ultimately derive their rele-
vance from our insights into the consequences, ef-

fects, or functions for readers in different social
contexts, which obviously leads us to a considera-
tion of news comprehension” (2006, p. 150). The
theory proposed by van Dijk has also been pro-
posed for use in annotating the global structure of
elementary discourse units in Dutch news articles
(van der Vliet et al., 2011).

Pan and Kosicki (1993), in a similar analysis,
presented a framing-based approach that provides
four structural dimensions for the analysis of news
discourse: syntactic structure, script structure, the-
matic structure, and rhetorical structure. Of these,
the syntactic structure is most closely aligned with
van Dijk’s theory. In this paper, we chose to focus
on van Dijk’s theory as Pan and Kosicki do not pro-
vide a list or description of the structure that could
be readily translated into an annotation scheme.

While White (1998) treats the structure of news
as being centered around the headline and lead.
White suggests that the headline and lead, which
act as a combination of both synopsis and abstract
for the news story, serve as the nucleus for the
rest of the text: “the body which follows the head-
line/lead nucleus—acts to specify the meanings
presented in the opening headline/lead nucleus
through elaboration, contextualisation, explana-
tion, and appraisal” (1998, p. 275). We focus on
van Dijk’s theory for this paper as we find it to pro-
vide a higher degree of specificity: White’s speci-
fication modes serve roughly the same purpose as
higher-level groupings in van Dijk’s theory.

7 Contributions

We extend earlier work on news paragraph dis-
course function labeling. We built a linear chain
CRF model incorporating various lexical, posi-
tional, syntactic, and semantic features that im-
proves detection of the order of discourse labels
in a news article at the paragraph level as well as
models the paragraph content of each label type.
We evaluated our model’s performance against two
baselines and three existing models with various
subsets of features. We showed that the CRF model
represents a significant improvement in this task.
Most importantly, our work demonstrated the im-
portance of modeling paragraph and discourse label
type inter-dependencies.
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Abstract

Identifying emotions as expressed in text
(a.k.a. text emotion recognition) has received
a lot of attention over the past decade. Nar-
ratives often involve a great deal of emotional
expression, and so emotion recognition on nar-
rative text is of great interest to computational
approaches to narrative understanding. Prior
work by Kim et al. (2010) was the work with
the highest reported emotion detection perfor-
mance, on a corpus of fairy tales texts. Close
inspection of that work, however, revealed
significant reproducibility problems, and we
were unable to reimplement Kim’s approach
as described. As a consequence, we imple-
mented a framework inspired by Kim’s ap-
proach, where we carefully evaluated the ma-
jor design choices. We identify the highest-
performing combination, which outperforms
Kim’s reported performance by 7.6 F1 points
on average. Close inspection of the annotated
data revealed numerous missing and incorrect
emotion terms in the relevant lexicon, Word-
NetAffect (WNA; Strapparava and Valitutti,
2004), which allowed us to augment it in a use-
ful way. More generally, this showed that nu-
merous clearly emotive words and phrases are
missing from WNA, which suggests that effort
invested in augmenting or refining emotion on-
tologies could be useful for improving the per-
formance of emotion recognition systems. We
release our code and data to definitely enable
future reproducibility of this work.

1 Introduction

Emotion is a primary aspect of communication,
and can be transmitted across many modalities in-
cluding gesture, facial expressions, speech, and
text. Because of this importance, automatic emo-
tion recognition is useful for many applications,
including for automated narrative understanding.
A narrative is “a representation of connected events
and characters that has an identifiable structure, is

bounded in space and time, and contains implicit or
explicit messages about the topic being addressed”
(Kreuter et al., 2007, p. 222), and narratives are
often used to express the emotions of authors and
characters, as well as induce emotions in audiences.
For many narratives—one need only consider ro-
mances such as Romeo and Juliet or the movie
Titanic—it is no exaggeration to say that lacking
an understanding of emotion leads to a seriously
impoverished view of the meaning of the narrative.

Emotion recognition is a challenging problem on
account of the complex relationship between felt
emotion and linguistic expression. This includes
not only standard natural language processing chal-
lenges, such as polysemous words and the difficulty
of coreference resolution (Uzuner et al., 2012; Peng
et al., 2019), but also emotion-specific challenges
such as how context can subtly change emotional
interpretations (Cowie et al., 2005). These tech-
nical challenges are exacerbated by a shortage of
quality labeled data addressing this task.

There has been much prior work on emotion
recognition. With regard to narrative specifically,
Kim et al. (2010) reported a high-performing ap-
proach to emotion recognition on a corpus of fairy
tales texts (Alm, 2008). This approach involved
an unsupervised learning framework for emotion
recognition in textual data, using a modified form
of Ekman’s psychological theory of emotion (joy,
anger, fear, sadness; Ekman, 1992b). In that work,
they used the WordNetAffect (WNA) and ANEW
(Affective Norm for English Words) emotion lex-
icons to construct a semantic space. Each sen-
tence is placed in the space using tf-idf weights for
emotion words found in the lexicons. They then
tested three methods—Non-negative Matrix Factor-
ization (NMF), Latent Semantic Analysis (LSA),
probablistic Latent Semantic Analysis (pLSA)—
for compressing the space to extract features of
the constructed vector space model, reduce noise,
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and eliminate outliers. Finally, the framework used
cosine-similarity to label sentences by evaluating
how similar they are compared to standard vectors
generated based on WNA entries strongly associ-
ated with emotion lexicon (more specifically an
extension of WNA). The best performing method
was NMF, which they reported achieved an average
emotion recognition F1 of 0.733.

Close inspection of the work, however, revealed
significant reproducibility problems. Despite our
best efforts we were unable to reproduce results
anywhere near Kim’s reported performance; in-
deed, our best attempt yielded only roughly 0.25
F1. This was due to several reasons. First, the pa-
per lacked information on model hyper-parameters.
Second, the paper omitted descriptions of key NMF
steps, including how to identify representative fea-
tures and what features should be removed before
semantic space compression. Third, the paper did
not explain how to adapt NMF to deal with the
sparse matrices that occur in textual NMF models.
Fourth, certain resources associated with WNA ei-
ther were not correctly identified, or are no longer
available. These omissions prevented us from re-
producing their models to any degree of accuracy.

Therefore, we undertook to do a systematic ex-
ploration of the design space described in Kim
et al. (2010). We examined the highest performing
vector space compression techniques reported by
Kim et al. (NMF), as well as Principle Component
Analysis (PCA) and Latent Dirchelet Allocation
(LDA) which were reported as high-performing
techniques in other work. We show that NMF in-
deed performs the best, and we clearly explain our
experimental setup including methods for identify-
ing relevant features and handling sparse text ma-
trices. The PCA and NMF methods implemented
in this paper are based on the works of Mairal et al.
(2009) and Boutsidis and Gallopoulos (2008) re-
spectively which have implemented mechanisms
that works for a large sparse matrix (in our case,
1, 090× 2, 405). This work resulted in an improve-
ment of performance of roughly 7.6 points of F1

over Kim’s reported results. We release our code
and data to facilitate future work1.

The rest of this paper is structured as follows. We
briefly review psychological models of emotions,
describe several key emotion language resources,
and outline a number of well-known emotion recog-

1Code and data may be downloaded from https://doi.
org/10.34703/gzx1-9v95/03RERQ

nition models (§2). We then describe our adapted
unsupervised emotion recognition method, giving
detailed descriptions of all steps, parameters, and
resources needed (§3). We next describe the per-
formance of our method on Alm’s corpus of fairy
tales (Alm, 2008), which was annotated for emo-
tion on a per-sentence level (§4). Finally, we iden-
tify some unsolved challenges that point toward
future work (§5), and summarize our contributions
(§6).

2 Related Work

2.1 Psychological emotion theories

Theories of emotion go back to the ancient Greeks
and Romans, and have been a recurring theme of
inquiries into the nature of the human experience
throughout history, including famous proposals by
Charles Darwin and William James in the 19th
century (Darwin and Prodger, 1998; James, 1890).
Modern psychological theories of emotion may be
grouped into two types: categorical and dimen-
sional (Calvo and Mac Kim, 2013). Categorical
psychological models propose discrete basic emo-
tions, e.g., Oatley and Johnson-Laird’s (1987) with
five basic emotions, several models with six ba-
sic emotions (Ekman, 1992b; Shaver et al., 1987),
Parrott’s model of six basic emotions arranged in
a three-level tree (2001), Panksepp’s model with
seven emotions (1998), and Izard’s with ten (2007).

Dimensional psychological models, by contrast,
determine emotions by locating them in a space
of dimensions (usually two to four) that might in-
clude arousal, valence, intensity, etc. These in-
clude two dimensional models such as Russell’s
circumplex model (1980), Scherer’s augmented cir-
cumplex (2005), and Whissell’s model (Cambria,
2016). Lövheim’s model (2012) is an example that
uses three dimensions, while Ortony et al. (1990),
Fontaine et al. (2007), and Cambria et al. (2012)
proposed four-dimensional models.

Finally, there are also models which combine
both categorical and dimensional aspects, called
hybrid models, the most prominent of which is
Plutchik’s wheel and cone model with eight basic
emotions (Plutchik, 1980, 1984, 2001).

Of all the many emotion models that have been
proposed, Ekman’s 6 category model (anger, dis-
gust, fear, happiness, sadness, surprise) is by far the
most popular in computational approaches, partly
because of its simplicity, and partly because it has
been successfully applied to automatic facial emo-
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tion recognition (Zhang et al., 2018; Suttles and
Ide, 2013; Ekman, 1992b,a, 1993). This is despite
that some researchers have doubts that Ekman’s
model is complete, as it seems to embed a Western
cultural bias (Langroudi et al., 2018). In our own re-
view of emotion recognition systems, as discussed
below, the highest performing system reported for
narrative text was described by Kim et al. (2010).
In that work, they used a four-label subset of Ek-
man’s model (happiness, anger, fear, and sadness),
and this is the model we adopt in this paper.

2.2 Emotion Lexicons

One of the key language resources for emotion
recognition in text is an emotion lexicon, which
is simply a list of words associated with emotion
categories. Emotion lexicons can be used both in
rule-based and machine-learning-based recognition
methods. There are two types of emotion lexicons.
One is general purpose emotion lexicons (GPELs)
which specify the generic sense of emotional words.
GPELs sometimes express emotions as a score,
and can be applied to any domains. Prominent
GPELs include WordNet Affect (WNA; Strappa-
rava and Valitutti, 2004), the Wisconsin Percep-
tual Attribute Rating Database (WPARD; Medler
et al., 2005), Linguistic Inquiry and Word Count
(LIWC; Pennebaker et al., 2001), and the National
Research Council (NRC) and NRC Hashtag lexi-
cons (Mohammad and Turney, 2010; Mohammad
et al., 2013). The second type of lexicon are domain
specific emotion lexicons (DSELs) which are tar-
geted at specific domains for emotion recognition.
Bandhakavi et al. (2014), for example, proposes a
domain-specific lexicon for emotional tweets. Ta-
ble 1 compares the details of several key GPELs.

WordNet Affect Version 1.1 Kim et al. used
WordNet Affect (WNA; Strapparava and Valitutti,
2004), which builds upon the general WordNet
database (Fellbaum, 1998). WNA classifies 280
WordNet Noun synsets into an emotion hierarchy
rooted in an augmented version of Ekman’s basic
emotions, and partially depicted in Figure 1. Word-
Net links an additional 1,191 Verb, Adverb, and
Adjective synsets to this core Noun-focused hierar-
chy. These synsets represent approximately 3,500
English lemma-POS pairs.

2.3 Emotion Recognition Approaches

There have been at least one hundred papers de-
scribing approaches to emotion recognition in text

root
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state

physical
state sensation

cognitive
state

affective
state

cog./affec.
sate

emotion mood
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negative
emotion
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general
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disgustfury shyness
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Figure 1: Hierarchy of emotions in WordNet Affect
Version 1.1.

(Calefato et al., 2017; Teng et al., 2007; Shaheen
et al., 2014). Here we review a selection of ap-
proaches that have been applied to narrative-like
or narrative-related discourse types. It is important
to remember that all of these approaches use dif-
ferent data and different theories, often involving
different numbers of labels. All things being equal,
classification results usually degrade as the number
labels increases; therefore the performance of each
system can only be loosely compared.

Strapparava and Mihalcea (2008) described a
system for recognizing emotions in news head-
lines. They extracted 1,250 news headlines from
a variety of news websites (such as Google news,
CNN, and online newspapers) and annotated them
using Ekman’s model—anger, disgust, fear, joy,
sadness and surprise—splitting the data into a train-
ing set of 250 and a test set of 1,000 (this is
called the SemEval-2007 dataset). They tested five
approaches: WNA-PRESENCE, LSA-SINGLE-
WORD, LSA-EMOTION-SYNSET, LSA-ALL-
EMOTION-WORDS, and NAIVEBAYES-TRAINED-
ON-BLOGS. WNA-PRESENCE, which looked
for headline words listed in WNA, provided the
best precision at 0.38. The LSA-ALL-EMOTION-
WORDS, which calculated the vector similarity be-
tween the six affect words and the LSA represen-
tation of the headline, led to the highest recall and
F1, at 0.90 and 0.176, respectively.

Aman and Szpakowicz (2008) used a Support
Vector Machine (SVM) trained and tested on blog
data for recognition Ekman’s emotion classes, plus
two additional classes: mixed emotion, and no emo-
tion. Four human judges manually annotated 1,890
sentences from automatically retrieved blogs to cre-
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Emotion Lexicons Citation Set of Emotions Entries

WNA Strapparava and Valitutti (2004) A hierarchy of emotions 915 synsets
NRC / Emolex Mohammad and Turney (2010) Plutchik basic model 1980, neg./pos. 14,182
LIWC Pennebaker et al. (2001) Affective or not, neg./pos. anxiety, anger, sadness 5,690
NRC Hashtag Mohammad et al. (2013) Plutchik’s basic model 32,400
WPARD Medler et al. (2005) Positive or negative 1,402
ANEW Bradley and Lang (1999) 3D (valence, arousal,dominance) 1,035

Table 1: Emotion-related lexicons table. WNA= WordNet Affect; NRC= National Research Council in Canada;
LIWC= Linguistic Inquiry and Word Count; WPARD= Wisconsin Perceptual Attribute Rating Database; ANEW=
Affective Norms of English Words

ate the corpus. The features for the SVM were the
presence of emotion words listed in Roget’s the-
saurus and WNA. F1 measures for each emotion
class ranged between 0.493 to 0.751, in each case
surpass the baseline performance.

Tokuhisa et al. (2008) described a lexicon-based
emotion recognition system for Japanese. They
handcrafted emotion lexicon by identifying 349
emotion words from the Japanese Expression Eval-
uation (JEE) Dictionary classified into 10 different
emotions: 3 positive (happiness, pleasantness, re-
lief) and 7 negative (fear, sadness, disappointment,
unpleasantness, loneliness, anxiety, and anger).
They then used this lexicon to automatically assem-
ble a labeled corpus of 1.3M emotion-provoking
(EP) “events” (defined as a subordinate clauses
which modifies an emotional statement). They then
demonstrated a two-step method for emotion recog-
nition, starting with SVM-based coarse sentiment
polarity classification (positive, negative, or neu-
tral) followed by kNN-based classification of non-
neutral instances into the appropriate fine-grained
emotion classes (3 for positive, 7 for negative).
Their reported accuracies of between 0.5 and 0.8
for their best performing model.

Cherry et al. (2012) presented two supervised
machine learning models for emotion recognition
in suicide note sentences. They used the 2011 i2b2
NLP Challenge Task 2, which comprised 4,241 sen-
tences in the training set, and 1,883 sentences in
the test set, which were manually annotated with
13 emotion labels. A one-classifier-per-emotion
approach yielded an F1 of 0.55, while a latent se-
quence model that applied multiple emotion labels
per sentence achieved an F1 of 0.53. They noted
that more than 73% of their training data lacked la-
bels which limited the effectiveness of the training.

Bandhakavi et al. (2017) experimented with un-
igram mixture models (UMMs) for recognizing
emotions in tweets, incident reports, news head-

lines, and blogs. Each corpus was manually an-
notated with different emotion theories: 280,000
tweets with Parrott’s six primary emotions (Par-
rott, 2001), 1,250 news headlines and 5,500 blogs
with Ekman’s six emotion set, 7000 incident re-
ports from the ISEAR dataset2 labeled with a seven
emotion set. One goal of the study was to com-
pare the utility of domain-specific emotion lexicons
with general purpose emotion lexicons (DSELs vs
GPELs). They found that combining DSEL lexicon
words with n-grams, part of speech tags, and addi-
tional words from sentiment lexicons yielded the
highest performance of 0.60 F1 on the blog data.

Kim et al. (2010) reported the highest perform-
ing emotion recognition system on narrative text.
Among their data was a set of 176 fairy tales whose
15,087 sentences were labeled by Alm (2008) with
a four-emotion subset of Ekman’s theory (anger,
fear, joy, and sadness). They demonstrated an
unsupervised approach, where each sentence is
transformed into a vector in a space of emotion
words (drawn from WNA and ANEW), and then
compressed using a dimension reduction technique
(NMF, LSA, or pLSA). These vectors were then
compared to reference vectors in the same space
that were computed for each of the four emotions.
They reported a performance of F1 of 0.733 for
NMF, which was their highest performing model.
One advantage of this approach was that it is
unsupervised, which means both that significant
amounts of training data are not required and that
all the annotated data can be used for testing. This
is important because of the small size of the corpus
on which the technique was tested.

3 Emotion Recognition Framework

We now describe an unsupervised system for emo-
tion recognition modeled on that reported by Kim

2http://www.affective-sciences.org/
researchmaterial
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Citation Corpus Lexicon # Emotions Method F1

Kim et al. (2010) Fairy tales WNA 4 NMF 0.73
Bandhakavi et al. (2017) Tweets UMM+DSEL 6 Lexicon only 0.64
Aman and Szpakowicz (2008) Blog - 6 Unigrams 0.57
Cherry et al. (2012) Suicide notes - 15 SVM+LS 0.55
Strapparava and Mihalcea (2008) Headlines - 6 LSA 0.17
Tokuhisa et al. (2008) “EP” Events JEE Dict. 10 SVM+kNN 0.5–0.8 Acc.

Table 2: Emotion recognition approaches on narrative-like text, ordered by performance. LSA = Latent Semantic
Analysis; LS = Latent sequence modeling

et al. (2010). While we follow the general pattern
of that work, we experiment with a different set
of dimension reduction methods (NMF from Lee
and Seung, as well as PCA and LDA). The system
takes as input the following items:
• A corpus containing n sentences S : s1, s2,
. . . , sn;
• A set of emotions E = {e1, e2, . . . , el−1, neu-

tral} for classifying emotions into l different
classes, including neutral; and,
• An emotion lexicon L : Ω 7→ E which maps

each word in the corpus ω ∈ Ω (where Ω has
m terms) to an emotion e ∈ E. The word ω
is in its lemmatized form and has a specific
POS.

A flowchart of the system is shown in Figure 2.
The system comprises four consecutive steps. In
the first step, pre-processing, the system processes
the input corpus using the CoreNLP library (Man-
ning et al., 2014) to separate the text into sentences
and lemmatized tokens. The second step, vector
space modeling, uses the lemmatized tokens to
generate a vector for each sentence in a vector
space whose dimensions correspond to the items in
Ω. In the third step, noise cancellation or dimen-
sion reduction, we explored three different models
(Non-negative Matrix Factorization, Latent Dirich-
let Allocation, and Principal Component Analysis)
to either reduce dimensions or extract features of
the vector space. One of our main contributions
here is to analyze and explain the effect of this
step on the performance of the final emotion recog-
nition system. Finally, the fourth step, labeling,
compares the vector for each sentence with vectors
for each emotion, choosing the closest emotion as
the label for the sentence.

Augmenting WNA As mentioned before, WNA
1.1 assigns an emotion label to 1,471 synonym sets
(synsets) of WordNet. This corresponds to a lex-
icon of nearly 3,495 affective lemma-POS pairs.
Careful inspection of WNA revealed both incor-
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Figure 2: Flowchart of the proposed system. [Vs]m
and [Ye]m represent the original m-dimensional sen-
tence and emotion vector model respectively, [V ′

s ]m,
[V ′
s ]∆ and [V ′

s ]δ denote the transformed sentence vector
model using NMF, PCA and LDA techniques respec-
tively. [Y ′

e ]∆ and [Y ′
e ]δ denote the transformed emotion

vector model using PCA and LDA techniques respec-
tively.

rectly included as well as missing pairs. For incor-
rectly included pairs, a substantial number were
included because all their multiple senses were
labeled by emotions related to a secondary affec-
tive sense, not their main non-affective sense. We
manually reviewed and removed these incorrect
labels. Additionally, we identified missing lemma-
POS pairs with the help of closely related pairs
already labeled by WNA. For example the pair
glorious-JJ was missing from WNA, but is related
(via the derived-from relation) to already labeled
pair glorify-VB. We manually searched for these
missing relationships, adding the missing terms,
as well as recursively adding their synonyms (e.g.,
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glorious-JJ resulted in splendid, magnificent, bril-
liant, and superb being added as well). In total,
we removed 613 and added 814 labels of different
lemma-POS pairs, resulting a final count of 4048
lemma-POS pairs.

In general, the technique of using a fixed lex-
icon of emotion terms to capture highly context-
dependent emotional expressions is problematic
at best. Although we show here that work on im-
proving the lexicon does improve emotion recogni-
tion results, ultimately, any technique will have to
move away from a rigid lexicon-based approach to
something more flexible. We plan to explore such
directions in future work.

Step 1: Pre-Processing

For each sentence s ∈ S in the given corpus, we
construct a bag of words by tokenizing the sentence
and lemmatizing each word. We generate a count
vector for BoWs by mapping each lemma to the
count in the sentence (Ω 7→ Z≥0). We do not
remove stop words as their effects are minimized
by the tf-idf computation in the next step.

Step 2: Vector Space Modeling

Using the count vectors constructed in the first step,
we compute a tf-idf vector for each sentence as
well as a standard vector for each emotion class
e ∈ E. For each sentence sj ∈ S, we construct
an m dimensional vector where each entry in the
vector is the tf-idf of term ωi in sentence sj ; i.e.

vij = TFi,j × IDFi (1)

where TFi,j = BoWsj (ωi),

IDFi = log
n

|{s ∈ S : BoWs(ωi) > 0}| . (2)

n is the number of sentences, and Ω = {ωi}mi=1.
The constructed vector space model is repre-

sented by the following m× n matrix V :

V = [Vs1Vs2 . . . Vsn ] where Vsj =




v1j
v2j

...
vmj


 (3)

We compute a standard vector for each emotion
class Ye = (ye,ω1 , ye,ω2 , . . . , ye,ωm) where ye,ωi

is 1 if the term ωi is mapped to e by the lexicon,
otherwise 0.

Step 3: Noise Cancellation or Dimension
Reduction
The vectors Vs and Ye from the previous step are all
m-dimensional vectors where m is the total num-
ber of terms in the corpus. There are many terms
that have little or no effect on the emotion labeling
of their sentences. Therefore, dimensional reduc-
tion or noise cancellation techniques may improve
the performance of the emotion labeling step which
comes later. Principle Component Analysis (PCA)
has been known for quite some time for noise can-
cellation (Abdi and Williams, 2010), while Latent
Dirichlet Allocation (LDA) was specifically devel-
oped for dimension reduction in natural language
processing (Blei et al., 2003). Non-Negative Ma-
trix Factorization (NMF) was first introduced for
noise cancellation by Lee and Seung (1999).

Step 3.1: Vector Space Decomposition
We can decompose the obtained matrix V in one
of the following three ways:

1. Non-negative Matrix Factorization (NMF):
we extract d features from the m-dimensional
vectors of sentences using NMF.

2. Principal Component Analysis (PCA): We re-
duce the number of dimensions of Vs vectors
from m to ∆ < m.

3. Latent Dirichlet Allocation (LDA): We reduce
the number of dimensions of Vs vectors from
m to δ < m.

When using PCA or LDA we can move directly
to fourth step of the system; however, in the case of
NMF, we must select important terms (Step 3.2), re-
move irrelevant features (Step 3.3), and reconstruct
the vector space (Step 3.4).

When using NMF for decomposing the vector
space model, V is factorized into two matrices
Wm×d = [wij ] and Hd×n = [hij ], both with all
non-negative entries:

V = W ×H s.t. wij ≥ 0 and hij ≥ 0 (4)

Note that d is considered a hyper-parameter in
this step and its numerical value can be fine-tuned
by maximizing the output of the system on a devel-
opment set.

The NMF factorization process produces a ma-
trix W whose d columns each represents an m-
dimensional feature for each of the original n sen-
tences in the corpus:
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Figure 3: Non-negative matrix factorization (Step 3.1) to extract features of sentence vector model V . The re-
sults of this process is given by matrices W and H . Columns of W are corresponding to the extracted features
F1, F2, . . . , Fd of the model and rows of H are called the weights of these features.
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Figure 4: The least relevant features are removed by zeroing out their corresponding weights in matrix H . The
updated H matrix is denoted by H ′. The sentence vector model is then reconstructed by multiplying W by H ′

(Steps 3.3 & 3.4). The updated sentence vector model is represented by matrix V ′.

W = [F1F2F3 . . . Fd] where Fj =




w1j

w2j
...

wmj


 (5)

Each of the d rows of H matrix represents
weights of the d features in F . This decomposition
is shown in Figure 3.

Step 3.2: Term Selection
For every feature Fj , we identify a fraction r of
terms with the highest weights as its representa-
tives, where r is a hyper-parameter that can be
fine-tuned during system optimization (r is usually
less than 1%).

Step 3.3: Feature Removal
In this phase we remove the ρ features that have
little or no emotional relevance, where ρ is a non-
negative integer hyper-parameter that can be tuned.
We will call a feature “emotionally irrelevant” if
all of its representative terms (as selected in the
previous step) are labeled as neutral by the lexicon.
These features will always be removed first. If ρ is
less than the number of emotionally irrelevant fea-
tures, we choose at random. On the other hand, if
the number of emotionally irrelevant features is less
than ρ, we eliminate features Fj in order of their
overall emotional relevance, which is computed by
estimating the standard deviation of cosine similar-
ity ratios between emotion vectors Ye’s obtained in

Step 2 and Fj ◦Rj (element-wise product of Fj and
Rj) where Rj is the binary identifier of whether a
term is a representative for Fj and is constructed
based on the outcome of Step 3.2. Symbolically,
to quantify how emotionally relevant feature Fj is,
we calculate the following standard-deviation:

σj = StdDeve∈E\neutral
{

simcos(Ye, Fj ◦Rj)
}

(6)

Step 3.4: Vector Space Reconstruction
In this step, the vector space model is reconstructed
(V ′) after eliminating the irrelevant features. Let
I denote the set of indices whose corresponding
features are identified as least relevant in previous
step. Then the reconstructed vector space is:

V ′ = [v′ij ]m×n s.t. v′ij =
∑

1≤k≤d
k/∈I

wikhkj (7)

Figure 4 illustrates the vector space reconstruction.

Step 4: Labeling
Finally the emotion recognition process takes place
by measuring the similarity between sentence vec-
tors Vs and standard emotion vectors Ye which are
taken from the previous step with the help of NMF,
PCA, or LDA. Label of each sentence s is calcu-
lated by the following formula:

predicted label of s = arg max
e∈E

sim(Vs, Ye) (8)
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Figure 5: Exploration of the hyper-parameter space for NMF. Each combination of hyper-parameters d, r, and
ρ (dimensions, representatives, and removed features) results in a specific F1 score for each emotion label. The
model with (d, r) = (975, 10), highlighted with green color, results in the highest overall F1 score when ρ = 18.
For each individual emotion, the best F1 score is found at (a) Joy: (d, r, ρ) = (1050, 10, 3), (b) Anger: (d, r, ρ) =
(1025, 3, 24), (c) Fear: (d, r, ρ) = (1000, 6, 15), (d) Sadness: (d, r, ρ) = (975, 6, 15).

where similarity function can be measured by the
cosine of angle made by the two given vectors:

simcos(Vs, Ye) =
Vs · Ye

||Vs|| × ||Ye||
(9)

4 Performance on Fairy Tale Data

We tuned and tested our system using the manually
annotated dataset of fairy tales constructed by Alm
(2008), which comprises 176 children’s fairy tales
(80 from Brothers Grimm, 77 from Hans Andersen,
and 19 from Beatrix Potter) with 15,087 unique
sentences (15,302 sentences), 7,522 unique words
and 320,521 total words. These fairy tales were an-
notated by two annotators labeling the emotion and
mood of each sentence as one of joy, anger, fear,
sadness, or neutral which resulted in four labels per
sentence. Across the sentences, only 1,090 of them
agreed on all four non-neutral labels. Kim et al.
(2010) used only these sentence to train and test
their system3, and we followed the same procedure.
There were 2,405 unique term-POS pairs. Also, the
distribution of labels in the dataset is specified in
the pie-chart depicted in Figure 6.

40.7 % Joy

19.9 %

Anger/Disgust

15.1 %
Fear

24.2 %

Sadness

Figure 6: Fairy tales label distribution of sentences with
unanimous inter-annotator agreement.

We measured the performance of our system
on Alm’s data. Without augmenting WNA, using

3Kim et al. (2010) reported 1,093 sentences, but we found
and removed three sentences that were repeated in the data.

the original 1,471 synsets of WNA, the F1 score
is 0.625. The performance metrics presented in
Table 4 were obtained by the model using the aug-
mented WNA. The plots depicted in Figure 5 show
the F1 scores of various setups of the proposed
model using NMF technique for noise cancellation.
Also, Table 4 summarizes the precision, recall and
F1 score of our system for each of the four emotion
classes as well as its overall F1 score when using
NMF, PCA, or LDA with different setups (values
of hyper-parameters). As observed in this table,
the highest overall F1 score is obtained when using
NMF with (d, r, ρ) = (975, 10, 18). In this model,
209 sentences were labeled incorrectly. Among
them, some challenging examples are in Table 3.

5 Unsolved Challenges and Future Work

As already discussed, one challenge regarding au-
tomatic emotion recognition is the context depen-
dency of emotional semantics. For instance, I’m
over the moon! is an expression of extreme happi-
ness but does not use any explicitly happy or joyful
words (or, indeed, any emotion word at all). An-
other obstacle is polysemous words, when words
have both an emotional and non-emotional senses;
recognizing which sense of the word is being used
is challenging and remains an open problem. Aside
from these fundamental issues, there is a serious
lack of high-quality annotated data, not just for nar-
rative text but for all discourse types. Annotated
corpora use a wide variety of sometimes incom-
patible emotion theories and are often poorly an-
notated, with low inter-annotator agreements and
many errors.

Given these considerations, there are many pos-
sible directions for future work, for example:
• Reconciling emotion lexicons and context de-
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Sentence Predicted Gold Label

They told him that their father was very ill, and that they were afraid nothing could save him. Fear Sadness
And in sight of the bridge! Said poor pigling, nearly crying. Sadness Fear
She smiled once more, and then people said she was dead. Sadness Joy
Then he aimed a great blow, and struck the wolf on the head, and killed him on the spot!
. . . and when he was dead they cut open his body, and set Tommy free.

Anger Joy

Table 3: Challenging examples of sentences incorrectly labeled by the model with the most accurate settings.

Joy Anger Fear Sadness Overall

Method Setup P R F1 P R F1 P R F1 P R F1 F1 Acc.

NMF

1050,10,3 0.872 0.872 0.872 0.878 0.696 0.776 0.672 0.758 0.712 0.753 0.818 0.784 0.807 0.806
1025,3,24 0.859 0.876 0.867 0.884 0.705 0.785 0.682 0.715 0.698 0.733 0.799 0.764 0.800 0.799
1000,6,15 0.872 0.858 0.865 0.861 0.687 0.764 0.692 0.764 0.726 0.742 0.830 0.784 0.804 0.803
975,6,15 0.860 0.874 0.867 0.882 0.691 0.775 0.689 0.739 0.713 0.759 0.833 0.794 0.808 0.807
975,10,18 0.858 0.874 0.866 0.879 0.705 0.783 0.703 0.733 0.718 0.755 0.830 0.791 0.809 0.808

PCA

1050 0.884 0.775 0.826 0.760 0.700 0.729 0.552 0.770 0.643 0.756 0.777 0.766 0.760 0.689
1150 0.885 0.764 0.820 0.743 0.719 0.731 0.542 0.745 0.628 0.748 0.765 0.757 0.752 0.683
950 0.883 0.766 0.820 0.722 0.696 0.709 0.571 0.782 0.660 0.759 0.777 0.768 0.757 0.686
1100 0.888 0.768 0.824 0.744 0.710 0.726 0.542 0.745 0.628 0.765 0.788 0.776 0.758 0.684

LDA

1650 0.636 0.768 0.696 0.597 0.498 0.543 0.414 0.424 0.419 0.603 0.466 0.526 0.589 0.589
1350 0.598 0.791 0.681 0.651 0.558 0.600 0.482 0.333 0.394 0.522 0.402 0.454 0.581 0.581
1300 0.584 0.809 0.678 0.566 0.475 0.516 0.594 0.461 0.519 0.570 0.356 0.438 0.580 0.580
2350 0.671 0.640 0.655 0.524 0.498 0.511 0.456 0.497 0.475 0.584 0.621 0.602 0.585 0.585
1700 0.652 0.696 0.673 0.622 0.516 0.564 0.454 0.533 0.490 0.603 0.553 0.577 0.601 0.601

Table 4: Comparison of accuracy quantifiers of different models for detecting different emotions. The upper part of
the table shows performance of the proposed model using NMF technique with different values of (d, r, ρ); while
the middle and bottom parts determine the model accuracy when PCA and LDA techniques are used respectively.
The highest F1 scores of each noise cancellation technique are highlighted.

pendency of emotion detection models using
learning techniques;
• Evaluating the performance of a bag-of-words

multi-layer perceptron applied to the dataset
to extract emotions;
• Applying multi-label prediction to the dataset

and comparing the results with this work,
• Evaluating the effect of text unit size (sen-

tence, paragraph, story) on the accuracy of
sentiment labels; i.e., would there be an advan-
tage in grouping sentences into longer units
(e.g. paragraphs) and assigning a single label
to this longer unit? It seems that a sentence by
itself might not always carry sufficient cues to
disambiguate its emotion, but its surrounding
sentences might give this context.

6 Contributions

We identified a high performing approach to emo-
tion recognition in narrative text (Kim et al., 2010)
and carefully reimplemented and characterized the
technique, exploring a design space of three dif-
ferent noise cancellation or dimension reduction
techniques (NMF, PCA, or LDA), exploring var-
ious hyper-parameter settings. Our experiments
indicated that NMF performed best, with an overall

F1 of 0.809. In the course of our investigation we
clarified numerous implementational issues of the
work reported by Kim et al. (2010), as well as made
some improvements to WordNet Affect (WNA),
one of the language resources used in the system,
by adding new terms manually and using Word-
net similarity relations. This work suggests several
promising future directions for improving the work,
including careful annotation of a larger corpus, and
augmenting WNA or similar lexicons to provide
improved coverage of emotion terms. We release
our code and data to enable future work4.
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Hervé Abdi and Lynne J. Williams. 2010. Princi-

pal component analysis. Wiley Interdisciplinary Re-
views: Computational Statistics, 2:433–459.

Ebba Cecilia Ovesdotter Alm. 2008. Affect in *Text
and Speech. Ph.D. thesis, University of Illinois at
Urbana-Champaign, Urbana-Champaign, IL.

Saima Aman and Stan Szpakowicz. 2008. Using ro-
get’s thesaurus for fine-grained emotion recognition.
In Proceedings of the Third International Joint Con-
ference on Natural Language Processing: Volume-I,
pages 312–318, Hyderabad, India.

Anil Bandhakavi, Nirmalie Wiratunga, P Deepak, and
Stewart Massie. 2014. Generating a word-emotion
lexicon from #emotional tweets. In Proceedings
of the Third Joint Conference on Lexical and Com-
putational Semantics (*SEM 2014), pages 12–21,
Dublin, Ireland.

Anil Bandhakavi, Nirmalie Wiratunga, Deepak Pad-
manabhan, and Stewart Massie. 2017. Lexicon
based feature extraction for emotion text classifica-
tion. Pattern Recognition Letters, 93:133–142.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research, 3(Jan):993–1022.

Christos Boutsidis and Efstratios Gallopoulos. 2008.
SVD based initialization: A head start for non-
negative matrix factorization. Pattern Recognition,
41(4):1350–1362.

Margaret M Bradley and Peter J Lang. 1999. Affec-
tive Norms for English Words (ANEW): Instruction
manual and affective ratings. Technical Report C-1,
The Center for Research in Psychophysiology, Gain-
seville, FL.

Fabio Calefato, Filippo Lanubile, and Nicole Novielli.
2017. EmoTxt: a toolkit for emotion recognition
from text. In Proceedings of the Seventh Interna-
tional Conference on Affective Computing and Intel-
ligent: Interaction Workshops and Demos (ACIIW
2017), pages 79–80, San Antonio, TX.

Rafael A Calvo and Sunghwan Mac Kim. 2013. Emo-
tions in text: Dimensional and categorical models.
Computational Intelligence, 29(3):527–543.

Erik Cambria. 2016. Affective computing and senti-
ment analysis. IEEE Intelligent Systems, 31(2):102–
107.

Erik Cambria, Andrew Livingstone, and Amir Hussain.
2012. The hourglass of emotions. In Anna Es-
posito, Antonietta M. Esposito, Alessandro Vincia-
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Abstract

Current event detection models under super-
vised learning settings fail to transfer to new
event types. Few-shot learning has not been
explored in event detection even though it al-
lows a model to perform well with high gener-
alization on new event types. In this work, we
formulate event detection as a few-shot learn-
ing problem to enable to extend event detec-
tion to new event types. We propose two novel
loss factors that matching examples in the sup-
port set to provide more training signals to the
model. Moreover, these training signals can be
applied in many metric-based few-shot learn-
ing models. Our extensive experiments on the
ACE-2005 dataset (under a few-shot learning
setting) show that the proposed method can im-
prove the performance of few-shot learning.

1 Introduction

Event Detection (ED) is an important task in Infor-
mation Extraction (IE) in Natural Language Pro-
cessing (NLP). Event Detection is the task to detect
event triggers from a given text (e.g. a sentence)
and classify it into one of the event types of interest.
The following sentence is an example of ED:

In 1997, the company hired John D. Idol to take
over as chief executive.

In this example, an ideal event detection sys-
tem should detect the word hired as an event, and
classify it to class of Personnel:Start-Position, as-
suming that Personnel:Start-Position is in the set
of interested classes.

The current works in ED typically employ tra-
ditional supervised learning based on feature en-
gineering (Li et al., 2014; Chen et al., 2017) and
neural networks (Nguyen et al., 2016a; Chen et al.,
2018; Lu and Nguyen, 2018). The main problem
with supervised learning models is that they can
not perform well on unseen classes (e.g. train-
ing a model to classify daily events, then run this

model to classify laboratory operations). As a re-
sult, supervised learning ED can not extend to un-
seen event types. A trivial solution is to annotate
more data for unseen event types, then retraining
the model with newly annotated data. However,
this method is usually impractical because of the
extremely high cost of annotation (Liu et al., 2019).

A human can learn about a new concept with
limited supervision e.g. one can detect and classify
events with 3-5 examples (Grishman et al., 2005).
This motivates the setting we aim for event detec-
tion: few-shot learning (FSL). In FSL, a trained
model rapidly learns a new concept from a few
examples while keeping great generalization from
observed examples (Vinyals et al., 2016). Hence,
if we need to extend event detection into a new
domain, a few examples are needed to activate the
system in the new domain without retraining the
model. By formulating ED as FSL, we can signifi-
cantly reduce the annotation cost and training cost
while maintaining highly accurate results.

In a few shot learning iteration, the model is
given a support set and a query instance. The sup-
port set consists of examples from a small set of
classes. A model needs to predict the label of the
query instance in accordance with the set of classes
appeared in the support set. Typical methods em-
ploy a neural network to embed the samples into a
low-dimension vector space (Vinyals et al., 2016;
Snell et al., 2017), then, classification is done by
matching those vectors based on vector distances
(Vinyals et al., 2016; Snell et al., 2017; Sung et al.,
2018). One potential problem of prior FSL meth-
ods is that the model relies solely on training sig-
nals between query instance and the support set
(Vinyals et al., 2016; Snell et al., 2017; Sung et al.,
2018). Thus, the matching information between
samples in the support set has not been exploited
yet. We believe that this is not an efficient use of
training data because dataset in ED is very small
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(Grishman et al., 2005). Therefore, in this study,
we propose to train an ED model using matching
information (1) between query instance and the sup-
port set and (2) between the samples in the support
themselves. This is implemented by adding two
auxiliary factors into the loss function to constrain
the learning process.

We apply the proposed training signals to differ-
ent FSL models on the benchmark event detection
dataset (Grishman et al., 2005). The experiments
show that the training signal can improve the perfor-
mance of the examined FSL models. To summarize,
our contributions to this work include:

• We formulate event detection as a few-shot
learning problem to extend ED to new event
types and provide a baseline for this new re-
search direction. To our best knowledge, this
is a new branch of research that has not been
explored.

• We propose two novel training signals for FSL.
These signals can remarkably improve the per-
formance of existing FSL models. As these
signals do not require any additional informa-
tion (e.g. dependency tree or part-of-speech),
they can be applied in any metric-based FSL
models.

2 Related work

Early studies in event detection mainly address fea-
ture engineering for statistical models (Ahn, 2006;
Ji and Grishman, 2008; Hong et al., 2011; Li et al.,
2014, 2015) including semantic features and syn-
tactic features. Recently, due to the advances with
deep learning, many neural network architectures
have been presented for ED, e.g. convolutional
neural networks (CNN) (Chen et al., 2015; Nguyen
and Grishman, 2015, 2016; Nguyen et al., 2016b),
recurrent neural networks (RNN) (Liu et al., 2017;
Chen et al., 2018; Nguyen et al., 2016a; Nguyen
and Nguyen, 2018) and graph convolutional neu-
ral networks (GCN) (Nguyen and Grishman, 2018;
Pouran Ben Veyseh et al., 2019). These methods
formulate ED as a supervised learning problem
which usually fails to predict the labels of new
event types.

By transitioning the symbolic event types to de-
scriptive event types in the form of bags of key-
words (Bronstein et al., 2015; Peng et al., 2016; Lai
and Nguyen, 2019), the adaptibility of event detec-
tion can be formed as a supervised-learning prob-
lem. However, these studies have not examined

FSL as we do in this work. One can also address
this problem in zero-shot learning with data gener-
ated from abstract meaning representation (Huang
et al., 2018) or two-stage pipeline ( trigger identifi-
cation and few-shot event classification) based on
dynamic memory network (Deng et al., 2020). A
recent study has employed few-shot learning for
event classification (Lai et al., 2020). Our work is
similar in terms of formulation, however, we con-
sider it in a larger extent of event detection where
the NULL event is also included.

Few-shot learning has been studied early in the
literature (Thrun, 1996). Before the era of the
deep neural network, FSL approaches focused on
building generative models that can transfer priors
across classes. However, these methods are hard
to apply to real applications because they require a
subject-dedicated design such as handwritten char-
acters (Lake et al., 2013; Wong and Yuille, 2015).
As a result, they cannot capture the nature of the
distribution (Salimans et al., 2016). Later stud-
ies, based on deep neural network, proposed met-
ric learning to model the distribution of distance
among classes, (Koch et al., 2015) with many incre-
mental improvements in distance functions such as
cosine similarity (Vinyals et al., 2016), Euclidean
distance (Snell et al., 2017) and learnable distance
function (Sung et al., 2018). Metric-based FSL
presents its advantages in two dimensions. First, it
is based on the well-studied theory in distance func-
tions. Second, the simplicity in architecture and
training processes can encourage its application
in practice. Recently, meta-learning with parame-
ter update strategy is also proposed to enable the
models to learn quickly in few training iterations
(Santoro et al., 2016; Finn et al., 2017).

3 Methodology

Our goal in this work is to formulate ED as a FSL
problem, which has not been done in prior work.
In order to achieve this, this section is divided into
three parts. In the section 3.1 we present the over-
all framework that formulate Event Detection as
an Few-Shot Learning problem. Then, we present
popular models for FSL in the prior work and com-
mon sentence encoders which have been widely
used in ED in section 3.2. Finally, we present two
novel reguarlization technique to further improve
the FSL model for ED in section 3.3.

39



3.1 Event Detection as Few-shot Learning

In few-shot learning, models learn to predict the
label of a query instance x given a support set S (a
set of well-classified instances) and a set of classes
C, which appears in the support set S. Prior studies
in FSL employ N -way K-shot setting, in which
there are N clusters, which represent N classes,
each cluster containsK data points (i.e., examples).

However, this setting is designed for problems
that do not involve the “NULL” class (e.g., image
classification and event classification). In event
detection, the systems need to predict whether a
query instance is an event (positive event type) or
not (negative event type – the “NULL” type) before
it is further classified into one of the classes of
interest. To this end, we propose to extend the N-
way K-shot setting to be N+1-way K-shot setting.
In this setting, the support set contains N clusters
representing N positive event types and 1 cluster
representing the NULL event type. The support set
is denoted as follows:

S ={(s11, a11, t1), . . . , (sK1 , aK1 , t1),
. . .

(s1N , a
1
N , tN ), . . . , (sKN , a

K
N , tN ),

(s1N+1, a
1
N+1, tnull), . . . , (s

K
1 , a

K
N+1, tnull)}

where:

• {t1, t2, · · · tN} is the set of positive labels,
which indicate an event

• tnull a special label for non-event.

• (sji , a
j
i , ti) indicates that the aji -th word in the

sentence sji is the trigger word of an event
mention with the event type ti

3.2 Framework

Follow prior studies in FSL (Gao et al., 2019), we
employ the metric-based FSL framework with three
components: instance encoder, prototype encoder,
and classification module.

3.2.1 Instance Encoder
Given a sentence of L words {w1, w2, · · · , wL}
and the event mention wa, which is the a-th word
of the sentence, we first map discrete words to a
continuous high dimensional vector space to facil-
itate neural network using both pre-trained word
embedding and position embedding as follow:

• In order to capture the syntactic and semantic
of the word itself, we map each word in the
sentence to a single vector using pre-trained
word embedding, following previous studies
in ED (Nguyen and Grishman, 2015). Af-
ter this step, we derive a sequence of vectors
{e1, e2, · · · , eL} where ei ∈ Ru.

• To provide a sense of the relative position of
a word regarding the position of the anchor
word, we further provide position embedding.
It is mapped from the relative distance, i− a,
of the i-th word with respect to the anchor
word, a-th word to a single vector pi ∈ Rv.
We randomly initialize this word embedding
and update the embedding during the training
process.

• Following previous work (Nguyen and Grish-
man, 2015), the final embedding of a word
wi is derived by concatenating word embed-
ding and position embedding mi = [ei, pi] ∈
Ru+v.

Once we get the embedding for the whole sen-
tence E(s) = {m1,m2, · · · ,mL}, we employ a
neural network, denoted as f , to encode the in-
formation of an instance (s, a) of the anchor wa

under the context in the sentence s into a single
vector v = f(E(s), a). In this work, consider the
three following neural network architectures for
this encoding purpose:

• Convolution Neural Network (CNN) (Kim,
2014) encodes the sentence by convolution
operation on k consecutive vectors represent-
ing k-gram. Follow (Nguyen and Grish-
man, 2015), we use multiple kernel sizes
k ∈ {2, 3, 4, 5} to cover the context with 150
filters for each kernel size. To squeeze the in-
formation of the sentence, we apply max pool-
ing to the top convolution layer to get a pooled
vector p. We also introduce local embedding
e[a−w,a+w] with window size w = 2. We con-
catenate pooled vector and local embeddings,
and feed them through multiple dense layer to
get the final representation:

v =W [p, e[a−w,a+w]]

• Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997), at each step i,
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computes a hidden vector hi from the hid-
den vector of the previous step hi−1 and
the current input vector ei. To capture the
context from both sides a word in the sen-
tence, we employ two separate LSTMs run-
ning on forward and backward directions.
Eventually, we can obtain two sequence of
hidden vector {hforward

i , · · · , hforward
L } and

{hbackward
i , · · · , hbackward

L }. Finally, we con-
catenate the a-th vectors, at the position of
the anchor, to form the representation of the
instance:

v = concat(hforward
a , hbackward

a )

• Graph Convolutional Neural Network features
graph convolution (Kipf and Welling, 2017)
on syntactic dependency graph, which allows
the model to access to the nonconsecutive
words based on the connection on the syn-
tactic dependency tree. Following (Nguyen
and Grishman, 2018), we transform the depen-
dency tree into a syntactic graph by making
it an undirected graph and adding node loops.
The hidden vectors hli of the l-th vector is ob-
tained by feeding hidden vectors of the l−1-th
layer through a GCN layer (Kipf and Welling,
2017). The final representation is the hidden
vector in the top layer at the position of the
trigger hLa whereL = 2 is the number of GCN
layers.

3.2.2 Prototype Encoder
This module computes a representative vector,
called prototype, for each class t ∈ T in the sup-
port set S from its instances’ vectors. We employ
two variants of prototype computation.

The first version, proposed in the original Pro-
totypical Network (Snell et al., 2017), considers
all representation vectors are equally important.
To calculate the prototype for a class ti, it aggre-
gates all the representation vectors of the instance
of class ti, and then perform averaging over all
vectors :

ci =
1

K

∑

(sji ,a
j
i ,ti)∈S

f(E(sji ), a
j
i ) (1)

On the other hand, it was claimed that the sup-
porting vectors are conditionally important with
respect to the query (q, p). Thus, the second ver-
sion computes the prototype as a weighted sum of

the supporting vectors. The weights are obtained
by attention mechanism according to the represen-
tational vector of the query as follow:

ci =
∑

(sji ,a
j
i ,ti)∈S

αijf(E(sji ), a
j
i )

where αij =
exp(bij)∑

(ski ,a
k
i ,ti)∈S exp(bik)

;

bij =
∑[

σ(f(E(sji ), a
j
i )� f(E(q), p))

]
;

� denotes the element-wise product.
(2)

3.2.3 Classification Module
This module computes the distribution on all the
event types T of a query instance x = (q, p) using
a distance/similarity function d : R← Rd.

P (y = ti|x, S) =
exp(−d(f(q, p), ci))

∑N
j=1 exp(−d(f(q, p), cj))

(3)
where d is a distance/similarity function, and ci
and cj are the prototype vectors obtained in either
Equation (1) or Equation (2) from the support set
S.

In this paper, we examine three kinds of dis-
tance/similarity function with prototype module to
form 4 model as follow:

• Cosine similarity with averaging prototype as
Matching network (Vinyals et al., 2016).

• Euclidean distance with averaging prototype
as Proto network (Snell et al., 2017).

• Euclidean distance with weighted sum proto-
type as Proto+Att network (Gao et al., 2019).

• Learnable distance function with averaging
prototype as Relation network (Sung et al.,
2018).

3.3 Training Objectives
In the literature, a metric-based FSL model is
typically trained by minimizing the negative log-
likelihood as follow:

Lquery(x, S) = − logP (y = t|x, S) (4)

where x, t, S are query instance, ground truth label,
and support set, respectively.
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Model 5+1-way5-shot 10+1-way 10-shot
Encoder CNN LSTM GCNN CNN LSTM GCNN
Proto 70.85 68.77 71.30 61.43 57.89 62.36
Proto+Att 71.23 69.32 72.76 63.50 59.56 65.08
Relation 54.36 68.33 58.37 41.37 62.85 44.43
Matching 34.71 49.40 32.49 23.05 33.84 21.51

Table 1: F1-score (micro) of models using CNN, LSTM and GCN encoders without proposed losses.

Encoder Model
5+1-way 5-shot 10+1-way 10-shot

Original + Linter + Lintra Original +Linter + Lintra

CNN Proto 70.85 72.07 61.43 62.84
LSTM Proto 68.77 78.09 57.89 72.78
GCN Proto 71.30 71.82 62.36 63.49
CNN Proto+Att 71.23 72.46 63.5 64.38
LSTM Proto+Att 69.32 78.44 59.56 72.94
GCN Proto+Att 72.76 72.92 65.08 66.10

Table 2: F1-score (micro) of models using CNN, LSTM, and GCN. Original columns show the models without
additional training signal. Linter + Lintra columns demonstrate the models with additional inter and intra loss
functions.

This loss function exploits the signal of match-
ing information between the query instance and
the supporting instances. It can work efficiently
in computer vision because the number of sam-
ples in computer vision datasets are typically huge.
However, in NLP tasks, the dataset is commonly
relatively much smaller (e.g. ACE 2005 contains
4000 positive examples). So using this loss func-
tion is not enough to deliver a good system.

Therefore, providing more training signals is cru-
cial to the problem which involves a small dataset.
Fortunately, the support set is a well-classified set
of instances with K examples per class in a total
of N classes. In this paper, we proposed two ways
to exploit this resourceful set as follow:

• Intra-cluster matching: We argue that the rep-
resentational vectors in the same class should
be close to each other. Therefore, we min-
imize the distance between instance in the
same class.

Lintra =

N∑

i=1

K∑

k=1

K∑

j=k+1

mse(vji , v
k
i ) (5)

• Inter-cluster information: We also argue that
the clusters should distribute far away from
each other. Hence, their prototypes are also
distant from the other. Hence, we maximize

the distances between pairs of prototypes.

Linter = 1−
N∑

i=1

N∑

j=i+1

cosine(ci, cj) (6)

In this work, we train our model using a combi-
nation of the loss functions in equations 4, 5,6. We
control the contribution of the additional losses by
two hyperparameters β and γ as follow:

L = Lquery + βL̂intra + γL̂inter (7)

where L̂intra and L̂inter are scaled losses with re-
spect to Lquery, and β and γ are the trade-off pa-
rameters.

4 Experiments

4.1 Data

We use the ACE-2005 dataset to evaluate all of the
models in this study. ACE-2005 is a benchmark
dataset in event detection with 33 positive event
subtypes, which are grouped into 8 event types
Business, Contact, Conflict, Justice, Life, Move-
ment, Personnel, and Transaction. Although the
dataset is split into training, development, and test-
ing sets, we cannot use these splits directly because,
in FSL, the set of event types in the training set and
testing sets are disjoint. Therefore, we further split
these datasets to satisfy three conditions for FSL:
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• The set of event types in the training set T train

are disjoint to those in the development and
the testing set:

T dev ≡ T test;T train ∩ T test = ∅;

• In order to run FSL with the 10-way 10-shot
setting, the set of event subtypes should con-
tain at least 10 subtypes.

• The training set should contain as many sam-
ples as possible.

Based on these criteria, we use all samples be-
longing to 4 event types: Business, Contact, Con-
flict and Justice as the training set. While the rest
(Life, Movement, Personnel and Transaction) are
used for the development and testing sets. We split
the sample by ratio 50:50 in every subtype to en-
sure the balance of the development and the testing
set. Finally, since there are event types that have
less than 15 examples, we eliminate all of these
from the training, development, and testing set.

4.2 Hyper-parameters
We evaluate using 5+1-way 5-shot and 10+1-way
10-shot FSL settings. Although it was seen that the
higher number of classes we have during the train-
ing time, the better performance on testing (Snell
et al., 2017), we avoid feeding all event types in
every iteration during training time. We manage to
sample 20 positive classes (over 21 in the training
set) in each training iteration.

We initialize the embedding vectors with 300-
dimension GLoVe embedding, trained from 6 bil-
lion tokens. We use 50-dimension position embed-
ding and initialize it randomly. These embedding
vectors are updated during training time.

We train Proto, Proto+Att, and Matching using
Stochastic Gradient Decent (SGD) optimizer while
Relation is trained with AdaDelta optimizer be-
cause SGD hardly converges with Relation net-
work. The learning rate is initialized to 0.03 and
decays after every 500 iterations. We trained our
models in 2500 iterations and evaluation at every
200 iterations.

In order to find the best set of β and γ, we do grid
search with with (β, γ) ∈ {0.0, 0.1, 0.2, 0.3}2.

4.3 Result
In this section, we perform our experiment in three
steps:(1) find the best FSL models among Proto,
Proto+Att, Matching, Relation models; (2) evalu-
ate the proposed additional training factors and (3)

analyze the effectiveness of each training factor in
an ablation study.

Table 1 shows the F-scores of four models using
three kinds of sentence encoders on the ACE-2005
dataset under 5+1-way 5-shot and 10+1-way 10-
shot FSL settings without our proposed losses. As
can be seen from the Table 1, the performance
of the models on 5+1-way 5-shot is always bet-
ter than 10+1-way 10-shot because the number of
classes needs to be classified in the 10+1-way set-
ting is almost twice as much of in 5+1-way setting.
Second, we can see that Prototypical-based (Proto
and Proto+Att) models outperform the Matching
network and the Relation network on both FSL
settings. Among Prototypical network models,
Proto+Att is slightly better than Proto with a 0.8%
performance gap in the 10+1-way 10-shot setting.

Most importantly, Table 2 presents the F-scores
of Proto and Proto+A with the proposed loss func-
tions (i.e., Lintra, Linter). As we can see from the
table, the proposed loss functions can significantly
improve the performance of Proto and Proto+Att
models over different encoders (i.e., CNN, LSTM,
and GCN), clearly demonstrating the benefits of the
intra and inter-similarity constraints in this work.

4.4 Ablation Study

In this study, we introduce two penalization factors,
presented in Equations 5 and 6.

Besides the FSL formulation for event detection,
a major contribution in this work involves the two
loss functions Lintra and Linter to improve the rep-
resentation vectors for the models. To evaluate
the contribution of these terms, Table 3 shows the
performance of the FSL models with different com-
binations of loss functions on the development set.
In particular, we focus on the prototypical-based
FSL model on the 5+1-way 5-shot setting in this
analysis (although the similar trends of the perfor-
mance are also observed for the other models and
settings). The “Original” column corresponds to
the models where both Linter and Lintra are not ap-
plied. The other columns, on the other hand, report
the performance of the models when the combina-
tions Linter, Lintra, and Linter+Lintra of the loss
terms are introduced.

It is clear from the table that both loss terms are
important for the FSL models for ED as eliminat-
ing any of them would significantly hurt the perfor-
mance excepting the Proto+Att model with GCN
encoder. The best performance is achieved with
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Encoder FSL Model Original +Inter +Intra +Intra+Inter
CNN Proto 67.92 68.78 68.83 69.37
LSTM Proto 65.94 65.28 72.07 77.56
GCN Proto 69.28 70.05 69.49 70.11
CNN Proto+Att 69.90 70.23 70.06 70.43
LSTM Proto+Att 67.26 67.48 72.00 77.81
GCN Proto+Att 71.65 71.75 71.56 71.18

Table 3: Ablation study: F1-score (micro) of Prototypical-based models on dev set with 5+1-way 5-shot FSL
setting

both loss terms are applied, thus testifying to the
benefits of the proposed regularization techniques
in this work.

5 Conclusion

In this paper, we address the problem of extending
event detection to unseen event types through few-
shot learning. We investigate four metric-based
few-shot learning models with different encoder
types (CNN, LSTM, and GCN). Moreover, we
propose two novel loss functions to provide more
training signals to the model exploiting domain-
matching information in the support set. Our exten-
sive experiments show that our method increases
the efficiency of using training data, resulting in bet-
ter classification performance. Our ablation study
shows that both intra-cluster matching and inter-
cluster matching contributes to the improvement.
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Abstract

Current story writing or story editing sys-
tems rely on human judgments of story qual-
ity for evaluating performance, often ignoring
the subjectivity in ratings. We analyze the ef-
fect of author and reader characteristics and
story writing setup on the quality of stories in a
short storytelling task. To study this effect, we
create and release STORIESINTHEWILD, con-
taining 1,630 stories collected on a volunteer-
based crowdsourcing platform. Each story is
rated by three different readers, and comes
paired with the author’s and reader’s age, gen-
der, and personality.

Our findings show significant effects of au-
thors’ and readers’ identities, as well as writ-
ing setup, on story writing and ratings. No-
tably, compared to younger readers, readers
age 45 and older consider stories significantly
less creative and less entertaining. Readers
also prefer stories written all at once, rather
than in chunks, finding them more coherent
and creative. We also observe linguistic differ-
ences associated with authors’ demographics
(e.g., older authors wrote more vivid and emo-
tional stories). Our findings suggest that reader
and writer demographics, as well as writing
setup, should be accounted for in story writing
evaluations.

1 Introduction

Reading or writing a story is an inherently sub-
jective task that depends on the experiences and
identity of the author, those of the reader, and
the structure of the writing process itself (Morgan
and Murray, 1935; Conway and Pleydell-Pearce,
2000; Clark et al., 2018). Despite this subjectivity,
many natural language processing tasks treat hu-
man judgments of story quality as the gold stan-
dard for evaluating systems that generate or revise
text. In creative applications, such as machine-in-
the-loop story writing systems (Clark et al., 2018),

it is important to understand sources of variation
in judgments if we hope to have reliable, repro-
ducible estimates of quality.

In this work, we investigate how an author’s and
reader’s identity, as well as overall writing setup,
influence how stories are written and rated. We in-
troduce and release STORIESINTHEWILD,1 con-
taining 1,630 short stories written on a volunteer-
based crowdsourcing platform, paired with au-
thor demographics and personality information.
For each story, we obtain three sets of ratings
from third-party evaluators, along with their de-
mographics and personality.

Our findings confirm that author identity, reader
identity, and writing setup affect story writing and
rating in STORIESINTHEWILD. Notably, people
in general preferred stories written in one chunk
rather than broken up into multiple stages. Raters
age 45 and over generally rated stories as less cre-
ative, more confusing, and liked them less com-
pared to raters under age 45. Additionally, we
find that, in our corpus, men were more likely than
women to write about female characters and their
social interactions, and compared to younger au-
thors, older authors wrote more vivid and emo-
tional stories. We also find evidence of reader and
author personality, and their interaction, influenc-
ing ratings of story creativity.

Our new dataset and results are first steps in an-
alyzing how writing setup and author and reader
traits can influence ratings of story quality, and
suggest that these characteristics should be ac-
counted for in human evaluations of story quality.

2 Background and Research Questions

To guide our study, we craft several research ques-
tions informed by existing literature on story writ-
ing and the relationship between author identity

1http://tinyurl.com/StoriesInTheWild
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and language, outlined below.

RQ1 How are author gender, age, and person-
ality traits associated with language variation in
stories? A wealth of work has shown an associ-
ation between an author’s mental states and their
language patterns. Variation in pronoun usage,
topic choices, and narrative complexity correlates
strongly with the author’s age and gender (Nguyen
et al., 2016) and moderately with their personal-
ity (Yarkoni, 2010). We aim to confirm these dif-
ferences in a prompted storytelling setting, since
most work has focused on self-narratives (e.g., di-
aries and social media posts; Pennebaker and Sea-
gal, 1999; Hirsh and Peterson, 2009; Schwartz
et al., 2013), with the exception of the essays stud-
ied by Pennebaker et al. (2014).

RQ2 How are rater gender, age, and personal-
ity traits associated with variation in story quality
ratings? Ratings of stories are often only used to
evaluate a story writing system’s output (e.g., Fan
et al., 2018; Yao et al., 2019) or to develop au-
tomatic evaluation metrics (e.g., Hashimoto et al.,
2019; Purdy et al., 2018), ignoring the rater’s iden-
tity. However, prior work has shown differences in
crowdsourcing worker’s behavior or annotations
based on task framing (Levin et al., 2002; Au-
gust et al., 2018; Sap et al., 2019) or the annota-
tor’s own identity or experiences (Breitfeller et al.,
2019; Geva et al., 2019). We seek to confirm and
characterize these differences in our story rating
task. As a follow-up to RQ2, we also investi-
gate the interaction between author and rater de-
mographics on story ratings.

RQ3 Is writing setup associated with different
ratings of story quality? Past work has investi-
gated story writing as a turn-taking game (Clark
et al., 2018) or as a distributed activity (Teevan
et al., 2016) rather than a single event. We in-
vestigate whether writing setup (writing a story all
at once or sentence-by-sentence) impacts overall
story quality.

3 STORIESINTHEWILD Collection

We introduce and release STORIESINTHEWILD,
containing 1,630 short stories (§3.1) paired with
author demographics and personality informa-
tion.2 We pair these stories with third-party rat-

2Each stage of data collection was approved by the au-
thors’ institutional review board (IRB).

total written in...
full seq.

st
at

s

# stories 1630 792 838
avg. # tokens 592 583 600
avg. writing time (min.) 9.30 9.98 8.72
avg. key press time (sec.) 0.96 1.09 0.83

ra
tin

gs

coherent 4.52 4.78 4.27 ∗∗

confusing 3.44 3.19 3.67 ∗∗

creative 4.00 4.09 3.90 ∗

entertaining 3.95 4.10 3.81 ∗∗

grammatical 4.22 4.39 4.06 ∗∗

liked 3.89 4.05 3.73 ∗∗

Table 1: Statistics in STORIESINTHEWILD for all sto-
ries, as well as broken down by writing setup (full:
written in full, seq.: written sequentially). Discussed
in §4.3, rating differences are significant after Holm-
correcting for multiple comparisons (∗: p < 0.01, ∗∗:
p < 0.001), but story length (# tokens), writing time,
and writing speed (key press time) are not.

ings (§3.2) to evaluate the effect of writing setup
and author identity on story writing.

3.1 Crowdsourcing Stories

To construct STORIESINTHEWILD, we first col-
lected 1,630 written stories using a volunteer-
based online study platform, LabintheWild (Rei-
necke and Gajos, 2015).3 Following best prac-
tices in recruiting on LabintheWild (August et al.,
2018), we advertised our study as a way for par-
ticipants to learn more about themselves by seeing
how a simple pronoun-based classifier can predict
their personality based on their story writing (de-
scribed in Appendix A.1).

We first collected participants’ identity and de-
mographics (age, gender, race, and education
level). Then, participants chose the topic of their
story by selecting one of five preview thumbnails,
each representing one of five image strips that par-
ticipants subsequently used as prompts for their
story. We selected the images from the Visual Sto-
rytelling dataset of Flickr images (Huang et al.,
2016) and a cartoon dataset (Iyyer et al., 2017).
All images are shown in Figure 1 in Appendix A.

Writing setup After choosing a topic, all au-
thors are presented with a five image sequence
corresponding to the topic they chose to write
about. We then randomly assign authors to one
of two writing setups: (1) all at once or (2) se-

3LabintheWild recruits study participants using intrinsic
motivations (as opposed to monetary compensation, cf. Ama-
zon Mechanical Turk), such as the the desire to compare one-
self to others or to support science (Jun et al., 2017).
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quential, both shown in Figure 2 in Appendix A.
In (1), participants simply write a full 5–10 sen-
tence story. In (2), participants are instructed to
write five sets of 1–2 sentences in an accordion of
text boxes, each box corresponding to an image
in the strip. The second writing setup is inspired
by machine-in-the-loop turn-taking for story writ-
ing (Clark et al., 2018). Once each text box is sub-
mitted, participants can no longer edit that text.

In both setups, participants are instructed to tell
a story rather than just describe the images, to
make sure their story has a clear beginning, mid-
dle, and end, and to use correct punctuation. The
task took around 9 minutes in both conditions.

Following the story writing, participants can
optionally fill out the Ten Item Personality Mea-
sure (TIPI; Gosling et al., 2003), a short personal-
ity questionnaire based on the Five Factor Model
(FFM; Costa Jr and McCrae, 2008).4

Author demographics Of the authors in STO-
RIESINTHEWILD, 57% were women and 40%
men (3% declined to state their gender), with an
average age of 25±12 years and an average of
14.30±4.20 years of education including primary
school. Of the authors, 56% were white, 28%
Asian, and 3% African-American (13% selected
another ethnicity/race); we did not restrict partic-
ipation to any specific country. 1,133 (70%) au-
thors took the personality questionnaire.

3.2 Rating Stories

We create an Amazon Mechanical Turk task to
obtain quality ratings for each of the stories col-
lected in our previous task. For each story, we ask
U.S.-based workers to rate stories on 6 dimensions
(listed in Table 1), using a 7-point Likert scale.5

Those dimensions include 5 fine-grained quality
dimensions (e.g., grammaticality, coherence), as
well as an overall impression of the story (“I liked
this story”). Each worker also optionally filled out
their demographics information (age, race, gender,
education level). Additionally, as a measure of in-

4The FFM delineates five dimensions of personality
(openness to experience, conscientiousness, extraversion,
agreeableness, neuroticism), each represented as a con-
tinuous score. For more details, we refer the reader
to http://en.wikipedia.org/wiki/Big_Five_
personality_traits.

5To ensure the quality of responses, we restrict the task to
workers with 99% or above approval rate and at least 1,000
HITs approved. Additionally, we ask that workers write out
a short piece of feedback to improve the story, to encourage
them to think critically while rating stories.

tellect and creativity, workers filled out the four
openness items from the Mini-IPIP Big 5 person-
ality scale (Donnellan et al., 2006).

Rater demographics 56% of our raters were
women and 42% were men. 79% identified as
white, 6% as African-American, and 6% as Asian.
On average, their age was 40±12 years, and they
had 15±3 years of education, including primary
school.

4 Analyses

We investigate the effects of author and rater char-
acteristics on the story’s language and ratings.
Unless otherwise specified, we only consider the
male and female gender labels6 and use a continu-
ous representation of age and personality. We also
explore the impact the writing setup—whether au-
thors wrote stories all at once or in sequential
chunks—has on story ratings.7

Note that our findings are simply measuring
associations between aggregate categories (e.g.,
number of pronouns used, authors over age 45)
and should not be interpreted as applying to in-
dividual data points with specific contexts.

4.1 Author Identity (RQ1)

To analyze which types of words are associated
with different demographic identities, we extract
psychologically relevant linguistic categories from
stories, using the Linguistic Inquiry Word Count
(LIWC; Pennebaker et al., 2015). For each LIWC
category, we compute a linear regression model on
the z-scored features, controlling for writing setup
and topic choice. We only report regression coef-
ficients (βs) that are significant after Holm correc-
tion for multiple comparisons (Holm, 1979).

Gender, age We find that the author’s age, gen-
der, and personality correlate with differential us-
age of linguistic categories, controlling for image
choice and writing setup.8 Specifically, we find
that men used more personal pronouns (|β| =
0.30, p < 0.001) and social words (|β| = 0.28,

6Gender is a social construct that goes beyond the man-
woman binary (Lorber et al., 1991); however, a more com-
plex analysis is not possible given the limited number of in-
dividuals not identifying as male or female in our data.

7We exclude author and reader education from our find-
ings, as we did not find any signification effects for those
variables.

8See Appendix B.1 for associations between author de-
mographics and image choice.
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p < 0.001) to describe characters (specifically, fe-
male characters, |β| = 0.33, p < 0.001), com-
pared to women. Controlling for gender effects,
our findings show that older authors wrote more
emotional and positive stories (|β| = 0.05 and
|β| = 0.04, respectively, p < 0.05) that contained
more visual descriptions (|β| = 0.05, p < 0.001),
whereas younger authors used past tense more
(|β| = 0.04, p < 0.05).

Personality We find significant correlations be-
tween LIWC categories and an author’s personal-
ity traits, controlling for age and gender (see Ap-
pendix B.2 for the full set of results). Notably,
highly conscientious authors focused on character
motivations (|β| = 0.12, p < 0.05) and used a
more positive tone (|β| = 0.14, p < 0.01), com-
pared to low-conscientiousness authors who wrote
stories that tended to be more negative (|β| =
0.11, p < 0.1). Finally, less agreeable authors
used more swearing (|β| = 0.15, p < 0.1), and
more differentiating words (|β| = 0.10, p < 0.1)
compared to more agreeable authors.

4.2 Rater Identity (RQ2)

We examine the association between rater traits
and their story ratings using linear regressions
controlling for image type and writing setup (simi-
lar to §4.1). We also investigate interaction effects
with author demographics, and show the full re-
sults of our regressions in Appendix B.3.

Gender, age For age, we first noticed that older
workers rated stories noticeably more negatively
than younger workers (e.g., r = −.08, p < .001
for both the like and entertaining ratings). When
inspecting the data we noticed this trend was most
defined for raters age 45 or older, and so we per-
form our analyses below using a binarized age
variable, splitting raters as either 45 or older (N =
921) and younger than 45 (N = 1916).

Our findings indicate that, compared to younger
raters, raters of age 45 and older liked the sto-
ries significantly less (|β| = 0.42, p < 0.001),
and rated them as substantially less entertaining
(|β| = 0.39, p < 0.001), less creative (|β| = 0.25,
p < 0.05), more confusing (|β| = 0.27, p < 0.05),
and less grammatical (|β| = 0.30, p < 0.05). In-
terestingly, there was no significant association be-
tween annotator gender and story ratings.

Personality Openness to experience is often
linked to creativity (McCrae, 1987), so we ex-

plore how ratings of creativity are associated with
rater and author openness to experience person-
ality scores. We find significant correlations be-
tween story ratings and rater openness to expe-
rience. Specifically, raters with higher openness
to experience thought stories were generally more
creative (|β| = 0.38, p < 0.05) and less con-
fusing (|β| = 0.64, p < 0.001). Additionally,
authors with higher openness scores wrote sto-
ries that were rated more creative (|β| = 0.35,
p < 0.1)

Author-Rater Identity Interactions

We also investigate story ratings through the lens
of author and rater demographics to see if any
shared traits across raters and authors were asso-
ciated with rater preferences.

While both reader and writer openness to ex-
perience were associated with significantly higher
ratings of creativity, the interaction between the
two was negative (|β| = 0.50, p < 0.1), meaning
that as writer and reader openness to experience
increased, the reader’s rating of the story’s creativ-
ity actually decreased. No other interactions (e.g.,
age, gender) were significant in our sample.

4.3 Differences in writing setup (RQ3)

We quantify the differences in ratings for our two
writing setups. We average the ratings for each
story, and report differences in Table 1 using Co-
hen’s d. We find that stories written in full are
rated to have higher quality across all dimensions,
compared to stories written sequentially.

We also find that certain story topics were pre-
ferred over others (F = 26.17, p < 0.001).
Specifically, stories written about the dog prompt
were liked significantly more than others (p <
0.001), and those about the jail prompt signifi-
cantly less (p < 0.001).

5 Conclusion

In this study we find that differences in author
characteristics are associated with linguistic dif-
ferences in stories and that rater characteristics
are associated with differences in ratings. For au-
thors, men were more likely than women to write
about female characters and their social interac-
tions, and compared to younger authors, older
authors wrote more vivid and emotional stories.
Raters preferred stories written all at once rather
than broken up into multiple stages, and raters age
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45 and older rate stories significantly lower than
raters under age 45. We release our dataset, STO-
RIESINTHEWILD, containing 1,630 stories with
quality ratings and anonymized author and rater
demographics.

Our results suggest that author and reader char-
acteristics (e.g., demographics, personality) could
explain variations in story writing evaluations.
While work has shown that some study designs are
more robust against this variation, (e.g., by rank-
ing instead of rating Yannakakis and Martı́nez,
2015), rater differences could still lead to varia-
tion in annotations. We recommend that evalua-
tions include some ability to collect characteris-
tics, such as a short demographics and personality
questionnaire, in order to assess any influence of
these variables.

Furthermore, future work could explore alter-
native ways of collecting author and reader char-
acteristics during evaluations. While demographic
questionnaires are common and short (e.g., to col-
lect gender and age would require two questions),
full personality questionnaires are time consum-
ing, asking multiple questions for each charac-
teristic. Study designers could instead use re-
duced questionnaires, such as the ten item person-
ality inventory (TIPI; Gosling et al., 2003). Alter-
natively, focusing on fewer, more highly trained
raters—that represent a diverse set of demograph-
ics and personality—could reduce the cost of col-
lecting many rater demographics. Finally, future
work should investigate whether annotator vari-
ance might be better captured with psychological
factors related to reading (e.g., propensity for lik-
ing long sentences or fiction) rather than stable
traits such as personality or demographics.

Our results that author personality and gen-
der were associated with topic selection and story
writing also suggest that studies could leverage
the behavior of participants to predict personal-
ity characteristics. While these results are not yet
strong enough to provide robust measures of per-
sonality or demographics, future studies could ex-
plore how to leverage these associations to pre-
dict author characteristics in story writing or other
writing evaluations rather than relying on ques-
tionnaires.
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and Franciska de Jong. 2016. Computational soci-
olinguistics: A survey. Computational linguistics,
42(3):537–593.

James W Pennebaker, Roger J Booth, Ryan L Boyd,
and Martha E Francis. 2015. Linguistic inquiry and
word count: LIWC 2015.

James W Pennebaker, Cindy K Chung, Joey Frazee,
Gary M Lavergne, and David I Beaver. 2014. When
small words foretell academic success: The case of
college admissions essays. Public Library of Sci-
ence (PloS) one, 9(12).

James W Pennebaker and Janel D Seagal. 1999. Form-
ing a story: the health benefits of narrative. Journal
of Clinical Psychology, 55(10):1243–1254.

Christopher Purdy, Xinyu Wang, Larry He, and
Mark O. Riedl. 2018. Predicting generated story
quality with quantitative measures. In The Artifi-
cial Intelligence for Interactive Digital Entertain-
ment Conference.

Katharina Reinecke and Krzysztof Z Gajos. 2015.
Labinthewild: Conducting large-scale online experi-
ments with uncompensated samples. In Proceedings
of the ACM on Human-Computer Interaction, pages
1364–1378. ACM.

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi,
and Noah A Smith. 2019. The risk of racial bias in
hate speech detection. In Association of Computa-
tional Linguistics.

Andrew Schwartz, Johannes Eichstaedt, Margaret
Kern, Lukasz Dziurzynski, Stephanie Ramones,
Megha Agrawal, Achal Shah, Michal Kosinski,
David Stillwell, Martin EP Seligman, et al. 2013.
Personality, gender, and age in the language of so-
cial media: The open-vocabulary approach. Public
Library of Science (PloS) one, 8(9).

Jaime Teevan, Shamsi T Iqbal, and Curtis Von Veh.
2016. Supporting collaborative writing with micro-
tasks. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, pages
2657–2668.

Georgios N Yannakakis and Héctor P Martı́nez. 2015.
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(a) Dog

(b) Jail

(c) Snow

(d) Park

(e) Marathon

Figure 1: Prompts used in the story writing stage of our data collection.

A STORIESINTHEWILD Collection

We provide additional details about our data
collection process, including the image prompts
shown to authors (Figure 1) and the writing setups
(Figure 2).

A.1 Motivating LabintheWild authors

Since LabintheWild is a volunteer-based crowd-
sourcing platform, we design our task such that
participants can learn about their personality
through story writing as a motivation. The study
was advertised on the front page of LabintheWild
and posted on social media to recruit participants.

Once a participant finishes their story, we com-
pute their personality estimate (using the Five Fac-
tor Model) based on their story language. Specif-
ically, we extract their pronoun usage using the
pronoun categories in LIWC (Pennebaker et al.,
2015), and predict personality scores using the co-
efficients from Schwartz et al. (2013). At the end
of the task, we display their personality predic-
tions along with short descriptions of which trait
is the most present in their writing (i.e., the trait
whose score has the highest magnitude).

Optionally, participants could take a short per-
sonality questionnaire (TIPI; Gosling et al., 2003)
before seeing their writing-based personality re-

sults. Those who answered these questions
could then see their questionnaire-based and their
writing-based personality estimates at the end of
the task. The end of the task also debriefs par-
ticipants, explaining the goal of the study and re-
searcher contact information. The debriefing in-
formation also includes disclaimers about the per-
sonality scores computed from story writing and
reiterates that the results should not be used for
clinical or diagnostic purposes.

B Analyses

We present further details of our demographic
analyses, both between the author demographics
and their language use (§B.2) and between the au-
thor and reader demographics (§B.3).

B.1 Author demographics and topic choice
To ensure the validity of our other analyses, we
examine whether an author’s identity was associ-
ated with their choosing one of the five topics (Fig-
ure 1). We find that only an author’s agreeable-
ness affected their choice of image prompt, with
highly agreeable authors preferring the dog story
(Cohen’s d = 0.30, p < 0.001; Figure 1a) and
low agreeableness authors preferring the jail story
(d = 0.41, p < 0.001; Figure 1b). Other demo-
graphic variables were comparable for every im-
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(a) (b)

Figure 2: Writing interfaces for the crowdsourcing study using the jail cartoon. (a) is all-at-once interface and (b)
is the accordion interface. For (b), participants could see all images at the top, but had to write 1-2 sentences about
each image separately though an accordian of text boxes.

age prompt (as measured by one-way ANOVAs.)

B.2 Linguistic signal of author demographics

As described in §4.1, we first extract language cat-
egories from stories using the LIWC (Pennebaker
et al., 2015) lexicon. Then, we use a linear regres-
sion model to compute the association between the
category and the author’s demographics, using z-
scored LIWC features for easier interpretation of
the regression coefficients (βs).

Our findings, outlined in Table 2, show that an
author’s identity and personality are somewhat as-
sociated with the types of stories they tell (con-
trolling for the type of image prompt they used).
Men focused on describing characters (pronoun,
social), specifically female characters, whereas
women displayed more hierarchical logical story-
telling (Analytic; Pennebaker et al., 2014). Con-
trolling for gender, we find that older authors
wrote more vivid stories with more emotional tone
(Tone, Exclam), more friendship words, and more
visual descriptions (percept). In contrast, younger
authors wrote in a more past-focused way.

Controlling for age and gender, we find effects
of the author’s agreeableness and conscientious-
ness personality traits on the types of language
used in stories. We don’t see significant effects on
the extraversion, openness, or neuroticism scales,
likely due to our small sample size of 1.6k (e.g.,
compared to the 75k users in Schwartz et al.,
2013). Shown in Table 2, less conscientious au-
thors wrote more negative stories, whereas more
conscientious authors were more positive and fo-

cused on character motivations (drives, reward).
Less agreeable authors used more swear words.

B.3 Rater and author interaction
As explained in §4.2, we analyze how rater and au-
thor traits relate to story ratings. We run linear re-
gression models using story ratings as dependent
variables and rater demographics and personality
traits as independent variables. We include author
demographics and interaction features in these re-
gression models to see if any shared traits across
raters and authors were associated with rater pref-
erences. As in all previous analyses, we include
story and image type in each model as controlling
variables. We report p-values and β coefficients
for each regression feature. Full details on the re-
gression results are in Table 3.
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gender β age β agreeableness β conscientiousness β

Analytic 0.228∗∗ n.s. n.s. n.s.
Tone n.s. 0.047∗ n.s. 0.144∗∗

function -0.192∗ n.s. n.s. n.s.
pronoun -0.224∗∗ n.s. n.s. n.s.
ppron -0.292∗∗∗ n.s. n.s. n.s.
you n.s. 0.037∗ n.s. n.s.
shehe -0.191† n.s. n.s. n.s.
conj -0.263∗∗∗ n.s. n.s. n.s.
verb n.s. -0.034† n.s. n.s.
number n.s. -0.033† n.s. n.s.
posemo n.s. 0.04∗ n.s. n.s.
negemo n.s. n.s. n.s. -0.115†

sad n.s. -0.035† n.s. n.s.
social -0.283∗∗∗ n.s. n.s. n.s.
friend n.s. 0.056∗∗∗ n.s. n.s.
female -0.334∗∗∗ n.s. n.s. n.s.
differ -0.191∗ n.s. -0.097† n.s.
percept n.s. 0.051∗∗∗ n.s. n.s.
see n.s. 0.04∗∗ n.s. n.s.
hear n.s. 0.036∗ n.s. n.s.
drives n.s. n.s. n.s. 0.116∗

reward n.s. n.s. n.s. 0.101†

focuspast -0.184∗ -0.038∗ n.s. n.s.
leisure n.s. 0.036† n.s. n.s.
swear n.s. n.s. -0.155† n.s.
Exclam n.s. 0.076∗∗∗ n.s. n.s.

Table 2: Results of our LIWC analyses, showing β coefficients between usage of each category with the author’s
gender, age (gender-controlled), personality (age- and gender-controlled). We additionally control for topic choice.
Gender is coded 0 for men, 1 for women. Only results that are significant after applying Holm-correction are shown
(n.s.:p > 0.1;†: p < 0.1; ∗: p < 0.05; ∗∗: p < 0.01; ∗∗∗: p < 0.001). Extraversion, Opennness, and Neuroticism
are omitted since there were no significant correlations for those traits (likely due dearth of data).

Traits Like Creative Coherent Confusing Entertaining Grammatical

Rater Age (45+) -0.42∗∗∗ -0.25∗ -0.37∗∗∗ 0.27∗ -0.39 ∗∗∗ -0.30 ∗

Author Age (45+) n.s. n.s. n.s. n.s. n.s. n.s.
Rater Age:Author Age n.s. n.s. n.s. n.s. n.s. n.s.
Rater Gender (Woman) n.s. n.s. n.s. n.s. n.s. n.s.
Author Gender (Woman) n.s. n.s. n.s. n.s. n.s. n.s.
Rater Gender:Author Gender n.s. n.s. n.s. n.s. n.s. n.s.
Rater Openness n.s. 0.38∗ n.s. -0.64∗∗∗ n.s. n.s.
Author Openness n.s. 0.35† n.s.. n.s. n.s. n.s.
Rater Openness:Author Openness n.s. -0.50† n.s.. n.s. n.s. n.s.

Table 3: Table with regression results for associations between rater and author traits and story ratings. Corrected
for multiple hypothesis testing. (n.s.:p > 0.1;†: p < 0.1; ∗: p < 0.05; ∗∗: p < 0.01; ∗∗∗: p < 0.001).
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Abstract

We show that the count-based Script Induc-
tion models of Chambers and Jurafsky (2008)
and Jans et al. (2012) can be unified in a gen-
eral framework of narrative chain likelihood
maximization. We provide efficient algorithms
based on Association Rule Mining (ARM) and
weighted set cover that can discover interest-
ing patterns in the training data and combine
them in a reliable and explainable way to pre-
dict the missing event. The proposed method,
unlike the prior work, does not assume full
conditional independence and makes use of
higher-order count statistics. We perform the
ablation study and conclude that the inductive
biases introduced by ARM are conducive to
better performance on the narrative cloze test.

1 Introduction

The goal of this paper is to demonstrate how the
efforts in Script Induction (SI), up until recently
dominated by statistical approaches (Chambers
and Jurafsky, 2008; Jans et al., 2012; Pichotta
and Mooney, 2014; Rudinger et al., 2015a,b), can
be productively framed and extended as a special
case of Association Rule Mining (ARM), a well-
established problem in Data Mining (Agrawal et al.,
1993, 1994; Han et al., 2000).

We start by introducing SI and ARM and then
demonstrate a unification under a general chain
likelihood maximization framework. We discuss
how the existing count-based SI models tackle this
maximization problem using naı̈ve Bayes assump-
tions. We provide an alternative: mining higher-
order count statistics using ARM and picking the
most reliable rules using the weighted set cover
algorithm. We validate the proposed approach
and demonstrate improved performance over other
count-based approaches. We conclude with a dis-
cussion on the implications and potential exten-
sions of the proposed framework.

ARM term SI term

Transaction t Narrative chain
Itemset I Co-occurring events
sup({i1, i2}) C(i1, i2)

int({a} → {e}) P (a|e) = C(a,e)
C(∗,e)

sup(I), |I| > 2 Eq. 5
int(A→ {e}), |A| > 1 Eq. 12

Table 1: Mapping between ARM and Count-based SI
terminology. Bolded are contributions of this paper.
Namely, we make use of frequent itemsets and inter-
esting rules, or higher-order count statistics that can be
efficiently mined and used in the narrative cloze test.

Our intent in this work is not to establish new
state of the art results in the area of SI. Rather, our
primary contribution is retrospective, drawing a
connection between a sub-topic in Computational
Linguistics (CL) with a major pre-existing area of
Computer Science, i.e., Data Mining. In the case
one approached SI through counting co-occurrence
statistics, then the existing tools of ARM lead nat-
urally to solutions that had not been previously
considered within CL.

2 Background

2.1 Association Rule Mining

ARM is a prevalent problem in Data Mining, in-
troduced by Agrawal et al. (1993). The task is
often referred to as market basket analysis due to
its widespread usage for discovering interesting
patterns in consumer purchases. The applicabil-
ity of ARM extends far beyond this specific sce-
nario, where examples of ARM usage for NLP
applications include detecting annotation incon-
sistencies (Novák and Razı́mová, 2009), discov-
ering strongly-related events (Shibata and Kuro-
hashi, 2011), adding missing knowledge to the KB
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(Galárraga et al., 2013), as well as understanding
clinical narratives (Boytcheva et al., 2017).

ARM aims to extract interesting patterns from a
transactional database D. A transaction is a set of
items, and a non-empty subset of a transaction is
called an itemset. We define support as the number
of transactions we observe an itemset I in:

sup(I) = |{t|t ∈ D, I ⊆ t}|. (1)

We say that an itemset I is frequent, if its support
(on a given database D) exceeeds a user-defined
threshold tsup: sup(I) ≥ tsup.

A pair of itemsets A,B is called a rule if A ∩
B = ∅ and is denoted as A → B. We say that a
rule A → B is interesting if 1) both A and B are
frequent, 2) the interestingess of the rule exceeds
a user-defined threshold tint: int(A → B) ≥ tint.
The definition of the interestingness function int(·)
is problem-specific.

ARM is thus concerned with:

1. mining frequent itemsets from a transactional
database,

2. discovering interesting rules from frequent
itemsets.

2.2 Script Induction

The concept of script knowledge in AI, along with
early knowledge-based methods to learn scripts
were introduced by Minsky (1974); Schank and
Abelson (1977); Mooney and DeJong (1985).

With the rise of statistical methods, the next gen-
eration of algorithms made use of co-occurrence
statistics and distributional semantics for script
learning (Chambers and Jurafsky, 2008, 2009; Jans
et al., 2012; Pichotta and Mooney, 2014). Our
primary focus is on drawing connections between
ARM and this body of work.

Following Chambers and Jurafsky (2008), we de-
fine a narrative chain as “a partially ordered set of
narrative events that share a common actor”, where
the partial ordering typically represents temporal
or causal order of events, and a narrative event is
“a tuple of an event and its participants, represented
as typed dependencies”. Formally, we define a nar-
rative event e := (v, d), where v is a verb lemma,
and d is a dependency arc between the verb and the
common actor (dobj or nsubj). An example of a
narrative chain is given in Figure 1.

Figure 1: Graphical depiction of a Prosecution narra-
tive chain learned by Chambers and Jurafsky (2008).
Arrows indicate partial temporal ordering.

SI is thus concerned with:

1. automatic mining of commonly co-occurring
sets of narrative events from text,

2. partially ordering those sets.

The narrative cloze test (Chambers and Jurafsky,
2008) is a standard extrinsic evaluation procedure
for Task 1 of SI. In this test, a sequence of narrative
events is automatically extracted from a document,
and one event is removed; the goal is to predict
the missing event. Formally, given an incomplete
narrative chain {e1, e2, . . . , eL} and an insertion
point k ∈ [L], we would like to predict the most
likely missing event ê to complete the chain:

{e1, e2, . . . , ek, ê, ek+1, . . . eL}.

Although the recent work in SI (Rudinger et al.,
2015b; Pichotta and Mooney, 2016; Peng and Roth,
2016; Weber et al., 2018) has focused on a Lan-
guage Modeling (LM) approach for the narrative
cloze test, it is fundamentally different from ARM
in that it makes use of the total ordering of events
and is thus incomparable to ARM, which does not
assume any ordering of events within a chain.

In the next section, we survey two of the most
influential count-based SI models, showing how
each of them is related to ARM.
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3 Count-based Script Induction

3.1 Unordered PMI model

The original model for this task by Chambers and
Jurafsky (2008) is based on the pointwise mutual
information (PMI) between events.

pmi(e1, e2) ∝ log
C(e1, e2)

C(e1, ∗)C(∗, e2)
, (2)

where C(e1, e2) is defined as the number of narra-
tive chains where e1 and e2 both occurred and

C(e, ∗) :=
∑

e′∈E
C(e, e′),

where E is a fixed vocabulary of narrative events.
The model selects the missing event ê in the

narrative cloze test according to the score

ê = argmax
e∈E

L∑

i=1

pmi(e, ei), (3)

assuming that the missing event ê is inserted at the
end of the existing chain (k = L).

From (2) and (3) we observe that

ê = argmax
e∈E

L∑

i=1

pmi(e, ei)

= argmax
e∈E

L∑

i=1

log
C(e, ei)

C(e, ∗)C(∗, ei)

= argmax
e∈E

log
L∏

i=1

C(e, ei)

C(e, ∗)

= argmax
e∈E

log
L∏

i=1

P (ei|e)

= argmax
e∈E

L∏

i=1

P (ei|e). (4)

One way to interpret Eq. 4 is to say that it was
obtained from the following model with the naı̈ve
Bayes assumption:

ê = argmax
e∈E

P (e1, e2, . . . , eL|e). (5)

Importantly, in the above equation, no assump-
tions are made about the order in which events
e1, . . . , eL happened and we treat the narrative
chain as a document, where individual events are
features (the “bag of events” assumption).

3.2 Bigram Probability model
The bigram probability model was proposed by
Jans et al. (2012) and was also used by Pichotta and
Mooney (2014). It utilizes positional information
between co-occurring events. It selects the missing
event ê according to the score

ê = argmax
e∈E

(
k∏

i=1

P (e|ei)
)
·
(

L∏

i=k+1

P (ei|e)
)
,

where k is the insertion point of the missing event
ê, P (e2|e1) = Cord(e1,e2)

Cord(e1,∗) , and counts Cord(e1, e2)

are ordered, e.g. Cord(e1, e2) 6= Cord(e2, e1).
Similarly to the Unordered PMI model, we can

relax the conditional independence assumption.
However, to apply Bayes’ theorem, we would need
(e1, e2) and (e2, e1) to be the same events in the
outcome space, thus we have to assume unordered
counts: C(e1, e2) = Cord(e1, e2) + Cord(e2, e1).
Proceeding with this, we get:

ê = argmax
e∈E

(
k∏

i=1

P (e|ei)
)
·
(

L∏

i=k+1

P (ei|e)
)

= argmax
e∈E

(
L∏

i=1

P (ei|e)
)
· (P (e))k

= argmax
e∈E

log

((
L∏

i=1

P (ei|e)
)
· (P (e))k

)

= argmax
e∈E

logP (e1, . . . , eL|e) + k · logP (e),

(6)

where the last equality is obtained by relaxing the
full conditional independence assumption (simi-
lar to Eq. 5). It follows that the Bigram Proba-
bility model with unordered counts is exactly the
Unordered PMI model augmented with the prior
probability of a missing event multiplied by its po-
sition in a chain. Additionally, note that if k = 1,
this model is equivalent to maximizing the poste-
rior probability of a missing event (rather than the
likelihood of a narrative chain in Eq. 5):

ê = argmax
e∈E

logP (e1, . . . , eL|e) + logP (e)

= argmax
e∈E

log (P (e1, . . . , eL|e) · P (e))

= argmax
e∈E

logP (e|e1, . . . , eL). (7)

Similar to Eq. 5, we view the narrative chain
e1, . . . , en as a set, and thus Eq. 6 is not a language
model in the traditional NLP sense.
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4 SI as ARM

The models defined by Eqs. 5, 6, and 7 are hard to
compute directly: without simplifying assumptions,
they would require huge number of parameters and
large training sets (Jurafsky and Martin, 2019). A
common approach in the existing Count-based SI
work is to assume full conditional independence.
A viable and less restrictive alternative, as we show
in this section, is estimating higher-order count
statistics via mining association rules (Section 4.1)
and combining the most confident rules to predict
the missing event with a simple weighted set cover
algorithm (Section 4.2).

More formally, during the training phase, we
would like to populate the set of interesting rules
S = {S → {e}}, whose antecedents are sub-sets
of the event space S ⊂ E, and consequents are
single events e, e 6∈ S. We denote as Se all the
rules with the same consequent event e.

During the test phase, where we have an incom-
plete narrative chain {e1, e2, . . . , eL} and want to
predict a missing event, we will use rules from Se
to efficiently decompose P (e1, e2, . . . , eL|e) into
P (S1|e) · P (S2|e) · . . . · P (St|e) for each candi-
date event e. Naturally, this means selecting a set
of rules whose antecedents {S1, S2, . . . , St} (we
call this set a candidate cover) are pairwise disjoint
(Si∩Sj = ∅ ∀i, j ∈ [t]), and cover the event chain
fully (S1 ∪ S2 ∪ . . . ∪ St = {e1, e2, . . . , eL}).

To quantify the goodness of the decomposition,
we define a score function for a candidate cover
{S1, . . . , St} and a candidate event e as follows:

score(S1, S2, . . . , St; e) =

t∏

i=1

P (Si|e). (8)

For each candidate event e, we select the best
candidate cover Ŝe according to the score function:

Ŝe = argmax
{S′1,...,S′t}∈Se

score(S′1, . . . , S
′
t′ ; e). (9)

This allows to rewrite Eq. 5 as:

ê = argmax
e∈E

Ŝe. (10)

In Section 4.1, we explain how the set of rules S
is populated from the SI training corpus. In Section
4.2, we provide a randomized algorithm that solves
problem 9 with a provably bounded error.

4.1 Mining interesting rules

As discussed in Section 2.1, in order to discover the
set of interesting rules S, we need to mine frequent
itemsets first. This can be achieved by any frequent
itemset mining algorithm, such as Apriori (Agrawal
et al., 1994), Eclat (Zaki, 2000), or FP-growth (Han
et al., 2000).

Next, for the rule mining step we define an in-
terestingness function int(S → E) over a rule
S → E:

int(S → E) =
sup(S ∪ E)∑

S′
sup(S′ ∪ E)

, (11)

where S′ ranges over all itemsets of size |S| and is
disjoint with E.

Note that int(S → E) provides a maximum
likelihood estimate of P (S|E) for the probability
space defined over sets of events, and sup(·) is a
generalization of the previously defined C(·, ·) for
event sets of size larger than two.

The denominator of (11) requires calculating the
support over exponentially many itemsets. We can
instead use the following simpler formula:

wsupk(I) =
∑

t∈D

(|t| − |I|
k

)
· 1I⊆t,

where D is a transactional database of narrative
event chains.

Lemma 1.
∑
S′

sup(S′ ∪ I) = wsupk(I), where S′

ranges over all itemsets of size k, disjoint with I .

Proof. By definition of support from Eq. 1,

∑

S′
sup(S′ ∪ I)

=
∑

S′
|{t|t ∈ D, S′ ∪ I ⊆ t}|

=
∑

S′
|{t|t ∈ D, (S′ ⊆ t/I) ∧ (I ⊆ t)}|

=
∑

t∈D
1I⊆t ·

∑

S′
1S′⊆t/I

=
∑

t∈D
1I⊆t ·

(|t| − |I|
k

)

= wsupk(I).
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Algorithm 1 Mining interesting rules

1: Input: A set of high-support itemsets I,
2: Output: A set of interesting rules S.
3: Initialization: S = ∅
4: for I ∈ I do
5: for e ∈ I do
6: S = I\{e}
7: if int(S → {e}) ≥ tint then
8: S = S ∪ {S → {e}}
9: end if

10: end for
11: end for
12: Return S.

Our intent is to use the above interestingness
function to score rules from S that have a single
event as a consequent, and thus Eq. 11 can be
further simplified:

int(S → {e}) = sup(S ∪ {e})
wsup|S|({e})

. (12)

Assuming that for each rule S → {e} the an-
tecedent is bounded in size and small, we can pre-
compute wsupk({e}) for each e ∈ E and each
k ∈ [|S|] in a single pass over the database. Note
also that wsup0(I) = sup(I) and thus wsupk(·) is
a generalization of support (1).

Given an interestingness function, we can now
proceed to mine interesting rules over frequent
event sets. The rule mining process is shown in
Algorithm 1.

After a set of interesting rules S is populated, we
can perform test-time inference on new narrative
chains with Eqs. 9 and 10. To facilitate this, we
frame the inference problem as the weighted set
cover problem. The latter was known to be NP-
complete by Karp (1972), but there is a simple
greedy algorithm by Chvatal (1979) that provides
an approximate solution. To make it applicable
to the search problem 9, we will run it (for each
candidate event e) on the set S, mined by Algorithm
1, with the following weight function:

w(S) = − ln int(S → {e})
= − lnP (S|e).

The following lemma provides a lower bound
on the score of the candidate cover obtained by
Algorithm 2.

Algorithm 2 Greedy weighted set cover
1: Input:

• A set of interesting rules Se,
• A narrative chain e1, e2, . . . , eL.

2: Output: An approximation (within a O(logL)
factor) of the best cover {S1, S2, . . . , St}.

3: Initialization:
4: U0 = {e1, e2, . . . , eL}
5: t = 0
6: while Ut 6= ∅ do
7: t = t+ 1
8: St = argmax

S′∈Se

|S′∩Ut−1|
w(S′)

9: Ut = Ut−1\St

10: end while
11: Return {S1, S2, . . . , St}.

4.2 Score estimation via weighted set cover
Lemma 2. Algorithm 2 finds a candidate
cover {S1, . . . , St} for a narrative chain
{e1, . . . , eL} and a candidate event e, such that
score(S1, . . . , St; e) ≥ OPT lnL+1, where OPT
is the score of the best candidate cover Ŝe.

Proof. Chvatal (1979) showed that Algorithm 2
finds a weighted set cover {S1, . . . , St}, such that

OPTcover ≤
t∑

i=1
w(Si) ≤ (lnL + 1)OPTcover.

Since the weight w(·) is a negative log probability:

t∑

i=1

w(Si) = −
t∑

i=1

lnP (Si|e)

= − ln score(S1, . . . , St; e)

≤ (lnL+ 1)OPTcover.

By exponentiating left and right-hand sides and
noting that OPT = e−OPTcover (by definition of
the weight and score functions), we get:

score(S1, . . . , St; e) ≥ e−(lnL+1)OPTcover

≥ OPT lnL+1.

If we group the rules S → {e} by the consequent
event and order by |S|

w(S) within each group, then
step 8 in Algorithm 2 becomes equivalent to iterat-
ing over ordered rules in Se. The overall running
time to score the candidate event e is O(L+ |Se|).

Additionally, O(
∑
e∈E
|Se| log |Se|) preprocessing

time is needed to group and order the rules in S.
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5 Experiments

5.1 Dataset

We perform experiments on the New York Times
part of the Annotated Gigaword dataset by
(Napoles et al., 2012). Chains of narrative events
are constructed from the (automatically generated)
in-document coreference chains: from each doc-
ument in the dataset, we extract all coreference
chains and retain the longest one, with length two
or greater. We also filter top-10 occurring events
which are mostly reporting verbs such as “say” and
“think” and convey little meaning for SI task.

Training is done on the 1994–2006 portion
(1.3M chains with 8.7M narrative events), devel-
opment set is a subset of 2007–2008 portion (10K
chains with 62K narrative events), and test set is a
subset of 2009–2010 portion (5K chains with 31K
narrative events).

5.2 Model setup

We implement and compare models described in
Sections 3 and 4, along with a strong baseline Uni-
gram model by Pichotta and Mooney (2014), which
ranks each event according to its unigram probabil-
ity in the training corpus.

For testing the Unordered PMI and Bigram mod-
els, we use implementations from the Nachos soft-
ware package (Rudinger et al., 2015a). Both mod-
els are tuned to use skip-grams (as defined by Jans
et al. (2012)) of size up to the chain length, which
allows to reduce data sparsity and is consistent with
the set of rules (of size two) generated by ARM.

ARM consists of 1) mining frequent itemsets
and 2) obtaining interesting rules from those item-
sets. For frequent itemsets mining, we use the
FP-growth algorithm by Han et al. (2000) with a
tsup = 100 threshold. For rule mining, we imple-
ment Algorithm 1. Since the rule mining step is
much less computationally intensive than itemset
mining, we can use a more permissive tint = 10−5

threshold. We use the same thresholds across all
models by applying the following back-off strategy
in the Unordered PMI and Bigram models:

P (ei|e) =
{

C(ei,e)
C(∗,e) if C(ei, e) ≥ tARM ,
1

|E|+1 otherwise,

where tARM = max (tsup, C(∗, e) · tint).

Ablation R@50

ARM (posterior, (7)) 0.36
ARM (bigram, (6)) 0.34
ARM (UOP, (5)) 0.30

ARM (UOP, binary rules only, (4)) 0.28
UOP (both tsup & tint pruning, (4)) 0.28

UOP (only tsup pruning, (4)) 0.28
UOP (only tint pruning, (4)) 0.03
UOP (no tint & tsup pruning, (4)) 0.03

Table 2: Ablation experiments on NYTimes dev set.
R@50 stands for Recall@50.

6 Experimental Results

We perform two experiments, comparing existing
count-based SI models with three variants of the
proposed ARM model. The performance is mea-
sured using Recall@50 and Mean Reciprocal Rank.

In the first experiment, we establish that the
count-based pruning, introduced by ARM support
and interestingness thresholds (tsup and tint, re-
spectively) for reducing the search space during
rule mining, does contribute to better performance
on the narrative cloze test. We also validate empiri-
cally that the ARM model with binary (of size two)
rules is equivalent to the UOP model by Chambers
and Jurafsky (2008). Finally, we compare variants
of the ARM model, which vary in a way of incorpo-
rating a prior probability of the missing event. We
conclude that the posterior ARM model, given by
Eq. 7, achieves the best performance. The results
of this experiment are outlined in Table 2.

In the second experiment, we compare the best-
scoring ARM model and other baseline models on
5,000 test chains. We achieve 5% relative improve-
ment for Mean Reciprocal Rank (MRR) and 10%
for Recall@50, which can be attributed to using
higher-order count statistics and the selection of
the prior for the missing event. The scalability of
both rule mining and inference algorithms suggests
that the performance may be further improved as
the training corpus size grows and more reliable
higher-order statistics become available. The re-
sults of this experiment are shown in Table 3.

Similar to Rudinger et al. (2015b), we also note
that all models tend to improve their performance
on longer chains, which may be explained by the
availability of additional contextual information.
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Len UNI UOP BG ARM Tests

1 0.050 0.034 0.047 0.060 642
2 0.044 0.040 0.060 0.061 764
3 0.045 0.046 0.058 0.063 659
4 0.053 0.047 0.065 0.070 568
5 0.068 0.059 0.087 0.076 423
6 0.067 0.048 0.074 0.074 324
7 0.051 0.050 0.056 0.063 288
8 0.074 0.054 0.088 0.075 205
9 0.048 0.048 0.068 0.066 179

10+ 0.044 0.064 0.062 0.068 948

ALL 0.051 0.049 0.063 0.066 5000

(a) Mean Reciprocal Rank (MRR)

Len UNI UOP BG ARM Tests

1 0.34 0.17 0.24 0.36 642
2 0.28 0.22 0.28 0.32 764
3 0.30 0.28 0.32 0.34 659
4 0.32 0.29 0.34 0.36 568
5 0.33 0.30 0.35 0.36 423
6 0.33 0.33 0.36 0.37 324
7 0.30 0.32 0.33 0.35 288
8 0.33 0.34 0.36 0.39 205
9 0.35 0.35 0.37 0.37 179

10+ 0.32 0.36 0.35 0.36 948

ALL 0.32 0.29 0.32 0.35 5000

(b) Percent Recall at 50

Table 3: Narrative cloze results bucketed by incomplete narrative chain length for each model and scoring function
with best results in bold. The models are Unigram Model (UNI), Unordered PMI (UOP), Bigram Probability
Model (BG), and proposed ARM model (ARM).

7 Conclusion

Our decision to approach count-based SI as ARM
was motivated by a previously under-explored sim-
ilarity of these well-established areas, which we
outlined in this paper. Drawing similarities from
the existing work on Classification using Associa-
tion Rules (CAR) (Liu et al., 1998; Thabtah et al.,
2005), we proposed a scoring function that uses
ARM-based count statistics to reliably predict the
missing event in the narrative cloze test.

One downside of relying solely on count-based
statistics is the low support of longer itemsets
due to data sparsity. On the other hand, modern
contextual encoders (Devlin et al., 2018) mitigate
this via parameter sharing. Reliably mining rules
whose support and interestingness are based on
both counts and properties of dense embeddings
can be a promising direction of future work.
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1993. Mining association rules between sets of
items in large databases. In Proceedings of the 1993
ACM SIGMOD international conference on Manage-
ment of data, pages 207–216.

Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994.
Fast algorithms for mining association rules. In
Proc. 20th int. conf. very large data bases, VLDB,
volume 1215, pages 487–499.

Svetla Boytcheva, Ivelina Nikolova, and Galia An-
gelova. 2017. Mining association rules from clinical
narratives. In RANLP, pages 130–138.

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In Pro-
ceedings of ACL-08: HLT, pages 789–797.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2-Volume
2, pages 602–610. Association for Computational
Linguistics.

Vasek Chvatal. 1979. A greedy heuristic for the set-
covering problem. Mathematics of operations re-
search, 4(3):233–235.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.
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Abstract
In this paper we introduce the problem of ex-
tracting events from dialogue. Previous work
on event extraction focused on newswire, how-
ever we are interested in extracting events
from spoken dialogue. To ground this study,
we annotated dialogue transcripts from four-
teen episodes of the podcast This American
Life. This corpus contains 1,038 utterances,
made up of 16,962 tokens, of which 3,664 rep-
resent events. The agreement for this corpus
has a Cohen’s κ of 0.83. We have open sourced
this corpus for the NLP community. With this
corpus in hand, we trained support vector ma-
chines (SVM) to correctly classify these phe-
nomena with 0.68 F1, when using episode-
fold cross-validation. This is nearly 100%
higher F1 than the baseline classifier. The
SVM models achieved performance of over
0.75 F1 on some testing folds. We report the
results for SVM classifiers trained with four
different types of features (verb classes, part of
speech tags, named entities, and semantic role
labels), and different machine learning pro-
tocols (under-sampling and trigram context).
This work is grounded in narratology and com-
putational models of narrative. It is useful for
extracting events, plot, and story content from
spoken dialogue.

1 Motivation

People communicate using stories. A simple def-
inition of story is a series of events arranged over
time. A typical story has at least one plot and at
least one character. When people speak to one an-
other, we tell stories and reference events using
unique discourse. The purpose of this research is
to gain better understanding of the events people
reference when they speak, effectively enabling
further knowledge of how people tell stories and
communicate.

There has been no work, to our knowledge,
about event extraction from transcripts of spoken

language. The most popular corpora annotated
for events all come from the domain of newswire
(Pustejovsky et al., 2003b; Minard et al., 2016).
Our work begins to fill that gap. We have open
sourced the gold-standard annotated corpus of
events from dialogue.1 For brevity, we will hearby
refer to this corpus as the Personal Events in Di-
alogue Corpus (PEDC). We detailed the feature
extraction pipelines, and the support vector ma-
chine (SVM) learning protocols for the automatic
extraction of events from dialogue. Using this in-
formation, as well as the corpus we have released,
anyone interested in extracting events from dia-
logue can proceed where we have left off.

One may ask: why is it important to annotate
a corpus of dialogue for events? It is necessary
because dialogue is distinct from other types of
discourse. We claim that spoken dialogue, as a type
of discourse, is especially different than newswire.
We justify this claim by evaluating the distribution
of narrative point of view (POV) and diegesis in
the PEDC and a common newswire corpus. POV
distinguishes whether a narrator tells a story in
a personal or impersonal manner, and diegesis is
whether the narrator is involved in the events of the
story they tell. We use POV and diegesis to make
our comparisions because they give information
about the narrator, and their relationship to the story
they tell.

We back our claim (that dialogue is different than
newswire) by comparing the distributions of narra-
tive point of view (POV) and diegesis of the nar-
rators in PEDC with the Reuters-21578 newswire
corpus.2 Eisenberg and Finlayson (2016) found
that narrators in newswire texts from the Reuters-
21,578 corpus use the first-person POV less than
1% of the time, and are homodiegetic less than 1%

1http://www.artie.com/data/personaleventsindialogue/
2http://archive.ics.uci.edu/ml/datasets/Reuters-

21578+Text+Categorization+Collection
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of the time. However, in the 14 episodes (1,028
utterances) of This American Life, we found that
56% narrators were first-person, and 32% narrators
were homodiegetic.

We found these distributions in PEDC by using
the automatic POV and diegesis extractors from
Eisenberg and Finlayson (2016), which were open
sourced.3 Comparing the distributions of POV and
diegesis for the PEDC to that of newswire demon-
strates how different spoken dialogue is. This
shows why building an annotated corpus specif-
ically for event extraction of dialogue was neces-
sary.

It is substantial that so many of the utterances
in the PEDC are first-person narrators and ho-
modiegetic. This means that people are speaking
about their lives. They are retelling stories. They
are speaking in more personal ways than narrators
do in newswire. This is where the Personal in the
Personal Events in Dialogue Corpus comes from.
Additionally, using the modifier personal aligns
this work with Gordon and Swanson (2009) who
extracted personal stories from blog posts. We want
our work to help researchers studying computation
models of narrative.

1.1 What are personal events?
We define event as: an action or state of being de-
picted in text span. Actions are things that happen,
most typically processes that can be observed vi-
sually. A state of being portrays the details of a
situation, like the emotional and physical states of
a character. For our work, we are only concerned
with the state of being for animate objects. We use
the concept of animacy from Jahan et al. (2018),
which is defined as:

Animacy is the characteristic of being
able to independently carry out actions
(e.g., movement, communication, etc.).
For example, a person or a bird is an-
imate because they move or communi-
cate under their own power. On the other
hand, a chair or a book is inanimate be-
cause they do not perform any kind of
independent action.

We only annotated states of being for animate
objects (i.e. beings) because we are interested in
extracting the information most closely coupled
with people or characters. We were less concerned

3https://dspace.mit.edu/handle/1721.1/105279

with extracting details about inanimate objects, like
the states of being in this example,“The mountain
was covered with trees,” and more concerned with
extracting states of being describing people, like
in this example, “I was so excited when the dough
rose,” where excited is a state of being describing
the speaker.

In the prior section we showed the PEDC con-
tains a significant amount of personal events by run-
ning the POV and diegesis extractors from Eisen-
berg and Finlayson (2016). We found that the
PEDC contains 56% first-person narrators, and
32% homodiegetic narrators. Our corpus has a
significant amount of narrators telling personal sto-
ries.

1.2 Outline

First, in §2 we discuss the annotation study we
conducted on fourteen episodes of This American
Life. Next, in §3 we discuss the design of the event
extractor. In §3.2 we discuss the different sets of
features extracted from utterances. In §3.2 we talk
about the protocols followed for training of support
vector machine (SVM) models to extract events
from utterances. In §4 we discuss the types of
experiments we ran, and present a table containing
the results of 57 experiments. The goal of these
experiments is to determine the best set of features
and learning protocols for training a SVM to extract
events from dialogue. In §5 we discuss the results.
In §6 we sumarize our contributions.

2 Personal events in dialogue annotation
study

When beginning to think about extracting events
from dialogue, we realized there is no corpus of
transcribed dialogue annotated for events. There
are many corpora of other text types with event
annotations. TimeBank contains newswire text
(Pustejovsky et al., 2003b). MEANTIME is made
up of Wikinews articles (Minard et al., 2016).

Additionally there are many event annotation
schema; one of the more prominent ones is
TimeML (Pustejovsky et al., 2003a). We decided to
develop our own annotation scheme due to the com-
plexity of TimeML; it’s an extremly fine-grained
annotation scheme, with specific tags for different
types of events, temporal expressions and links. We
decided it would be too difficult to use TimeML
while maintaining a high inter-annotator agreement
and finishing the annotation study in a short amount
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Episode
Number

Episode
Name

Utterances
Event
tokens

Nonevent
tokens

Cohen’s
Kappa

608 The Revolution Starts at Noon 50 130 630 0.8900
610 Grand Gesture 151 494 2032 0.7982
617 Fermi’s Paradox 82 271 1204 0.8258
620 To Be Real 75 156 756 0.8258
621 Who You Gonna Call 49 104 435 0.8486
625 Essay B 54 130 417 0.8446
627 Suitable for Children 28 80 322 0.8362
629 Expect Delays 44 125 391 0.8320
639 In Dog We Trust 43 183 651 0.8777
647 LaDonna 51 143 477 0.8600
650 Change You Can Maybe Believe In 87 420 1629 0.8193
651 If You Build It Will They Come 64 264 880 0.8344
655 The Not So Great Unknown 89 400 1164 0.8256
691 Gardens of Branching Paths 171 764 2310 0.8302

Totals 1,038 3,664 13,298

Average Kappa 0.8320

Table 1: Statistics for event annotations in dialogue corpus

of time (three months), and within a modest budget.
Given that our goal was to understand spoken

conversational dialogue, we decided to create a
corpus from transcribed audio. This matches the
nature of the data we intend to use for our event
exctractor: audio recordings of dialogue that have
been transcribed as a text file.

We weighed a number of different sources for
the text transcripts, but we ultimately decided to use
transcripts from the podcast This American Life4.
We chose this podcast because: 1) The transcripts
are freely available online. 2) A significant portion
of these podcasts are made up of conversations, as
opposed to narration. Additionally, This American
Life formats their transcripts so that the conversa-
tions are indented as block quotations. This made it
easy to separate conversations from typical podcast
narration. 3) The subject matter of This American
Life are typically stories from people’s lives. We
wanted our corpus to be made up of unscripted con-
versations; contemporary everyday conversations,
so that the extractors we train from this data are
better suited to understanding people talking about
their lives.

2.1 Annotation study procedures
The two authors of this paper were the annotators
for this study. The first author wrote the annotation

4https://www.thisamericanlife.org/

guide5. We trained by reading the first version of
the guide, discussing short-comings, and then com-
piling a new version of the guide. Next, we both
annotated episode 6856. Since we were training,
we were allowed to discuss questions regarding
annotation decisions. After we both finished, we
ran the annotations through a program that found
all the utterances with disagreements, and we dis-
cussed the mistakes.

After adjudicating the training episode, the first
author updated the annotation guide to address in-
conistencies we found during adjudication. Next,
we began the actual annotation study. While anno-
tating each episode, we could not discuss specifics
about the utterances. We independently annotated
each episode.

Once both annotators finished their annotations
for an episode, we used a program we made that
compared the annotations for each utterance. If
there was any disagreement between the two anno-
tators, both sets of markings from the annotators
were added to an adjudication list. Then, we went
through each utterance with disagreements, and
discussed how the markings should be corrected
for the gold-standard. We adjudicated each episode
before annotating the next so that we, as annota-
tors, could learn from each other’s mistakes. Once

5http://www.artie.com/data/personaleventsindialogue/
6https://www.thisamericanlife.org/685/transcript
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the correction lists were created, they were used
along with the original markings to create the gold-
standard.

2.2 Annotation syntax

Before we discuss the annotation syntax, please
take a look at an annotated utterance from episode
6507:

Alan: Due to safety
{concerns}, safety
{purposes}. But I mean,
I can {type out} a little
bit of, like, whatever
you {want} to {tell} them,
{tell} the shelter, and I
can {make sure} they {get}
the {message} if that’ll
{work} for you.

The annotations were marked in text files. Each
text file contains an episode transcript formated so
that each utterance was on its own line. The spans
of text that an annotator considered events were
surrounded with brackets. Usually events were
single words, but occasiaonally events were multi-
word expressions, like the phrase type out above.
For more information about what we considered an
event, and which state-of-beings were considered
events, please refer to our annotation guide8.

2.3 Inter-annotator agreement

We used the Cohen’s Kappa metric (κ) to compute
the inter-annotator agreement Landis and Koch
(1977). According to Viera et al. (2005) κ values
above 0.81 are considered almost perfect agree-
ment. The average κ for our annotations is 0.83
so our inter-annotator agreement is almost perfect.
This average κ is a weighted average, where the κ
for each episode is multiplied by the number of ut-
terances in the episode. Once the sum of weighted
averages is obtained, we divide by the total number
of utterances in the corpus.

The κ for event extraction measures inter-
annotator agreement for a binary classification task
for each token across each utterance. If both an-
notators marked a token as an event, this counted
as a true positive, and if both annotators marked
a token as a non-event, this is counted as a true
negative. All other cases are disagreements; these

7https://www.thisamericanlife.org/650/transcript
8http://www.artie.com/data/personaleventsindialogue/

were adjudicated by both authors. A token can be
annotated as an event, or a non-event.

3 Developing the extractor

Our extractor was implemented in Java. This is
due to the availability of high-quality open-sourced
NLP libraries. There are two aspects of the extrac-
tor’s design that we will cover: 1) feature engineer-
ing and 2) protocols for training SVM models.

3.1 Feature engineering
First, we will discuss the different types of features
that we extracted from each utterance in the corpus.

3.1.1 Part of speech tags
We used the part of speech (POS) tagger
(Toutanova and Manning, 2000; Toutanova et al.,
2003) from Stanford CoreNLP (Manning et al.,
2014) to extract part of speech tags for each
word in each utterance of our corpus. We used
the english-bidirectional-distsim
model. This model was chosen since it has the
most accurate performance, even though it has
a slower run-time. For the purpose of these
experiments run-time wasn’t a limiting factor.

Each POS tag was assigned a unqiue integer
value between 1 and 36. If a token has no POS tag,
then it is assigned the value of -1. The following
is the procedure for mapping POS tags into feature
vectors: First, use Stanford CoreNLP to find the
POS tags for each token in an utterance. Second,
produce a vector of length 37 for each token, and
fill each element with a -1. Third, for the vector
representing each token, change the value of the
element with the index cooresponding to the partic-
ular POS of the current token to 1. If the token has
no POS tag, then the vector is unchanged.

3.1.2 Named entity tags
We used the Named Enitity Recognizer (NER)
(Finkel et al., 2005) from Stanford CoreNLP
(Manning et al., 2014) to extract named entity
types from utterances. We included named en-
tity tag as a feature type for event extraction be-
cause we hypothesized that some named entity
types should never be considered as events, like
PERSON, ORGANIZATION, and MONEY. How-
ever, the DATE and DURATION classes were often
classified as events.

The NER tag feature was encoded into a vector
of length nine. The first eight elements of this vec-
tor each represents one of the eight NER classes
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in Stanford’s NER. The vector’s final element rep-
resents whether the current token is not a named
entity. This is the procedure for extracting NER
tag features from an utterance: First use Stanford
CoreNLP to find the NER tags for each token in
an utterance. Second, produce a vector of length
nine for each token, and fill each element with a
-1. Third, for the vector representing each token in
an utterance, change the value of the element with
the index corresponding to a particular NER tag of
the current token to 1. If there is no NER tag for a
given token, then set the final element of the vector
to 1.

3.1.3 Verb classes

We use a similar pipeline as Eisenberg and Fin-
layson (2017) for verb class extraction. This
pipeline determines which VerbNet (Schuler, 2005)
verb classes each token in an utterance is repre-
sented by. A verb class is a set of verbs with the
same semantics. For example, the verbs slurp,
chomp, and crunch all belong to the verb class
chew. We hypothesize that knowledge of what verb
classes are instantiated by specific words is essen-
tial to extracting events from dialogue.

The features for verb classes are encoded into
a vector of length 279. The first 278 elements
represent which of the 278 verb classes is invoked
by the current token. The final element represents
if no verb classes are instantiated by the token.
For the first 278 elements we use the following
bipolar encoding: 1 if the verb class is instantiated
in the token, or -1 if not. Note that any token can
instantiate more than one verb class. The final
element in the vector is assigned a 1 if no verb
classes are represented by the current token, or -1
if verb classes are used (which means at least one
of the first 278 elements has the value of 1).

Here is a quick overview of the pipeline for verb
class extraction: first, we use It Makes Sense to
perform word sense disambiguation on an utterance
(Zhong and Ng, 2010). This produces WordNet
sense keys (Fellbaum, 1998) for each token in an
utterance. Next we use JVerbnet9 to map WordNet
sense keys to VerbNet classes. This produces a list
of VerbNet classes for each token. Finally, each list
is mapped to a bipolar feature vector of length 279,
as explained in the paragraph above.

9http://projects.csail.mit.edu/jverbnet/

3.1.4 Semantic role labels
We use the Path LSTM Semantic Role Labeler
(SRL) to extract a set of features from utterances
(Roth and Lapata, 2016). We extract two features
for each token in an utterance: 1) is the token a
predicate? and 2) is the token an argument of a
predicate? These features fill a vector of length
two, and once again we use bipolar encoding as all
the previous features discussed in this section.

There are many more features in Path LSTM,
however we didn’t have the time to find an in-
telligent way to use them. One of those features
is the ability to parse into semantic frames from
FrameNet (Baker and Sato, 2003). Path LSTM
can parse into the over 1,200 semantic frames in
FrameNet. We hypothesize that knowing which
tokens represent different frame elements for each
frame would be a useful feature extracting events
from dialogue. This feature would provide even
more fine-grained information than the verb class
features.

Here is the way we extracted SRL features from
utterances: first, for each utterance use Path LSTM
to extract an SRL parse. Second, produce a feature
vector of length two for each token in the utterance,
and initialize both elements to -1. Third, get the list
of predicates from the SRL parse. For each token,
if it is a predicate, set the first element of the feature
vector to 1. Otherwise, do nothing. Fourth, for each
predicate, get the argument map. For each token, if
it is a member of any argument map, set the second
element of the feature vector to 1. Otherwise, do
nothing.

3.2 Learning protocols

Second, we discuss the details about how the SVM
models were trained.

3.2.1 Cross-validation
We used 14-fold cross-validation, or colloquially
speaking episode-fold cross-validation. There are
14 episodes in our corpus. For each fold of cross-
validation, one episode is reserved for testing, and
the remaining 13 folds are used for training. This
procedure is performed 14 times, so that each of
the 14 episodes has the chance to be used as testing
data.

3.2.2 Under-sampling
We incorporated under-sampling into our SVM
based experiments. Undersampling is a technique
for boosting performance of models when training
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Features ML Protocols Events Nonevents

POS NER
Verb
Classes

SRL
Under-
sampling

Trigrams F1 Precision Recall F1 Precision Recall

X 0.5763 0.7364 0.4791 0.9095 0.8705 0.9529
X X 0.6185 0.4777 0.8848 0.8347 0.9595 0.7390
X X 0.5786 0.7435 0.4791 0.9104 0.8706 0.9545
X X X 0.6262 0.4890 0.8783 0.8420 0.9579 0.7516

X NaN 0 NaN 0.8805 0.7871 1.0
X X 0.5800 0.7366 0.4840 0.9098 0.8715 0.9523
X X X 0.6205 0.4837 0.8768 0.8381 0.9572 0.7463
X X X 0.5823 0.7435 0.4841 0.9107 0.8717 0.9539
X X X X 0.6252 0.4870 0.8818 0.8406 0.9588 0.7489

X 0.5609 0.9281 0.4039 0.9206 0.8594 0.9918
X X 0.5637 0.9225 0.4079 0.9207 0.8601 0.9910
X X 0.5608 0.9044 0.4087 0.9195 0.8599 0.9886
X X X 0.5658 0.6457 0.5074 0.8979 0.8729 0.9249

X X 0.6698 0.8593 0.5530 0.9298 0.8886 0.9756
X X X 0.6763 0.5555 0.8712 0.8792 0.9586 0.8123
X X X 0.6755 0.8475 0.5654 0.9299 0.8911 0.9727
X X X X 0.6794 0.5593 0.8736 0.8805 0.9594 0.8141

X X 0.5648 0.4088 0.4088 0.9209 0.8604 0.9912
X X X 0.5675 0.9188 0.4126 0.9209 0.8611 0.9903
X X X 0.5676 0.9188 0.4126 0.9210 0.8611 0.9903
X X X X 0.5666 0.6411 0.5116 0.8972 0.8738 0.9226

X X X 0.6732 0.8580 0.5579 0.9301 0.8896 0.9750
X X X X 0.6736 0.5513 0.8731 0.8768 0.9589 0.8082
X X X X 0.6769 0.8460 0.5679 0.9300 0.8917 0.9722
X X X X X 0.6750 0.5510 0.8792 0.8764 0.9606 0.8062

X 0.4687 0.6751 0.3613 0.8959 0.8458 0.9530
X X 0.5287 0.4764 0.6000 0.8509 0.8826 0.8220
X X 0.4687 0.6751 0.3613 0.8959 0.8458 0.9530
X X X 0.5287 0.4764 0.6000 0.8509 0.8826 0.8220

X X 0.5763 0.7364 0.4791 0.9095 0.8705 0.9529
X X X 0.6239 0.4892 0.8726 0.8416 0.9559 0.7526
X X X 0.6564 0.7667 0.5826 0.9207 0.8923 0.9519
X X X X 0.6257 0.4868 0.8833 0.8408 0.9595 0.7487

X X 0.4717 0.6786 0.3636 0.8965 0.8463 0.9535
X X X 0.5359 0.4872 0.6017 0.8552 0.8839 0.8289
X X X 0.4714 0.6784 0.3633 0.8965 0.8463 0.9535
X X X X 0.5358 0.4872 0.6015 0.8552 0.8839 0.8290

X X X 0.5800 0.7366 0.4840 0.9098 0.8715 0.9523
X X X X 0.6150 0.4752 0.8824 0.8319 0.9587 0.7358
X X X X 0.6631 0.7739 0.5897 0.9221 0.8942 0.9529
X X X X X 0.6254 0.4862 0.8847 0.8402 0.9598 0.7475

X X 0.5609 0.9281 0.4039 0.9206 0.8594 0.9918
X X X 0.5769 0.5037 0.6812 0.8588 0.9036 0.8187
X X X 0.5608 0.9044 0.4087 0.9195 0.8599 0.9886
X X X X 0.5753 0.4937 0.6977 0.8528 0.9068 0.8058

X X X 0.6698 0.8593 0.5530 0.9298 0.8886 0.9756
X X X X 0.6759 0.5566 0.8679 0.8795 0.9575 0.8138
X X X X 0.6760 0.8477 0.5660 0.9300 0.8912 0.9727
X X X X X 0.6769 0.5535 0.8780 0.8780 0.9605 0.8089

X X X 0.5648 0.9244 0.4088 0.9209 0.8604 0.9912
X X X X 0.5841 0.5132 0.6845 0.8628 0.9051 0.8248
X X X X 0.5648 0.9011 0.4137 0.9198 0.8610 0.9879
X X X X X 0.5824 0.4900 0.7243 0.8499 0.9131 0.7955

X X X X 0.6732 0.8580 0.5579 0.9301 0.8896 0.9750
X X X X X 0.6732 0.5502 0.8748 0.8765 0.9595 0.8072
X X X X X 0.6769 0.8460 0.5679 0.9300 0.8917 0.9722
X X X X X X 0.6729 0.5491 0.8764 0.8758 0.9601 0.8006

Table 2: Classification results across different feature sets and machine learning protocols

on unbalanced datasets (Japkowicz et al., 2000).
Our event corpus has about four nonevents for ev-
ery one event. To mitigate this, during training
a SVM model on an episode we add the feature
vectors for every event to the training set. Next,
we count the number of feature vectors for events
in the training set. Then, we randomly select non-
event feature vectors, and add the same number of
vectors to the training set as there are event vectors.
Hence, for every event feature vector in the training
set, there is only one nonevent feature vector. In
our experiments (§4) we saw that undersampling
raised the F1 for most feature sets. Our implemen-
tation of under-sampling allows us to toggle it on

and off for different experiments. Hence, under-
sampling could be parameterized, along with the
types of features used, and other variations on the
SVM learning discussed below.

Since there is an element of randomness in our
implementation of undersampling, we ran each un-
dersampling experiment 100 times. We report the
result for the experiment that had the highest F1
relative to the event class. This is a somewhat crude
approach. In the future, we would like to employ
an entropy based approach, where we select which
majority class feature vectors to use based on the
entropy of the set of vectors.
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3.2.3 Simulating context through trigrams
We simulate context by appending feature vectors
for neighboring words to the current word’s feature
vector. Specificially, for each token, get the fea-
ture vector for the preceding token and the feature
vector for the proceeding token, and append these
two vectors to the original vector. If there is no
preceding token make a feature vector where each
element is -1. The length of this negative vector is
that of the original feature vector. Similarly, follow
the same procedure if there is no proceeding token.
Using trigram context vectors slightly raised the
F1 for many SVM models, but it did not have a
significant effect. This leads us to hypothesize that
there is probably a better way to encode context for
this task.

Our implementation of trigram context is modu-
lar, along with the other learning protocols: context
can be toggled for any experiment. Furthermore,
experiments that make use of trigram context, can
also take advantage of under-sampling. Each set
of features can have four seperate experiments: 1)
training with no augmentations, 2) training with
under-sampling, 3) training with trigram context
vectors, and 4) training with both under-sampling
and trigram context vectors.

3.2.4 SVM hyperparameters
All our SVM models used a linear kernel. We chose
a linear kernel because of bipolar encoding of the
feature values, and it produced the best F1 during
early experiments. The hyperparameters for all the
SVMs were as follows: γ = 0.5, ν = 0.5, C = 20,
and ε = 0.01.

4 Results

We report our results in Table 2. The table is orga-
nized in four vertical columns, from left to right:

1) Features: this section contains the features
used for an experiment. The possible types of fea-
tures are POS, NER, Verb Classes, and SRL. The
combination of features used for an experiment are
indicated by X’s in the column of the correspond-
ing features. There are four possible experiments
(for each of the four possible machine learning pro-
tocols chosen) run for a given feature type. In rare
cases (like for experiments with only NER features)
only the basic experiment results are reported be-
cause the SVM classifier could not adequately learn
and classify everything as a nonevent.

2) ML Protocols: this section contains the ma-

chine learning (ML) protocols used for an experi-
ment. The possible protocols are: undersampling
and trigrams. The combination of ML protocols
used for an experiment are indicated by X’s in the
column of the coresponding protocols. For each
combination of features, four experiments are run.
Each of the four experiments, for a feature set,
represent a unique combination of the two ML pro-
tocols.

3) Events: in this section we report the results
(F1, precision, and recall) for all tokens that were
marked as events in the gold-standard.

4) Nonevents: similarly, in this section we re-
port the results for all tokens that were marked as
nonevents in the gold-standard.

Table 2 contains all combinations of features
and ML protocols. We report all the results to
show the fluctuations of performance for different
combinations of features and protocols.

We will compare the results in Table 2 to a mi-
nority class baseline. For our experiments, the mi-
nority class is the event class. We are interested in
maximizing the F1 of the event class as opposed to
the nonevent class, because we want to accurately
extract events. Events are more rare than nonevents,
hence this is the phenomena we are exploring. Our
baseline, relative to the event class is: F1 = 0.3553,
precision = 0.2160, and recall = 1.

5 Discussion

Our best performing event extractor uses POS and
verb class features, and the ML protocols used were
undersampling and trigrams, however, the perfor-
mance is not significantly better than the extrac-
tors that only use either one of the two protocols.
Our best peforming event extractor with no extra
ML protocols was the extractor with POS, NER,
and verb class features. The performance of the
extractor that had all four features had the same
performance as the former, so we can say that the
addition of SRL features adds no extra information
to the classification process.

It is interesting to see the affect of undersam-
pling on performance. It boosted the event F1 for
most feature sets. Not only did it boost the F1, but
it flipped the values of precision and recall with
respect to the original experiment. Without under-
sampling, the precision is always higher than the
recall. Once undersampling is toggled, the recall
becomes larger than the precision. Also, the un-
dersampled recall is typically higher than the non-
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undersampled precision. This flippage is important
to note for situations when the event extractor is
actually used in real-world systems.

If the situation requires a minimal number of
false positives, than precision should be maximized,
therefore no undersampling should be used when
training the model. However, if minimal false neg-
atives is a bigger priority, then recall should be
maximized, hence undersampling should be used
in training. Whether undersampling is used, or not,
depends on the actual context the event extractor is
being deployed.

In general, undersampling helped boost perfor-
mance of event classification in most experiments.
Trigrams gave an even smaller boost to event classi-
fication in most experiments. Experiments that had
both undersampling and trigrams had the largest
boost when compared to the experiment with no
extra ML protocols.

There were two feature sets that trigram context
had a significant affect, both POS + SRL and POS
+ VERB + SRL. These are the only experiments
where the trigram context protocol led to the great-
est performance for the feature set, and by a signif-
icant margin. Overall, trigrams had a much smaller
affect on overall performance. We hypothesize that
there are better ways to implement this form of
context. Either a classifier that’s better suited for
sequential data should be used, or a different form
of encoding the context feature should be explored.
Another note about a negative result: the impact
of the SRL features was much less influential than
we hypothesized. Going forward, we think that the
actual semantic frames instantiated should be used
as features, as well as different frame elements, and
not just occurence of predicates and arguments.

6 Contributions

In this paper we presented two sets of contributions:
First, we have open sourced the first corpus of di-
alogue annotated for events.10 This corpus can be
used by researchers interested in the automatic un-
derstanding of dialogue, specifically dialogue that
is rich with the personal stories of people. Second,
we share the design and evaluate the performance
of 57 unique event classifiers for dialogue. These
results can be used by researchers to decide which
features and machine learning protocols should be
implemented for their own event extractors. Our
best performing extractor has a 0.68 F1, which is

10http://www.artie.com/data/personaleventsindialogue/

over 100% higher than baseline. We hope that this
work can be used by the community to better un-
derstand how people reference events from stories
in dialogue.
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Abstract

This paper outlines work in progress on a new
method of annotating and quantitatively dis-
cussing narrative techniques related to time
in fiction. Specifically those techniques are
analepsis, prolepsis, narrative level changes,
and stream-of-consciousness and free-indirect-
discourse narration. By counting the fre-
quency and extent of the usage of these tech-
niques, the narrative characteristics of differ-
ent works from different time periods and gen-
res can be compared. This project uses mod-
ernist fiction and hypertext fiction as its case
studies.

1 Introduction

This project annotates and analyses a specific com-
bination of narrative techniques that have not been
treated in this way before. Its understanding of nar-
rative emanates from English literary studies, but
is applied using a methodology that combines the
methods of that field with digital humanities meth-
ods, specifically annotation. There has been work
on annotating narrative features, but not featuring
the combination of narrative levels, time disrup-
tions, and subjective narration. This paper shows a
new way for this to be done using a custom XML
schema and analysis of preliminary data gleaned
from the application of that schema. This process
can be used to compare fiction from any genre
or time period because most of the techniques in-
volved in the annotation scheme have been used
in fiction for centuries. This project applies the
process to modernist fiction (experimental novels
from the early 20th century) and hypertext fiction
(texts from the last four decades which are designed
specifically to be read on a computer) because
comparing them quantitatively can help to trace
the relationship between the two genres which has
been proposed in literary theory. This is work in

progress, and this paper’s analysis will mainly fo-
cus on the use of analepsis, which is one of the
techniques of disrupting narrative time.

2 Description of project and research
question

This project seeks to determine whether a valid
and useful system of encoding narrative character-
istics related to time in fiction can be developed.
It then asks how the narratives thus encoded can
be quantitatively analysed, using modernist and
hypertext fiction as case studies. The narrative
techniques which this project addresses are analep-
sis, prolepsis (flashbacks and flashes forward in
story time, respectively, and collectively referred to
as anachronies), changes in narrative level (stories
within stories), and two kinds of subjective narra-
tion: stream of consciousness (prose that reports
a character’s thoughts directly and continuously,
often ignoring rules of grammar in order to do so)
and free indirect discourse (prose that still uses a
separate narrator and third-person sentences, but
in which the words are affected by the biases and
perspective of a particular character). If one is com-
paring transitions in narrative time, then one must
determine to what extent those things are happen-
ing, and how frequently. The workflow consists of
annotating the novels and hypertexts; counting the
encoded instances of anachrony, subjective narra-
tion, and changes in narrative level; determining
where these phenomena appear in each text; com-
paring those patterns between the texts; and then
going back to the texts themselves to read what
is going on at particular points of activity, to see
why these changes in the narration are occurring.
Works are regularly compared in literary studies,
and narrative theory is often used to compare the
portrayal of time in fiction works of different kinds.
What this project adds to that is a more measurable
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way of describing the structural positioning and
role of of narrative time disruptions in fiction.

3 Related quantitative work

Several annotation schemes and digital humanities
literary studies have influenced this project. Pre-
existing annotation schemes have shown how some
similar narrative aspects can be encoded. Narra-
tiveML is intended for encoding the goals of char-
acters and narrators, aspects of pacing in narrative,
and embedded narratives (Mani, 2013). Its tagset
has a small number of elements, but a large amount
of attributes and values that can be added to those
elements. This makes NarrativeML good for its
intended use, but its complexity is not necessary
for the goals of this project, and it does not address
the combination of narrative time, subjective nar-
ration, and changes in level. ProppML is useful as
another example of a system for manually encod-
ing some narrative features in fiction (Yarlott and
Finlayson, 2016), but it is intended for folk tales
with formulaic plots and it is also quite complex
with many attributes for each element. Narrative
time is the primary focus of TimeML (Saurı́ et al.,
2006). Its Timex3 and Tlink tags allow numbers to
be assigned in their values for recording the relative
order of events, but there are no specific tags for
analepsis or prolepsis, and the annotation scheme is
not concerned with subjective narration or narrative
levels so there are no tags for them either. These
kinds of schemes have shown that narrative char-
acteristics can be encoded, but have not addressed
the specific ones that this project addresses.

The Narrelations tool represents annotated nar-
ratives as a diagram consisting of concentric rings
(Schwan et al., 2019). It is excellent for show-
ing how many narrative levels a story has, and the
proportion of story length spent in each level. How-
ever, it does not show the degree to which narrative
level changes and anachronies are happening - how
many words are being encompassed by these tech-
niques. It cannot show relative peaks or troughs
in the usage of those techniques over the course
of a text, only binary information on whether they
are happening or not. It does not feature stream-of-
consciousness or free indirect discourse, or display
word counts. As such, it too does not address the
specific pieces of information that this project re-
quires.

Some digital humanities projects have shown
how quantitative methods can be useful for com-

paring fiction works individually and in corpora.
Ramsay (2011) compared sections of The Waves
by Virginia Woolf against each other, noting the
difference in the vocabulary used in sections nar-
rated by the different characters, and what that can
tell us about those characters. Jockers (2014) has
shown how to visually represent the relative sim-
ilarities and differences in prose style of a corpus
of nineteenth- and twentieth-century novels using
cluster dendrograms. Clement (2012) uses visu-
alisations of the frequency of usage of the word
“one” increasing dramatically in the second half of
Gertrude Stein’s The Making of Americans, just
as the usage of the word “I” becomes far less fre-
quent. Using this graph Clement shows definite
and deliberate structural change in the second half
of the novel, driven by its syntax. This illustrates
how quantitative measures can help to interrogate
the structure of fiction texts, as well as the style
of their prose. Text-mining does not work for this
project because the narrative concepts being ad-
dressed require too much critical interpretation for
a computer program to detect, but these practices
show the insights that can be gained from com-
paring data gleaned from fiction works, and then
applying those insights to further literary study of
those novels.

4 Data

The corpus of this project contains six modernist
novels and seven pieces of hypertext fiction. The
modernist novels are To the Lighthouse by Virginia
Woolf, Tender is the Night by F. Scott Fitzgerald,
Pointed Roofs by Dorothy Richardson, The Sound
and the Fury by William Faulkner, Three Lives by
Gertrude Stein, and The House in Paris by Eliz-
abeth Bowen. They have been selected because
their publication dates span from 1909 to 1935,
and because they feature a wide range of prose
and narrative styles. The hypertext fictions cho-
sen are Uncle Roger by Judy Malloy, Twelve Blue
by Michael Joyce, my body - a Wunderkammer
by Shelley Jackson, Seed by Joanna Walsh, Voy-
age Into the Unknown by Roderick Coover, Victory
Garden by Stuart Moulthrop, The Jew’s Daughter
by Judd Morrissey and Lori Talley. Similarly, these
texts span from 1986 to 2017 and have a variety
of different writing styles and narrative structures.
Modernist and hypertext fiction often share charac-
teristics such as narrative fragmentation, the effort
to make a “significant formal break with the tradi-
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tions that preceded” them (Rettberg, 2018), while
still seeking “inspiration and validation in a literary
past” (Pressman, 2014). They also share a certain
“narrative complexity, and an aesthetic of difficulty”
(Pressman, 2014).

5 Methodology

In order to compare narrative features in a struc-
tured way across different texts, it is necessary to
count how much and how frequently those fea-
tures were occurring. Annotating each occurrence
of those features was the way to do this, and this
project’s combination of tags is necessary so that
they can be interwoven in a way that mimics how
the narrative techniques are interwoven in the fic-
tion. XML has been used for the annotation.

The elements in the annotation scheme are:
Analepsis, Prolepsis, Level (with the attribute
‘degree’, to which integers can be assigned
for each narrative level), SOC (for stream-of-
consciousness), and FID (for free indirect dis-
course). Each tag can be used on its own, or nested
inside one another. Due to the modular structure of
this system, the annotation routine does not have to
follow a particular order, and not every tag needs to
be used. The tags can be applied as necessary. The
criteria for beginning and ending annotation spans
is the same for all tags. The annotation should
begin at the point in the text where the narrative
transitions either to a higher or lower level, a dif-
ferent point in time, or into or out of stream-of-
consciousness or free-indirect-discourse narration.
This can occur in the middle of a sentence, and can
continue into another sentence, paragraph, or chap-
ter. The annotation is ended when the phenomenon
ends and the narration changes to a different level,
transitions to a different point in time, or changes
back to omniscient narration after its spell in more
subjective narration has ceased.

Once the texts have been encoded, a number
of features are measured quantitatively. They are:
(1) numbers of each of the analepsis, prolepsis,
narrative level, stream-of-consciousness and free
indirect discourse tags in each text, both as total
numbers and as percentages relative to the total
word counts of each text; (2) how frequently those
tags are occurring relative to word counts; (3) num-
bers of words contained within all tags relative to
the total word counts of whole texts, pages, lexias,
chapters, and sections; (4) which tags are occurring
inside other tags. The analyses in this paper use the

first two of those measures.
The scope and budget of the project does not

allow for multiple annotators to be hired; as such
all text encoding was completed by one annota-
tor, the author. However, the project’s schema has
been tested for inter-annotator agreement using a
separate, smaller corpus, and compared against
other similar annotation guidelines that focus on
narrative levels, as part of the Systematic Analysis
of Narrative Texts through Annotation (SANTA)
project. Gius et al. (2019) explain that SANTA
“employed the metric γ (gamma)” so that they
could “compare evaluation schemes with different
complexities and to avoid favouring more simple
schemes (if the scheme is simpler, chance agree-
ment is higher)”. The IAA result for my guidelines
was 0.24 in gamma (Willand et al., 2019). By nor-
mal IAA measures, 0.24 is quite low (Mathet et al.,
2015), but all of the scores in the SANTA project
were similarly low. The IAA for my guidelines was
the third-highest of the eight annotation guidelines,
with results ranging from 0.05 to 0.30. Further
rounds of evaluation are pending in that project.

Recording and analysing number and frequency
of narrative features related to time allows direct
comparisons of the narrative strategies and struc-
tures of literary texts from different genres and time
periods. We can see how different or similar these
texts are in their treatment of narrative time, in a
way that is different to what can be achieved with
traditional literary analysis alone. However, that
literary analysis is more important, and these quan-
titative measures do not replace that; rather they are
used in concert with it, as can be seen in the next
section of this paper. The data only ever serves to
lead us back to reading the texts.

6 Preliminary results and discussion

These examples are small parts of the overall
project, and work is ongoing to develop further
comparisons, but for now we can look at all of the
texts in the corpus using a basic measure, and then
do some more detailed analysis of a select few texts
which have characteristics in common. One of the
first things to consider across the corpus - and the
quantitative measure numbered (1) in the method-
ology - is how frequently each tag is occurring in
each text, relative to the word counts of those texts.
To achieve a relative comparison across texts of dif-
ferent lengths, normalised frequency has been used,
which is simply the number of a times a particular
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tag occurs in a text, divided by the total word count
of that text, with that result multiplied by 10,000.
This calculation comes from McEnery and Hardie
(2011), and the base of normalisation of 10,000 is
essentially arbitrary, but is somewhat similar to the
length of the texts in this corpus, most of which
are in the tens of thousands of words. Figure 1 in
this paper shows the normalised frequency for the
analepsis tag across all texts in the corpus. Analep-
sis is used in all of these examples because it is the
most significant tag for the themes of the project,
but these measures can be made with all of the tags
in the schema.

Figure 1: Normalised frequency of analepsis tags, for
all texts ((Total no. of analepsis tags / Total no. of
words in a text) x 10,000)

As we can see, the modernist novels tend to have
comparable frequency of analepsis tags occurring;
four of the six novels have normalised frequencies
close to 20. The other two, Tender is the Night
and Three Lives, both have long sections that are
wholly encompassed by one analepsis tag, so their
less frequent occurrence of tags does not reflect
the large proportion of their narratives that occurs
inside analepsis.

For a clearer analysis of these narratives, we
need to examine the numbers of words contained
within analepsis tags and their placement in the
text. Tender is the Night and The House in Paris are
useful as an example for this comparison because
both novels are divided into three long sections,
beginning in the present, then flashing back about
ten years in their middle sections, then returning
to the present in their final portion. Those long
middle analepses in turn contain analepses of their
own.

In both of these novels, there are fewer words
in analepsis tags at the beginning and end, while
the large amount of words within analepsis in their
middle sections is clearly evident. The difference is
with the analepsis within analepsis. In The House
in Paris, the long flashback in the middle has sev-

Figure 2: Words in analepsis in Tender is the Night

Figure 3: Words in analepsis in The House in Paris

eral small clusters at various points throughout it,
rather than the large cluster of analepsis-within-
analepsis that we see at the beginning of the long
flashback in Tender is the Night. The dispersed
analepses in Bowen’s novel mimic the natural ref-
erences to the past that occur in memory (or story-
telling), while Fitzgerald’s novel shows a more de-
liberate construction of particular flashbacks, like a
Freudian psychoanalyst imposing a narrative on a
patient, a subject with which the novel is concerned
in its content.

A linear comparison works for linear texts, but
hypertexts are usually nonlinear. They can be anal-
ysed on the level of individual lexias, but for over-
all comparisons between hypertexts and modernist
novels, one can compare how frequently tags are
occurring, and how the two texts compare in terms
of words within analepsis tags as percentages of
their overall length. To the Lighthouse and Twelve
Blue are useful texts to compare because they both
use free-indirect discourse narration from the per-
spectives of many characters, mostly families and
groups of friends. Along with those changing nar-
rative perspectives, both texts also often transition
backwards and forwards through time and mem-
ory. So, their similar content invites one to ask
whether they have similarities in narrative form,
despite their different genres. As such, Figures 4
and 5 compare the usage of analepsis in these two

75



texts.

Figure 4: Analepsis tags occur 2.5 times more fre-
quently in Twelve Blue than in To the Lighthouse.

Figure 5: Relative to their total word counts, Twelve
Blue only has 1.7 times as many words in analepsis tags
than To the Lighthouse

At first it would appear that analepsis is hap-
pening overwhelmingly more in Twelve Blue than
in To the Lighthouse, but one can see in Figure
5 that the difference is not as great as it initially
seems, when word counts are taken into consider-
ation. Still, proportionally, more of Twelve Blue
occurs in analepsis than To the Lighthouse. Both
texts are concerned with memory and the intersect-
ing lives of groups of people over spans of years.
That thematic similarity stands in contrast with
their structural differences. The first part of To the
Lighthouse is its longest section, setting up most
of the significant relationships and story themes;
it is the part that the characters spend the shorter
final part of the book remembering. Twelve Blue
does not work like this; its interweaving-thread
structure diverts the reader to different times and
places with each click rather than following one
story from start to finish. It is more fragmented,
with analepses occurring throughout rather than
at the end. This invites the question of whether

hypertext narratives generally are even more tem-
porally fragmented than those found in modernism,
whether hypertext has taken the aesthetics of mod-
ernism and experimented with them even further.
That is one of the questions that the rest of this
project will address.

7 Conclusion

Annotation and quantitative analysis allows tempo-
ral narrative features to be assessed in a different
way than with traditional literary methods. The
quantitative perspective enables aspects of literary
structure to be measured as well as compared. This
methodology can show exactly where spans of nar-
rative disruptions begin and end, and what their
length and frequency can tell us about the narrative
strategies of a text. In turn this helps us to unpack
the “incessant shower of innumerable atoms” with
their “sudden lightning flashes of significance” that
are the temporally fragmented narratives of mod-
ernist and hypertext fiction (Woolf, 1984).
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Abstract

Sharing personal narratives is a fundamental
aspect of human social behavior as it helps
share our life experiences. We can tell stories
and rely on our background to understand their
context, similarities, and differences. A sub-
stantial effort has been made towards develop-
ing storytelling machines or inferring charac-
ters’ features. However, we don’t usually find
models that compare narratives. This task is re-
markably challenging for machines since they,
as sometimes we do, lack an understanding of
what similarity means. To address this chal-
lenge, we first introduce a corpus of real-world
spoken personal narratives comprising 10,296
narrative clauses from 594 video transcripts.
Second, we ask non-narrative experts to anno-
tate those clauses under Labov’s sociolinguis-
tic model of personal narratives (i.e., action,
orientation, and evaluation clause types) and
train a classifier that reaches 84.7% F-score for
the highest-agreed clauses. Finally, we match
stories and explore whether people implicitly
rely on Labov’s framework to compare narra-
tives. We show that actions followed by
the narrator’s evaluation of these are the
aspects non-experts consider the most. Our
approach is intended to help inform machine
learning methods aimed at studying or repre-
senting personal narratives.

1 Introduction

We can develop the ability to retrieve a story that
we have experienced or heard when someone else
is telling a story. We find ourselves thinking about
our story, and so we think that we know what is
coming next in our friend’s story. However, in
order for computers to match stories automatically,
we need to understand what “matching” implies
and what aspect of a story should be attended to.

There have been some attempts to match sto-
ries (Nguyen et al., 2014; Chaturvedi et al., 2018)

and to understand human judgment about matched
stories (Nguyen et al., 2014; Reagan et al., 2016).
Nevertheless, these efforts have been mostly devel-
oped in supervised scenarios that already have a
set of matched stories in hand, and they are mostly
focused on non-personal narratives (e.g., fictional).
From these insightful works, however, we want to
explore the understanding that when we consider
stories to be similar, we attend to some aspects
more than others, stressing the need for compari-
son of different aspects rather than at a global level.

As a first effort towards our purpose, we collect
the largest annotated corpus of spoken personal
narratives to our knowledge, comprising 10,296
narrative clauses from 594 stories. We use tran-
scripts of Roadtrip Nation (RTN) videos1, where
professionals share stories about their lives and
career pathways. As for the annotation task, we
ask Mechanical Turkers to annotate each clause
under Labov’s sociolinguistic model of personal
narratives (Labov et al., 1967), where a narrative
is defined by a structural component, which in-
cludes a temporal organization (action clauses) and
contextual orientation (orientation clauses), and an
evaluation component (evaluation clauses), which
represents storytellers’/characters’ needs and de-
sires (explained in more depth in section 3).

Next, aiming to automatically tag stories, we de-
velop a model to classify these clauses that reaches
84.7% F-score for the highest-agreed clauses. Once
we can automatically differentiate among clause
types, we would like to use them to compare stories,
but, do ordinary people rely on these clause types
to compare narratives? To approach that question,
we pair stories and run experiments to understand
to what extent ordinary people (as opposed to liter-
ary experts) rely on Labov’s model to think about
similarities among these stories.

1https://roadtripnation.com/
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Our approach is intended to help inform ma-
chine learning methods aimed at studying personal
narratives and at modeling abstract information ex-
traction. To the best of our knowledge, this work is
the first to propose and develop an approach to un-
derstand whether ordinary people rely on Labov’s
framework to compare personal narratives and what
they perceive as similarities among those narratives.
We show that actions followed by the narrator’s
evaluation of these are the aspects non-experts con-
sider the most when they compare stories. Our
main contributions can be summarized as follows:

• We acquire annotations to comprehensively
label real-world spoken personal narratives,
amounting to 10,296 clauses under Labov’s
clause types, and develop a straightforward
strategy to classify those clauses.

• We explore to what extent people rely on
Labov’s framework to compare stories and
show that people tend to recognize better sim-
ilarities in action and evaluation clauses.

The rest of the paper is organized as follows. In
section 2, we present some main related work. In
section 3, we specify the story aspects to be used
in our experiments. In section 4, we describe the
uniqueness of our introduced narrative corpus. In
section 5 and 6 we describe results, and we end
with conclusion and future directions in section 7.

2 Related Work

Our work is preceded by substantial efforts toward
document (Blei et al., 2003; Dai et al., 2015; Yang
et al., 2016) and story (Mostafazadeh et al., 2016;
Chaturvedi et al., 2018; Iyyer et al., 2016; Anto-
niak et al., 2019; Fu et al., 2019) representation.
We find that most approaches to text similarity fo-
cus on non-narrative corpora (vor der Brück and
Pouly, 2019; Lin et al., 2013; Cer et al., 2017). We
also observe that most works in stories have been
developed for non-personal narratives.

An specific approach to story matching was
proposed by Chaturvedi et al. (2018), who used
movie remakes from Wikipedia as paired stories
and showed that even in that scenario it was chal-
lenging to match the remakes. Additionally, their
method does not generalize well to other story
types (or even movie plots) since they include spe-
cific movie parameters, like characters’ name and
gender, as the basis of their solution, which does

not apply to our case since we do not attempt to
match stories based on these surface-level indica-
tors. The closest work to ours was done by Nguyen
et al. (2014), who proposed a set of crowdsourcing
tasks to analyze perception of similarity in folk nar-
ratives. They tried various approaches to retrieve
these narratives. Nevertheless, they had in hand a
set of metadata labels that allowed them to match
narratives prior to any experiment.

How we narrate our stories was initially studied
by Labov et al. (1967). More recently, Swanson
et al. (2014) proposed the first mechanism to au-
tomatically classify Labov’s clauses (action, ori-
entation, and evaluation-type clauses) in personal
narratives based on clauses’ syntactical structure,
namely part-of-speech (POS). By using 50 short
stories from online mini-blogs, of diverse topics
and structures, they developed a well-defined set
of instructions to properly annotate Labov’s clause
types (referred to as baseline method and dataset
onward). However, personal narratives from spo-
ken stories set a more challenging context for both
annotation and collection (see section 4). We get
inspiration from these works to approach clause
types classification using newer techniques like
word embeddings (Pennington et al., 2014) and
neural networks (Kim, 2014).

Furthermore, as we learn to disentangle narra-
tive dimensions or aspects (namely, action, orienta-
tion, and evaluation-type clauses), we can use them
for other story representation tasks. For instance,
identifying the clauses within a story that tell peo-
ple’s intents/desires, reactions, and evaluation of
the events (e.g., emotions) can help train and eval-
uate models aimed at detecting, or planning plots
conditioned on, those underlying intentions and
reactions (Rashkin et al., 2018; Guan et al., 2019).

3 Story aspects of comparison

Stories can be thought to be similar in a variety
of dimensions; unlike most non-narrative texts,
stories have “meta” dimensions that go beyond
what is said (context of a story, actions that happen,
emotional content, speaker’s backgrounds, among
others). In this work, we explore to what extent
Labov’s model for personal narratives underlies
how non-expert people perceive story similarities.
We focus on the following three aspects:

Temporal organization (action clauses): These
clauses express a series of events. The narrator
might play with the story’s chronology, causing
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differences between narrative structures of one nar-
rator and another.

Contextual world (orientation clauses): These
clauses describe information about the context in
which actions occur; they serve to orient the au-
dience about people, places, time, and behavioral
situations.

Human needs and desires (evaluation clauses):
These clauses give significance and tell about the
purpose of telling that story; they express the nar-
rator’s needs and desires.

See figure 1 for an example of a narrative anno-
tated under Labov’s model for personal narratives.

4 Narrative corpus

We introduce the largest dataset of annotated spo-
ken personal narratives to our knowledge, from
now on referenced as Roadtrip Nation or RTN cor-
pus. These narratives were obtained from tran-
scripts of stories video-recorded by Roadtrip Na-
tion (RTN). In those videos, people from many
backgrounds share stories about their lives and ca-
reer pathways. The corpus comprises 10,296 nar-
rative clauses from 594 stories (each one told by a
different person), which account for more than 10
hours of people telling stories, each one averaging
17.1 clauses or 62 seconds long, where each clause
has on average 11 tokens.

To split narratives into clauses, we proceed as fol-
lows. For every sentence in the story, we take every
independent clause along with its dependent clause,
which account for one narrative clause. To deter-
mine clauses, we rely on top-level S* (S, SINV,
SBAR, SBARQ, SQ) tags from Penn Treebank II
(Bies et al., 1995). For each top-level S* tag, we
take its subtree along with hanging prepositions,
conjunctions, and adverbs.

While we propose to automatically split our data,
Swanson et al. (2014)’s data (our baseline dataset)
was split by trained humans. We compared our
strategy implemented using NLTK with their strat-
egy by spliting their stories as well; we found that
our method differs at most in one clause from their
manually split stories.

4.1 Uniqueness of this narrative corpus

This corpus is particularly well-suited to study oral
personal narratives for a few reasons. First of all,
these stories were all video-recorded and manually
transcribed (by Roadtrip Nation (RTN)2). These

2https://roadtripnation.com/

Figure 1: A fragment of a personal narrative in the RTN
corpus annotated by Turkers using Labov’s model.

stories are raised from spontaneous questions dur-
ing real-world interviews to adults conducted by
high school or college students, which produces a
fluid and constantly changing dynamic.

Additionally, we recognize the storytellers’
awareness of the listeners due to the presence of
oral discourse markers that are prominent in oral
narratives, such as “you know,” “right,” “anyway,”
“like,” “ah,” “uh,” among others. Particularly, “you
know” is the most frequent bigram in our dataset
(0.5% of all bigrams, 437 appearances) compared
to the baseline dataset to study Labov’s model,
which has “you know” mentioned only 3 times
throughout all stories (Swanson et al., 2014). Fur-
thermore, we find that the word “you” appears in
the RTN stories an average of 5.3 times per story
vs. 1.4 times in the baseline stories.

Besides giving a background (orientation
clauses) and telling events (action clauses), RTN
stories are specifically produced to display mean-
ingful life experiences or pathway decisions to
make the listener reflect or engage with the sto-
ries. These purposes emphasize Labov’s evaluative
function (evaluation clauses) of describing the sto-
ryteller’s motivation in telling their story.

Here are two randomly sampled full transcripts
(i.e., RTN stories), where we can see some of the
spectrum of the stories in this corpus:

1. “In college, I was figuring my life out. I didn’t
have an exact plan in terms of what I wanted to do.
Everybody that acted in the capacity of a guidance
counselor to me helped mold me into where I am
today. For instance, when I was in high school,
my guidance counselor told me , Chris, based on
what I know about you, I know you love to be in big
cities. I know you love to study human behavior
and psychology. We discussed where I might end up
in college , so I chose to go to NYU based on that
feedback. And when I got my first job in marketing
analytics, it’s when I realized that hey, this is really
cool, I actually really like this. Don’t feel like you
have to know all the answers right now. The more
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strict you are in terms of what you think you want
to do, the less options you’ll have. So think outside
the box and keep an open mind.”

2. “And slowly and slowly, I started doing small
jobs, you know, like, you know, I think one of my
first jobs was doing, like, you know, ironing Peter
Gabriel’s suit and giving him powder for Good
Morning America. Like, you know, kind of little
things like that. But already, working with musi-
cians , I was like, ‘This is is where I belong.’ So,
a magical thing happened at this time. I got in-
troduced to Lenny Kravitz , and Lenny Kravitz, at
the time, ah, was, uh, a poor, starving musician.
Eventually, after working with Lenny for a long
time, my work started to grow , and I was working
with more and more people and doing other things.
So, I realized that ... the next step for me... would
be to work on a movie.”

Note that in written stories (such us the ones in
the baseline dataset), all the oral discourse markers
present in this last story can be proofread and ex-
tracted. However, these are inherent to spontaneous
oral narratives.

Finally, even though we ran our experiments
prompting Turkers to “focus on the content and
not the speakers’ characteristics such as accent or
gender” (first note in full instructions), the released
dataset3 includes speakers’ gender to encourage
further analysis across people with different back-
grounds but similar stories. From results in section
6.2, we estimate that Turkers were rarely biased
in their assessment of similarity towards gender
because when they were asked to explain why two
stories were similar, not one reason related to gen-
der (out of 180 explained reasons).

4.2 Annotation process

We followed the annotation guidelines, for Labov’s
model extended label set, constructed by trained
researchers in Swanson et al. (2014) to explain to
Mechanical Turkers how to annotate our clauses.
Since both domains of stories (RTN vs. baseline
data from Swanson et al. (2014)’s) are different,
we ran earlier small quality-control experiments to
understand whether workers could reach an agree-
ment and, if so, generate labeled stories to add as
examples to the task description. Turkers were also
invited to provide feedback during these early ex-
periments; after two iterations, we converged to a

3https://github.com/social-machines/
acl-nuse-personal-narratives

detailed task description. Finally, each story was
assigned to three different workers, and an average
of 2.23 workers agreed on every clause.

Aiming for clean annotations, along with in-
jecting gold examples to reduce randomness,
workers were rewarded $1.35 per story, were
restricted to living in a English-speaking coun-
try, had a HIT Approval Rate ≥ 99 and Num-
ber of HITs Approved ≥ 500, and had been
granted Masters status on the platform. We made
annotation tasks full description, some audible
stories, and collected data for this task avail-
able at https://github.com/social-machines/
acl-nuse-personal-narratives. Gold labels
were assigned by simple majority, and for those
clauses without agreement, we randomly selected
one of the assigned labels by annotators. Find the
label distribution in table 1. Overall, we have 9,234
clauses with at least 2 Turkers agreed on them, and
3,495 clauses with 3 Turkers agreed on them.

5 Narrative clauses classification

Learning to classify narrative clauses can help us
disentangle personal narratives’ dimensions. Our
specific intention is to understand how this decom-
position helps compare stories in different aspects
(clause types are assumed to be aspects or dimen-
sions within stories for this work). Additionally,
each of these clause types can be used indepen-
dently for various objectives. For instance, action-
type clauses could guide events extraction where,
even though the narrator might play with the story’s
chronology, having these clauses apart can help
find causal or temporal orders. Also, identifying
orientation-type clause can help create a grounded
understanding of the story, where actions and emo-
tions depend on the story’s environment described
in these clauses. Finally, evaluation-type clauses
could bring to surface narrators’ mental states,

Clause type RTN baseline
Action 26.7% (2.15) 24.2%
Evaluation 40.0% (2.29) 50.0%
Orientation 29.7% (2.24) 24.2%
Not story 3.6% (2.13) 1.6%
Total clauses 10,296 1,602

Table 1: Label distribution. Find between parentheses
the average agreement for each clause type. Note that
the evaluation clause type is the most common clause
type in both datasets.
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which could push forward research on language
models conditioned on mental states (Rashkin et al.,
2018).

We propose to use a convolutional neural net-
work (CNN) with max-over-time pooling to clas-
sify clauses (Zhang and Wallace, 2015). More
specifically, our model consists of a non-static
CNN as in Kim (2014), where we initialize em-
beddings using d = 300-dimensional GloVe pre-
trained vectors (Pennington et al., 2014) and con-
catenate to each vector a one-hot vector (45-
dimensional) that encodes POS tags associated
with every token. We perform 1-max pooling with
ReLU activations over each map generated by fil-
ters of sizes 2, 3, and 4; we use 30 filters per size.
Then, we use two linear ((90, 45), (45, 3)) lay-
ers with dropout of 0.3 before the final softmax
layer. We also explored fine-tuning BERT (Devlin
et al., 2018) and found that, in most tried scenarios,
this simple word-based CNN-based model outper-
formed BERT in accuracy, maybe due to the small
fine-tuning dataset.

We randomly split the RTN dataset into 86%
for training, 7% for validation, and 7% for testing,
removing the “not story”-clause type. This gives
7,698 training, 619 test, and 634 validation clauses
with agreement ≥ 2. Our vocabulary has around
6,000 tokens, including an unknown word token
we use for uncommon words (≤ 2 appearances).

For training, we used 60 epochs and early stop-
ping based on the validation error. We trained with
different number of filter, linear layer sizes, batch
sizes and learning rates set through experimenta-
tion based on performance. We find our best results
using Adam with a learning rate of 5e-5 and use
batch sizes of 64.

5.1 Baseline

We compare our best architecture to the baseline
approach proposed by Swanson et al. (2014). To
reproduce this baseline, we follow the authors’ fea-
ture engineering approach and use their data split.
By running experiments, we observed correspon-
dence with the top 5 feature-relevance ranking that
the baseline model found (POS:IND-VBD being
the top 1). This informed our decision of using
POS in our proposed approach as well. Note that,
originally, the baseline model also included rela-
tive clause position within a story (which we are
not including here since we mostly care about the
clause purpose given its language), lexical seman-

tic categories from LIWC (Pennebaker et al., 2001),
dependency relations (DEP), and lexical unigrams
(STEM). Using all these engineered features, Swan-
son et al. (2014) reached an F-score of 76.7% on
the cases with the highest annotator agreement. We
refrained from using all but part-of-speech (POS)
engineered features and still achieved 72.7% F-
score by replicating their approach (see table 2).

5.2 Results

We report results for models trained and tested with
(disjoint) sets composed only of clauses where at
least two annotators agreed on their corresponding
clause types, and as described in section 4.2, gold
truth labels were assigned by simple majority.

Results are shown in table 2. Our results demon-
strate that a simple CNN with pre-trained embed-
ding and no feature engineering reaches high per-
formance in our RTN dataset. Furthermore, we can
see that our proposed model (trained on RTN data)
still achieved high performance while evaluated on
the baseline test set, even though these datasets are
from different domains. On the other hand, the
baseline support vector machine (SVM, linear and
l1-penalized) (Cortes and Vapnik, 1995) model per-
forms poorly when evaluated in RTN data, likely
because it only uses POS (syntactic) features to
represent clauses, and both written (baseline) and
spoken (RTN) clauses pose different challenges in
syntactical structure. We address these challenges
by taking advantage of word embeddings’ represen-
tational power. From this, we see that our approach
(model and dataset) can be generalized to the base-
line dataset better than the other way around.

Model RTN test baseline test
CNN - RTN 84.7% ∗62.9%
SVM - baseline ∗37.1% 72.7%
RF - RTN 48.3% ∗52.5%
Random (see table 1) 40% 50%

Table 2: F-scores of our model vs. the baseline for
clauses of highest agreement (= 3) in test sets. “- RTN”
(236 clauses) and “- baseline” (238 clauses) refer to
what dataset was used for training and validation. “∗”
implies testing in a domain that was not part of the train-
ing set (RTN vs. baseline dataset), where we trained
in one dataset and predicted on the other. Among the
different feature-based models that we tried, a linear l1-
penalized support vector machine (SVM) and a random
forest (RF) reached highest performance. For clauses
with agreement ≥ 2, we obtained 68.31% F-score (619
clauses).
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Additionally, note that if a model always predicts
the most common label (or randomly assigns them),
the micro-F1-score (i.e., accuracy) for RTN would
be 40% and for the baseline 50%. We found that
when we used the feature-engineering approach
proposed by Swanson et al. (2014) in the RTN cor-
pus, the best trained and tested standard model, a
random forest with 100 estimators (RF) (Breiman,
2001), does not perform well in this new corpus.
Though, from table 2, we also see that it still does
better than random (third vs. fourth row). This
result suggests that sentence structure and part-of-
speech (POS) do not generalize well to classify
narrative clause types, as one would expect from
POS being predominant in the top 10 most rele-
vant features in this feature-engineering (original
and baseline) approach. While the baseline model
found POS features to be highly relevant, since our
model uses word embeddings, POS information
only contributed 2 – 3% to the F-score. Further-
more, these results stress the difference between
both story domains: video-recorded spoken narra-
tives (RTN) vs. mini-blog written stories (baseline
from Swanson et al. (2014)).

To sum up, the fact that a simple CNN per-
forms well on this classification task, as illustrated
in table 2, reflects the high disentangling power
that Labov’s model proposes for analyzing spoken
personal narratives. Finally, since we can auto-
matically annotate and thus disentangle narrative
clauses under this framework, our approach shows
to be plausible, so we now proceed to explore as-
pects of similarity.

6 People’s perception of similarity

Aiming to understand the aspects (i.e., clause types)
that ordinary people attend to the most when they
think about similarities among stories, we pro-
ceeded as follows. We represent each story as a set
of narrative clauses, where each clause is initially
encoded into a high-dimensional vector by using
the Universal Sentence Encoder (USE) introduced
by Cer et al. (2018). Next, given stories s and s’, for
each clause in s we find the closest clause in cosine
similarity in s’ (s → s’), and vice versa (s’ →
s), and obtain an average similarity score. Using
this mechanism, we match stories only at clause-
type subsets (action, evaluation, or orientation-type
only). Finally, we sample 60 story pairs with av-
erage cosine similarity ≥ 0.5 for one of the clause
types matches. See appendix A for some sample

matched stories.
For our experiments, we use these 60 stories,

which are presented to Turkers in audio form only
(as opposed to transcript text). While reading and
listening might require different attention spans,
since Labov’s sociolinguistic model focuses on sto-
ries that are produced orally (just like these) and
these are short stories – 62 seconds long on average
– we rely on Turkers’ auditory cognitive processing.

6.1 Annotation task: matching stories

We prompted: “Which one of the following stories,
A or B, was the most similar to the main story
(and why)?”. Each main story was annotated twice,
switching order for A and B; one of these stories is
matched at only one clause type level and the other
is randomly selected. Table 3 shows these results.

Match only at % of times detected
Action 67.8%
Evaluation 60.9%
Orientation 48.0%

Table 3: What aspects are paid attention. For those sto-
ries matched at the action-clause level, 67.8% of times
Turkers recognized the matched story accurately, and
selected the random story the remaining 32.2% of the
times (these action-level matched stories were more
than two times recognized correctly than incorrectly).
Stories matched in evaluation-type clauses were also
recognized accurately 60.9% of the times, which is
50% more than those stories that were wrongly rec-
ognized (60.9% vs. 39.1%). As for orientation-level
matches, these were recognized somewhat randomly
(48% of the times Turkers selected the matched stories
and 52% of the times they selected a random story).
Some reasons behind mismatches could be (1) that
Turkers might be paying attention to other not covered
aspects (further explored in section 6.2), (2) some ran-
domness on annotations, and (3) the matching strategy.

From this experiment, we conclude that action
and evaluation-type clauses were relevant for non-
experts when they compared stories for similarity.
Hence, our hypothesis on whether ordinary people
rely on these Labov’s aspects to compare narratives
proved to be true for both action and evaluation
aspects of a story but not for the orientation aspect.

6.2 Map of crowdsourced aspects to Labov’s

Trying to understand how Turkers perceived the dif-
ferent aspects, and where mismatches could possi-
bly come from, for the same 60 stories, we selected
the story C that has score ≥ 0.5 at a given match
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and has the smallest matching score for the other
clause types. We asked “Explain in what aspects
(at least three) are the following personal narra-
tives similar”, hoping that Turkers would give rea-
sons related to the matched dimensions. Note that
with this open-ended question, Turkers were invited
to think about any aspects that came to mind, thus
we did not impose aspects on them beforehand.

Next, we map their responses to Labov’s aspects;
for example, the explanation “They both have pes-
simistic thoughts...” refers to how a narrator feels or
perceives the situation → evaluation clause
type. Some results of this mapping strategy are
illustrated in table 4, and results for this mapping
process are summarized in table 5.

Explanation Mapped aspects
“Both started out in one direction

and switched to a different field.”
action

“Both people spoke about intense

passion for something.”
evaluation

“Both were from small towns.” orientation

“Both speakers suggest [ac] pursuing

their career goals [ev] makes them

a better person in real life too.”

action,

evaluation

Table 4: Examples of mapped explanations. We an-
alyzed every open-ended explanation given by Turk-
ers and mapped them to Labov’s model according to
what aspects these explanations were mostly referring
to. Note that not all explanations were granular, hence,
for some of them we highlighted more than one aspect
(see fourth row in this table).

We show that for action- and evaluation-type
clauses, Turkers mentioned aspect of similarity re-
lated to these clauses at least twice as often (as
relevant) as the less relevant aspect in the matched
stories, which (again) proves that these Labov’s
clause types can work as aspects of similarity.

As for orientation-type clauses, while they are
still identified as reasons for similarity as illus-
trated in table 5, these are not the main reason
to match two stories. We argue that this is due to
the nature of our prompts to Turkers, which specifi-
cally asked for “stories” (section 6.1) or “narratives”
(section 6.2); in ordinary people’s mind (i.e., non-
narrative experts), both of these concepts might
not relate to the physical space or context where
events and emotions/intentions happen, causing
Turkers to not pay as much attention to them. It
might also be that since all RTN stories are within
the pathways/inspiration/career domain, people get

engaged with that part as opposed to if our do-
main were more diverse in topics, which would
then have led people to recur to the orientation
aspect (background/set-up/place) to match them
in the absence of common feelings or similar ac-
tions/decisions among stories.

Match at Action Evaluation Orientation
Action 100% 88% 44%
Evaluation 95% 90% 45%
Orientation 92% 96% 58%

Table 5: Aspects referenced in 180 explanations of sim-
ilarity (3 for each of 60 stories). As expected from re-
sults in table 3, explanations related to action and evalu-
ation aspects are highly present in detected reasons for
similarity. We see that, for most story pairs, Turkers
gave explanations regarding actions that happen within
stories. In particular, for pairs matched at action-clause
level, every pair was said to be similar due to similar
actions. For evaluation-clause level matches, we find
explanations mapped to that aspect twice as often as for
the least present aspect (90% vs. 45%). Finally, while
orientation-type clauses were not perceived as a main
similarity aspect (see table 3), we find that for stories
matched at orientation clauses, Turkers recognized this
aspect to be a reason for similarity more often than for
any other matches (58% / 45% = 1.28 times).

7 Conclusion

We introduce the largest corpus of annotated spo-
ken personal narratives, to our knowledge, and de-
velop a straightforward method to classify these
narratives’ clauses using Labov’s sociolinguistic
model. Our model’s high performance in classifica-
tion reflects the disentangling power that Labov’s
model offers for analyzing oral personal narratives.
Only by being trained in our introduced corpus, our
model performs well in an earlier proposed dataset
of written stories. Furthermore, we propose the
first attempt to understand whether ordinary people
(i.e., non-narrative experts), such as Mechanical
Turkers, rely on Labov’s model to compare per-
sonal stories, and show that these people do rely
on two out of three Labov’s aspects of narrative.
Namely, action-type and evaluation-type clauses
are perceived as central aspects of comparison, but
the same does not apply to, and remains unresolved
for, orientation-type clauses. One natural next step
would entail shedding light on how different ques-
tions’ wording and emphasis, aimed at matching
stories, affect what people think of as similarity as-
pects. We hope that these precursory findings about
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the aspects that proved to underlie story-matching
could also be used in a broader set of tasks, such
as finding causal or temporal relationships between
events, inferring mental states, or grounding ac-
tions and emotions in a story’s set-up.

Finally, we acknowledge that we have only
scratched the surface of this wonderfully rich space
of personal narrative representations and of what
people focus on when they compare stories. Our
overarching goal, of modeling human judgment of
narrative similarity and building a machine capable
of replicating that behavior, leaves untouched sev-
eral questions that future research should explore.
For example, what other aspects should be exam-
ined to represent personal narratives, how to decide
the relative relevance of these aspects, and how to
model similarity judgments within aspects.
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A Sample matched stories

These stories were matched in the action-clause
level (stories A and B, with a similarity score of
0.58), and in the orientation-clause level (stories B
and C, score of 0.50). Note that some clauses are
not displayed due to space limitations.

Narrative clause Clause type
“Did I have the pathway figured out,

by no means, no at that time, right?
evaluation

So I also got involved in a atmospheric

chemistry lab
action

, so nothing to do with animals orientation

, but a lot to do with the environment. orientation

I loved that, but I was like, well evaluation

, I really wanna still apply this to animals. evaluation

So I went on to graduate school action

, and I enjoyed teaching, cuz I also

worked as a teaching assistant at CSU

Long Beach.”

action

Story A

Narrative clause Clause type
“When I was in school, I wanted to

be a doctor.
orientation

I went to college action

and I realized I actually didn’t wanna

be a doctor.
evaluation

I wanted to do something more in

public health.
orientation

And so I went to graduate school action

and I ultimately got a PhD in

international relations and global health

cuz I’m interested in this question on

sort of a global level.

action

So although I started off wanting to be

a doctor and although I never became a

doctor, except that I guess I do get to

be called Dr. Clinton because I have

a doctorate degree.

orientation

I’ve figured out what my passion is and

how to do that in a way that feels right

for me.”

evaluation

Story B

Narrative clause Clause type
“Up until the time I got to college orientation

, I still had the aspiration to maybe

go to medical school.
orientation

Until I started to really reality

hit in that my family wasn’t very

financially well off

evaluation

, and the reality of the fact that

medical school costs a lot of money

, takes a long time.

evaluation

And then it kinda broad my horizons

a little bit in that I could explore

some other options.”

action

Story C
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Abstract

In this paper, we propose the use of Message
Sequence Charts (MSC) as a representation for
visualizing narrative text in Hindi. An MSC
is a formal representation allowing the depic-
tion of actors and interactions among these ac-
tors in a scenario, apart from supporting a rich
framework for formal inference. We propose
an approach to extract MSC actors and inter-
actions from a Hindi narrative. As a part of
the approach, we enrich an existing event an-
notation scheme where we provide guidelines
for annotation of the mood of events (realis vs
irrealis) and guidelines for annotation of event
arguments. We report performance on multi-
ple evaluation criteria by experimenting with
Hindi narratives from Indian History. Though
Hindi is the fourth most-spoken first language
in the world, from the NLP perspective it has
comparatively lesser resources than English.
Moreover, there is relatively less work in the
context of event processing in Hindi. Hence,
we believe that this work is among the initial
works for Hindi event processing.

1 Introduction

Narratives are used to communicate complex
ideas, detailed accounts of complex events or ar-
guments about one’s beliefs (Valls Vargas, 2017).
Moreover, a narrative is a powerful tool not just
from entertainment perspective but is one of the
core component of human memory, knowledge
and intelligence (Schank and Morson, 1995). Nar-
rative texts are common in History where they
mostly describe events that have happened in the
past. Narrative text can also be routinely seen in
news articles reporting events that have happened
(or about to happen) in various political, corporate
and social walks of a country. For multiple appli-
cations in text analysis, it becomes important to

∗Work done during internship at TCS Pune.

EksAno\ n� a\g}�j srkAr s� BArF kr m�\ C� V
kF mA\g kF। (The farmers demanded a waiver in the

heavy taxes from the British Government.)

jb yh -vFkAr nhF\ EkyA gyA to srdAr
pV�l aOr gA\DFjF n� EksAno\ kA n�t�(v
EkyA aOr u�h� kr n d�n� k� Ely� þ�Ert
EkyA। (When the British government didn’t agree, Sardar

Patel and Gandhi led them and motivated them to not pay

the taxes.)

a�t m�\ srkAr J� kF aOr us vq
 kro\ m�\
rAht dF gyF।
(In the end, the government agreed and that year, waivers

were provided in the tax.)

Table 1: Example Text Narrative

understand and analyse such narratives. A narra-
tive has two key aspects, plot also referred to as
story and discourse, the way in which the plot is
described (Chatman, 1975). In this paper we fo-
cus on visualization of the plot aspect of a Hindi
narrative.

Hindi is an Indo-Aryan language spoken by
around 300 million people in India. Addition-
ally, Hindi is the fourth most-spoken first lan-
guage in the world1. In comparison to English,
Hindi has different linguistic characteristics lead-
ing to a different set of NLP challenges. First
of all, Hindi is a Subject-Object-Verb (SOV) lan-
guage with relatively free word order, as against
the SVO order in English. Secondly, Hindi does
not have high accuracy NLP toolkits such as Stan-
ford CoreNLP (Manning et al., 2014). In this pa-
per, we make one of the first attempts to facilitate
event processing in Hindi by proposing annotation
guidelines for events as well as their arguments.

We propose to represent a Hindi narrative us-
ing Message Sequence Charts (MSC) (Rudolph

1https://en.wikipedia.org/wiki/Hindi
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Figure 1: MSC of example text narrative described in Table 1

et al., 1996). MSC is a widely used notation to
depict interactions among components of commu-
nicating devices. In an MSC, a vertical line repre-
sents a component and horizontal arrows indicate
message from one component to another. We as-
sume actors (or entities) in a narrative as compo-
nents and message among the components as in-
teractions among the corresponding actors. As an
example, consider the text narrative from the In-
dian Independence Movement in Table 1 and the
corresponding MSC in Figure 1.

We also address the problem of automatically
extracting the MSC representation from a given
narrative text. MSC extends the notion of a sin-
gle event-timeline (Bedi et al., 2017) for a narra-
tive by providing a timeline per actor (entity of in-
terest). MSC representation captures all the ac-
tors and interactions in an easy to visualize man-
ner and hence make the text more comprehensi-
ble. Further, the representation’s support for infer-
ence mechanisms opens up possibilities of tack-
ling natural language understanding problems like
text comprehension and question answering. Our
work is similar to (Palshikar et al., 2019) to repre-
sent a English narrative using MSC. However, due
to intricacies of events in Hindi language, their ap-
proach cannot be used for construction of MSC of
a Hindi narrative.

The key contributions of the paper are (i) we
extend an existing scheme of annotation of events
(Goud et al., 2019); we provide guidelines for an-
notation of mood of events (realis vs irrealis) and
guidelines for annotation of event arguments, (ii)
we propose an approach to identify event predi-
cates and their arguments, (iii) MSC based visu-

alization of actors and interactions, (iv) we report
performance on multiple evaluation criteria by ex-
perimenting with four Hindi narratives from In-
dian History.

2 Key Annotation and Extraction
Challenges for Events in Hindi

Annotation and extraction of events and their ar-
guments from English texts is a challenging task
(Mitamura et al., 2015). In case of Hindi there
are more challenges as compared to English. Fol-
lowing are the key challenges we observed while
processing Hindi narratives.

I. Absence of annotation guidelines and la-
belled data similar to ACE: Only few attempts
have been made to define comprehensive event an-
notation guidelines for Hindi. (Goud et al., 2019;
Goel et al., 2020) propose a set of guidelines for
annotation of event mentions in Hindi. However,
they do not consider arguments of events, which
are vital for narrative processing.

II. Annotation of events with Light Verb
Constructs (LVCs): LVCs are formed from a
commonly used verb and usually a noun phrase
(NP) in its direct object position, such as have a
look or take an action. For example, in the sen-
tence rAm n� EktAb dF (’Ram ne Kitab di’; Ram
gave the book), dF (di;give) is the event, however
in the sentence rAm n� EktAb Ko dF (’Ram ne
Kitab kho di’; Ram lost the book.), Ko dF(’kho
di’; lost) is the event. Similarly, in the sentence
rAm s� EktAb g� m ho gI (’Ram se kitab gum ho
gayee’; Ram lost the book), g� m ho gI (’gum ho
gayee’; lost) is the event. As compared to English,
LVCs are more common in Hindi, have different
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characteristics and are used as a preferred method
for introducing new predicates into the language
(Vaidya et al., 2016). A state-of-the-art approach
(Chen et al., 2015) propose a supervised approach
to identify LVCs in English using resources like
PropBank, the OntoNotes sense groupings, Word-
Net and the British National Corpus. However, it
is difficult to extend this approach for Hindi as it
would require extensive efforts to create labelled
data based on such resources for Hindi.

III. Annotation of nominal events: An event
is a nominal event if it is described by a noun. An-
notation of nominal events is a challenging task, as
eventiveness of a noun depends on the context in
which it is used. In this paper, we restrict our focus
to events pivoted around verbs in the past tense as
interactions. We plan to explore nominal events in
the future.

3 Proposed Annotation Guidelines and
Approach

As highlighted earlier, an MSC consists of a set of
actors and interactions among them. The proposed
approach is accordingly divided into two major
stages: (1) Extraction of actors and their corefer-
ence resolution; (2) Extraction of interactions with
their sender and receiver arguments.

3.1 Actor Extraction and Coreference
Resolution

Since we are focusing on narratives of histori-
cal events, we assume the actors to be entities
of type PERSON, LOCATION and ORGANIZA-
TION. Further, we are interested in identifying all
types of actor mentions - proper nouns, common
nouns and pronouns. To extract proper noun men-
tions, we perform Named Entity Recognition of
the text and mark all noun phrases of type PER-
SON, LOCATION and ORGANIZATION as ac-
tors. Since Hindi is a relatively resource-poor lan-
guage and it is very costly to generate necessary
labeled data to train a supervised model, we pro-
pose an unsupervised technique to identify actors
based on Wordnet. Given a noun which is the head
of a noun phrase, we query its hypernym hierar-
chy to check if specific senses of -TAn (sthaan;
place), "�/ (kshetra; region), B� -BAg (bhu-bhaag;
geographical area), &yEÄ (vyakti; person), mAnv
(maanav; person) and sm� dAy (samudaay; group)
are found. If so, we tag the type of the respec-
tive noun phrase corresponding to the hypernym

found. As pronouns are a closed set of words, we
use a manually prepared list of pronouns and cor-
responding types to identify all pronoun mentions
of the actors. It is ensured that the list does not
include any demonstrative pronouns (such as yh,
vh, un, us). Each pronoun in the text is checked
against the list and marked as an actor, if found.

As the actor mentions are to be visualized on
a MSC, it is not sufficient to depict only head
words of actor phrases. For example, srdAr pV�l
(Sardar Patel is more informative as well as de-
scribes the complete entity than just the headword
pV�l (Patel). Hence, we propose a simple depen-
dency parse based approach to identify the com-
plete noun phrase given the head word. We append
to the head word all nouns which are dependent
on it through the compound dependency. For ex-
ample, the word mhA(mA (Mahatma) is dependent
on the head word gA\DF (Gandhi) through the com-
pound dependency and hence, the complete phrase
becomes mhA(mA gA\DF (Mahatma Gandhi). We
also append any adjectives/quantifiers which mod-
ify the head word using the amod dependency.
For example, þTm þDAnm\/F (pratham pradhan-
mantri; first prime minister) is formed as a com-
plete phrase where þTm (pratham; first) modi-
fies þDAnm\/F (pradhanmantri; prime minister) us-
ing the amod dependency. A complex construct
observed is a noun dependent on the head word
with a nmod dependency with no verbs or prepo-
sitions occurring between the two. Such nouns
are also considered part of the complete phrase
and are handled through this approach. For ex-
ample, in the phrase -vt\/tA s\g}Am s�nAnF
(swatantrata sangram senani; freedom fighter), the
word -vt\/tA (swatantrata; independence) is de-
pendent on the head word s�nAnF (senani; soldier)
through the nmod dependency with only a noun
s\g}Am (sangram; struggle) appearing in between.

For coreference resolution, we employ the tech-
nique proposed in (Ramrakhiyani et al., 2018).
The authors assume gold actor mentions as input
and predict coreferences between the actor men-
tions. They apply a set of linguistically motivated
rules coded in a Markov Logic Network (MLN)
based framework to perform the coreference reso-
lution. In this paper, we develop an MLN with the
stated rules and input it the extracted actor men-
tions to perform the coreference resolution. We
also annotate the first observed mention in each
mention cluster as the canonical actor mention for
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that coreference group. The canonical actor men-
tion is used for its depiction on the output MSC.

3.2 Interaction Extraction
An interaction in the MSC notation is composed
of the central event and its sender and receiver ac-
tor arguments. To extract interactions it hence be-
comes important to identify the meaningful events
and their actor arguments. In this paper, we fo-
cus on events which are primarily described by
verbs. We define such verbal events based on lin-
guistic properties of Hindi verbs (Vaidya, 2015).
We also propose a set of annotation guidelines to
mark such verbal events and their arguments.

3.2.1 Verbal Events
A verbal event can be of two types: 1) simple pred-
icate where a verb triggers the event. For example,
in the sentence, rAm n� aAm KAyA (Ram ne aam
khaya; Ram ate a mango.), the verb KAyA is a sim-
ple predicate, 2) complex predicate where an event
is triggered by a verb and an additional element
of type verb or adjective or adverb or borrowed
English verb or noun (Vaidya, 2015). A complex
predicate further has two important types: 1) con-
junct predicate where the additional element is of
type noun. For example, in the sentence, 2017 m�\
rAm kA j�m h� aA (2017 me Ram ka janma hua;
Ram was born in 2017.) the verbal predicate h� aA
triggers an event with the additional noun element
j�m, 2) compound predicate where the additional
element is of type verb. For example, in the sen-
tence, rAm n� EktAb Ko dF (Ram ne kitab kho di;
Ram lost the book.), the verbal predicate dF trig-
gers an event with the additional verb element Ko.

3.2.2 Annotation of Events
The proposed annotation guidelines for marking
verbal events are described as follows:
I. In this paper, we restrict our scope to events

represented using verbs. For example, in the
following sentence mho(sv (mahotsav; festi-
val) is not annotated as an event:
EPSm mho(sv k� dOrAn p� rAn� aEBn�tA
pDAr� (film mahotsav ke dauran purane ab-
hineta padhare; senior actors arrived during
the film festival)

II. The head verb of an event predicate is tagged
as PIVOT. If an event predicate is a conjunct
predicate, its noun element is tagged as
P-CONJ. In case of a compound predicate,
the verb element of the head verb is tagged

as P-COMP. Following are the examples of
conjunct predicate and compound predicate
annotated as per this guideline:

Conjunct predicate:
unkF Ef"A︸ ︷︷ ︸

P-CONJ

m� Hyt, -vA@yAy s� hF h� I︸︷︷︸
PIVOT

(unki shiksha mukhtah swadhyay se hui;His
education happened mainly through self-
learning)

Compound predicate:
u�h� g}h m\/F kA kAy
 sO\pA︸︷︷︸

PIVOT

gyA︸︷︷︸
P-COMP

(unhe grha mantri ka karya saupa gaya;He was
made in-charge of the home ministry)

III. Based on the guidelines in (Mitamura et al.,
2015), events with realis mood are considered
valid events. An event is in realis mood, if it
has explicitly happened in the past. On the
other hand, if an event has irrealis mood then
we can not say whether the event has actually
happened or not. Following are examples of
sentences with realis and irrealis mood events:

• Realis: l\dn jAkr u�ho\n� b{Er-VrF kF
pYAI kF
(landan jakar unhone baristari ki padhai ki;
He went to London and studied law)
• Irrealis: yEd srdAr k� C vq
 aOr jFEvt

rht� to BArt kA kAyAkSp ho jAtA
(yadi sardar kuch varsh aur jeewit rehte to
pure bharat ka kayakalp ho jata; If Sardar
remained alive for a few more years, India
would have been transformed.)

IV. Only punctual events are annotated as events.
An event is punctual if it “does not have a
transitional phase between its start and end
point” (Kay and Aylett, 1996). This implies
that a process in continuation is not punctual
and hence not marked as a valid event.

• Punctual event: EksAno\ n� a\g}�j srkAr
s� BArF kr m�\ C� V kF mA\g kF
(kisano ne angrejh sarkar se bhari kar me
chut ki mang ki; The farmers demanded the
British government, a waiver in the heavy
taxes)
• Non-punctual event: g� jrAt kA K�XA K\X

un Edno\ s� K� kF cp�V m�\ TA
(gujrat ka kheda khand un dino sukhe ki
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Algorithm 1: Identification of Event Predi-
cates

Input: Sentence s
Result: E : List of event predicate tuples:

< PIV OT, P -CONJ, P -COMP > in
sentence s

1 E := ∅ // list of event predicates
2 Sd := GetDependencyTree(s);
3 root := Sd.root // get the root of the

dependency tree
4 if root is a past tense verb then
5 e :=<>; e.PIV OT = root;
6 E := E ∪ e;
7 foreach child c ∈ Sd.root.children do
8 if

dep rel(c, root) ∈ [advcl, conj, acl : relcl]
then

9 e :=<>; e.PIV OT = c;
10 E := E ∪ e

11 foreach event predicate e ∈ E do
12 foreach child c ∈ Sd.e.children do
13 if dep rel(c, e) == compound and c is a

noun then
14 e.P -CONJ = c

15 else if dep rel(c, e) ∈ [aux, auxpass] and c
is an auxiliary verb then

16 e.P -COMP = c

17 return E

chapet me tha; Those days Gujarat’s Kheda
district was affected by drought.)

• Verbs appearing in the authors’ opinions
are not considered valid events. For ex-
ample, the verbs in the quoted part jAe\g�
(jayenge;will go) and h{ ( hai) of the follow-
ing sentence are ignored:
srdAr pV�l n� k�vl itnA khA “ÈA hm
govA jAe\g�, k�vl do G\V� kF bAt h{”
(sardar patel ne kewal itna kaha “kya hum
goa jayenge, kewal do ghante ki baat hai”;
Sardar Patel only said “Will we go to Goa,
its a matter of only two hours”.)

3.2.3 Annotation of Event Arguments

We consider an actor who initiates or triggers an
event as the sender of the event. All other actors
that participate in the event are considered as re-
ceivers of the event. For example, in the sentence
rAm n� rAj� ko l�dn B�jA (ram ne raju ko lon-
don bheja; Ram sent Raju to London), rAm is the
sender of the event B�jA, while rAj� and l�dn are
its receivers.

Algorithm 2: Identification of Interactions
Input: Sentence s, E = List of event predicate tuples:

< PIV OT, P − CONJ, P − COMP > in
sentence s, A = List of actors in s

Result: I = List of tuples:
< SENDER,PIV OT,RECEIV ER >

1 I := ∅ // list of interactions
2 Sd := GetDependencyTree(s);
3 root := Sd.root // get the root of the

dependency tree
4 rootSender := NULL;
5 rootCONJ := NULL;
6 foreach Event e ∈ E do
7 p := e.PIV OT n := e.P -CONJ

i :=< NULL, p,NULL >;
8 foreach child c ∈ Sd.p.children do
9 if dep rel(c, p) == nsubj and c ∈ A then

10 i.SENDER := c;
11 if p is root then
12 rootSender := c;
13 rootCONJ := n

14 else if dep rel(c, p) ∈ [dobj, nmod] and
c ∈ A then

15 i.RECEIV ER := c

16 if i.SENDER is NULL or i.RECEIV ER is
NULL then

17 foreach child c ∈ Sd.n.children do
18 if i.SENDER is NULL and

dep rel(c, n) == nsubj and c ∈ A
then

19 i.SENDER := c;
20 if n == rootCONJ then
21 rootSender := c

22 else if i.RECEIV ER is NULL and
dep rel(c, n) ∈ [dobj, nmod] and
c ∈ A then

23 i.RECEIV ER := c

24 if i.SENDER is NULL and e is not root then
25 i.SENDER := rootSender

26 I := I ∪ i

27 return I

3.3 Approach to Identify Verbal Events

In this paper, we propose an approach to identify
the above described verbal events and their argu-
ments. Our proposed approach makes use of POS
tagging and dependency parsing.

Algorithm 1 shows our approach to identify
event predicates and their compound and conjunct
predicates (if available) from a sentence.

Figure 2 shows an illustration of our approach
on an example sentence. The verb h� e (hue; be-
came) is the root of the dependency tree of the
sentence. We can determine the tense of h� e based
on its child T� (thhe) with the dependency relation
aux. As h� e is the root of the sentence with past
tense, we identify it as the PIVOT of an event.
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In the dependency tree of this sentence, the word
nArAj (naraj; unhappy) is a noun child of h� e
with dependency relation compound and hence,
we identify nArAj as P-CONJ of h� e. Similarly,
we identify T� as its P-COMP.

n�h! iss� bX� nArAj︸ ︷︷ ︸
P-CONJ

h� e︸︷︷︸
PIVOT

T�︸︷︷︸
P-COMP

compound aux

Figure 2: Example of event identification from a sen-
tence (only relevant dependencies are shown for the
sake of brevity)

In order to filter out an irrealis or non-punctual
event, we check its respective P-COMP against a
manually curated list of verbs such as jAtA ,jAyA,
rhF, rh�, cAh�, cAhtF, honA, hotF indicating either
continuity or uncertainty of events. We also ignore
events appearing in quotes as they are likely to be
authors’ opinions.

3.4 Approach to Identify Event Arguments

Algorithm 2 discusses our event argument identi-
fication approach leading to formation of the inter-
actions to be shown on an MSC.

Figure 3 shows an illustration of our approach
on an example sentence. For the event pivot ElKA
(likha; wrote), words gA\DF (Gandhi) and pV�l
(Patel) are its dependency children with relations
nsubj and dobj respectively. They are also present
in the list of extracted actors and hence are desig-
nated as sender and receiver of this event.

In Figure 4, the word C� V (chhuut; waiver) is
dependent on the P-CONJ - mA\g (maang; demand)
through the dependency relation nmod, but is not
a valid actor and hence not a valid receiver.

4 Experimentation Details

4.1 Datasets

We carry out our experiments on the four text nar-
ratives from Indian History, contributed by (Ram-
rakhiyani et al., 2018). We obtain the dataset
text and gold actor annotations and we carry out
the event annotations for these datasets with the
help of three annotators. The statistics about the
datasets are described in Table 2.

sardar emergency plassey shivaji
# Sentences 90 56 74 71
# Words 1661 1373 1361 1293
# Actors 115 78 79 112
# Interactions 88 74 57 69

Table 2: Dataset Statistics

4.2 Experimental Setup

We used the Google SyntaxNet2 for dependency
parsing the Hindi sentences. SyntaxNet is a Ten-
sorFlow toolkit for deep learning powered natu-
ral language understanding developed at Google.
The Parsey Universal component of SyntaxNet
supports NLP preprocessing tasks such as POS
tagging, morphological analysis and dependency
parsing for 40 different languages including Hindi.

We employed two different NER approaches
proposed for Hindi and consider a word as part of
a named entity if either or both of them identify it
as a named entity. One of the approaches is Poly-
glot, proposed in (Al-Rfou et al., 2013). It is based
on using language agnostic techniques involving
Wikipedia and Freebase and no human annotated
NER training data. The second approach is pro-
posed by (Murthy et al., 2019) and is based on
a supervised deep learning architecture for NER
in Hindi. To access the Hindi WordNet (Narayan
et al., 2002), we use the pyiwn toolkit (Panjwani
et al., 2018) which is a python API to access In-
dian language WordNets.

We use the Sardar dataset as a training set to
iteratively revise and improve the extraction algo-
rithms while keeping the other datasets unseen.

4.3 Evaluation and Results

The approach comprises of multiple facets like
actor identification, actor coreference resolution,
event extraction and event argument finding. To
assess each of these facets, we carry out evalua-
tion of the proposed approach at multiple levels.

As the first level, we check the performance of
actor identification and coreference resolution. If
an actor predicted by the approach is present in
the gold standard, it is marked as a true positive.
False positives and false negatives are computed
accordingly. We report the F1 scores for actor
mention identification for each dataset in Table 3.
At this level, we also report the MUC (Vilain et al.,
1995), the B3 (Bagga and Baldwin, 1998) and the

2https://github.com/tensorflow/models/
tree/master/research/syntaxnet
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Figure 3: Example of event argument identification from a sentence (only relevant dependencies are shown for the
sake of brevity)

EksAno\
kisano︸ ︷︷ ︸
sender

n�
ne

a\g}�j
angrez

srkAr
sarkar︸ ︷︷ ︸
receiver

s�
se

BArF
bhari

kr
kar

m�\
me

C� V
chuth

kF
ki

mA\g
mang︸ ︷︷ ︸
P-CONJ

kF
kee︸︷︷︸

PIVOT

nsubj
dobj

nmod

Figure 4: Example of valid and invalid arguments of an event predicate (only relevant dependencies are shown for
the sake of brevity)

CEAFe (Luo, 2005) scores to measure the coref-
erence resolution performance.

Dataset Participant Canonical mentions & aliases
mentions BCUB MUC CEAFe

sardar 68.2 45.7 51.0 48.6
emergency 71.0 41.2 44.1 43.1
plassey 68.5 40.6 50.4 34.6
shivaji 62.1 42.8 48.7 38.9

Table 3: Performance of Actor Identification and
Coreference Resolution (F1 metric in %).

At the next level, we check the correctness of
events which are basis for interactions. If the pre-
dicted pivot is present in the gold standard, it is
counted as a true positive and the false positives
and false negatives are computed accordingly. In
a similar way, true positives, false positives and
false negatives are computed for P-CONJ and P-
COMP parts. We report F1 scores for each of
PIVOT, P-CONJ and P-COMP separately and the
three combined i.e. the complete event, in Table 4.

At the final level, we check correctness of the
extracted interactions which involves checking the
correctness of both the event and its actor argu-
ments. In Table 5, we report F1 scores for three
settings namely Sender+Pivot (combination of
both event pivot and corresponding sender should
be correct), Receiver+Pivot (combination of both
event pivot and corresponding receiver should be
correct), Complete interaction (complete combi-
nation of event pivot, corresponding sender and
corresponding receiver should be correct).

4.4 Analysis

From the low to moderate results, it can be ob-
served that each stage of the approach is chal-

lenging. It is important to note here that this is a
pipeline based approach and errors propagate from
one stage to the next. A considerable number of
errors is also attributed to the performance of lin-
guistic tools such as SyntaxNet and Hindi NER.

We now discuss some error cases for the actor
extraction stage. In the sentence isk� clt� kI
avsro\ pr dono n� hF apn� pd kA (yAg krn�
kF DmkF d� dF TF (iske chalte kai avsaro par
dono ne hi apne pad ka tyaag karne ki dhamki de
di thi; Meanwhile, on multiple occasions both had
threatened to resign from their posts), the gold ac-
tor dono (dono; both) is a noun but is not tagged
as a valid actor. This is because none of the hyper-
nyms of dono carry a PERSON sense and hence,
our WordNet based approach fails to identify dono
as a valid actor. This example highlights the need
of a more richer knowledge resource that can dis-
ambiguate words like dono as an actor from its
quantifier sense. Another error case is regard-
ing pronouns like isko (isko; this/him/her) which
can be used to refer to events or actors. Pronouns
like these are present in our pronoun list because
of their actor referring property, but at places in the
text when it appears referring a non-actor it is still
considered as an actor leading to a false positive.

We also discuss error cases for the interaction
extraction stage. In the sentence l�dn jAkr
u�ho\n� b{Er-Vr kF pYAI kF aOr vAps
aAkr ahmdAbAd m�\ vkAlt krn� lg� (lan-
dan jakar unhone baristri ki padhai ki aur wapas
aakar ahmedabad me vakalat karne lage; He went
to London, studied law, came back and started
practising law in Ahmedabad.), the PIVOT aAkr
(aakar; came) does not find the right sender argu-
ment u�ho\n� (unhone; he) using the dependency
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Sardar Patel Emergency Battle of Plassey Shivaji Maharaj
PIVOT 0.82 0.82 0.64 0.79
P-CONJ 0.72 0.69 0.55 0.53
P-COMP 0.83 0.84 0.64 0.81
PIVOT+P-CONJ+P-COMP 0.66 0.62 0.47 0.46

Table 4: F1 scores - Event Evaluation

Sardar Patel Emergency Battle of Plassey Shivaji Maharaj
Sender+PIVOT 0.54 0.43 0.43 0.55
Receiver+PIVOT 0.50 0.39 0.35 0.48
Complete Interaction 0.38 0.30 0.25 0.41

Table 5: F1 scores - Interaction Evaluation

Figure 5: Predicted MSC of the example sentence “l�dn jAkr u�ho\n� b{Er-Vr kF pYAI kF aOr vAps
aAkr ahmdAbAd m�\ vkAlt krn� lg�” (He went to London, studied law, came back and started practising law
in Ahmedabad.)

parse based argument finding approach. This
highlights the importance of more robust approach
to identify arguments of events.

As part of the analysis, we show the visual
MSC based depiction of the earlier sentence l�dn
jAkr u�ho\n� b{Er-Vr kF pYAI kF aOr vAps
aAkr ahmdAbAd m�\ vkAlt krn� lg� in Fig-
ure 5. As pointed out, the event aAkr does not
form a valid interaction because of absence of cor-
rect arguments.

5 Related Work

Automatic extraction of MSCs from narratives is
studied for English language. Recently, (Palshikar
et al., 2019) proposed a semantic role labelling
and dependency parsing based approach to extract
messages discussed in a narrative. They further
use the Document Level Time-anchors algorithm
for temporal ordering of extracted messages.

Several researchers such as (Rao and Devi,
2017, 2018) have focused on extraction of events
from Hindi. However, these works are focused on
news and social media texts. (Kuila et al., 2018)
propose a neural network based approach for event
extraction. However, the approach is supervised

and needs labelled data. On the other hand, our
approach does not need labelled data.

6 Conclusions

In this paper we proposed the use of a knowl-
edge representation known as Message Sequence
Charts (MSC) for visualizing Hindi narratives by
identifying and depicting the multiple actors and
interactions involved. As per our knowledge this
is the first attempt to visualize Hindi narratives and
represent them formally. We extend a set of anno-
tation guidelines for marking events and their ar-
guments pivoted on verbs. We also propose lin-
guistic knowledge based approach for actor and
interaction identification. We report results on
four state-of-the-art Hindi narrative datasets and
present a brief analysis of the approaches. As fu-
ture work, we would like to extend this work on
lines of Semantic Role Labelling (SRL) for Hindi
including nominal predicates and more arguments.
We also aim to work on the temporal ordering as-
pect of Hindi narratives which would allow us to
depict interactions in the true chronological order.
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Abstract

This paper studies emotion arcs in student nar-
ratives. We construct emotion arcs based on
event affect and implied sentiments, which cor-
respond to plot elements in the story. We show
that student narratives can show elements of
plot structure in their emotion arcs and that
properties of these arcs can be useful indica-
tors of narrative quality. We build a system and
perform analysis to show that our arc-based
features are complementary to previously stud-
ied sentiment features in this area.

1 Introduction

This work deals with the study of emotion arcs
in student narratives. Plots (Lehnert, 1981) and
emotion arcs (Vonnegut, 1995; Reagan et al., 2016;
Chu and Roy, 2017) form the foundations of story-
telling.

Story-telling is an important literacy skill. Chil-
dren are taught to understand and write narratives
in school, and literacy standards1 require students
to write increasingly competent narratives.

While researchers have already introduced anal-
ysis of plots in well-written stories and emotion
arcs in novels, not much attention has been paid to
these phenomena in narratives written by novices.
In this work we study student narratives along the
dimension of emotion arcs. We show that even
novice writing can show plot elements. We then
investigate if the quality of narratives can be de-
termined by measuring properties of the emotion
arcs.

There has been work investigating scoring of stu-
dent narratives (Somasundaran et al., 2018). How-
ever, previous focus has been on other aspects of
the narrative, such as event progression, organi-
zation, vividness, detailing and subjectivity. We

1http://www.corestandards.org/
ELA-Literacy/W/11-12

investigate if emotion arc characteristics can help
to improve automated narrative scoring systems.

Plot analyses and research on constructing
shapes of stories have considered the general sen-
timent or affect present in the text. In our work
we focus on a specific type of sentiment/affect that
we believe is closer to plot structure: events that
produce good/bad effect, affective events and sen-
timent connotations. We show that while there is
overlap with subjectivity and sentiment, our ap-
proach captures a different dimension of narrative
quality.

We believe that our work advances the under-
standing of plots elements in narratives written by
novices. Our work connects evidence of plots ele-
ments to the quality of narratives as judged by hu-
man raters using standard scoring rubrics. Specifi-
cally, the contributions of our work can be summa-
rized as follows: 1. We show that emotion arcs can
be seen even in simple narratives written by novice
writers. 2. Our experiments show that emotion arc
properties are indicative of the quality of narratives.
They are related to other sentiment factors in narra-
tives, but are distinct in what they capture about the
narrative quality. 3. We show that encoding emo-
tion arc characteristics help to improve narrative
essay scoring systems.

2 Narrative Data

As our focus is student narratives, we use the an-
notated narrative dataset from Somasundaran et al.
(2018). The data comprises of 942 narrative essays
written by school students from the Criterion R© pro-
gram2. Criterion is an online writing evaluation
service from Educational Testing Service3. It is
a web-based, instructor-led writing tool that helps
students plan, write and revise their essays. Nar-

2https://criterion.ets.org/criterion
3www.ets.org
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rative essays in this dataset belong to writers from
three grade levels: grades 7, 10 and 12. Each essay
is in response to one of 18 story-telling prompts;
prompts belong to topics related to personal experi-
ences, hypothetical situations, and fictional stories.
Given below are example prompts:
[Personal Experience] There are moments in everyone’s lives

when they feel pride and accomplishment after completing a

challenging task. These moments can happen in the classroom,

on the field, or in their personal lives. Write a story about one

of your proudest moments.

[Hypothetical Situation] Pretend that one morning you wake

up and find out that you’ve become your teacher for a day!

What happened? What do you do? Do you learn anything?

Write a story about what happens. Use your imagination!

[Fictional Story] While some well-loved films feature se-

quels, many do not. These movies can leave the audience

wanting to know more about the plot and characters they’ve

enjoyed. Is there a film you’ve wanted to continue past the

ending? Write a synopsis of your own “sequel” to a beloved

movie using the same characters and settings as the real film.

Remember to include a summary of the previous title and plot,

as well as specific new details to draw the reader into your

continuation of the movie.

The average essay length in the data is 320
words, with a range of 3 to 1310 words and a stan-
dard deviation of 195. The rubric used for scoring
the essays was created by education experts and
teachers. It defines a separate score (0-4) each for
essay organization and essay development. The
dataset also provides a Narrative Score for each
essay, which is the sum of the organization and
development scores. The score is an integer value
from 0 to 8, with 8 corresponding to perfect or-
ganization and development of the narrative. The
human inter-annotator agreement for the narrative
quality score is 0.76 QWK4. We use this score for
our work. We refer the reader to the original paper
for details on the data, rubrics and annotation.

3 Emotion Arc

An emotion arc involves the plotting or tracking
of sentiment valence of some form along the time
axis (Vonnegut, 1995; Reagan et al., 2016; Chu and
Roy, 2017; Del Vecchio et al., 2018). However, we
observed that sentiment words and phrases occur-
ring in narratives serve different purposes, such as
describing character and settings, embellishing the
story, advancing the plot, etc. For example, senti-

4Quadratic Weighted Kappa (Cohen, 1968) is a standard
metric in essay evaluation

ment words may be used to describe a scene (e.g.
“beautiful house”), a character (e.g. “smart girl”),
a character’s private state (e.g. “Peter thought that
was foolish”) or emotions (e.g. “Sally was furi-
ous”).

In our work, we are primarily interested in sen-
timents and emotions as they relate to the plot.
Thus our focus is mainly on events and implicit
sentiments. Events are the core building blocks
of narratives, and positive and negative events are
closely tied to plot progression. This intuition is
in line with Lehnert’s work on plot units (Lehn-
ert, 1981), which also focuses on positive/negative
events (called events that please, and events that
displease). Additionally, much of the plot move-
ment is brought about by elements that have im-
plicit sentiment value. For example, if “A kills B”
in a story, it indicates an objective event on the
surface, but denotes a conflict (or resolution, de-
pending on whether B is an antagonist) in the story.
Given this focus, our emotion arcs are constructed
based on the following phenomena that have been
previously developed for other purposes in compu-
tational linguistics:
Good-for and bad-for events: Good-for and Bad-
for events, also known as benefactive and malefac-
tive events, positively/negatively affect the entities
on which they act (Deng et al., 2013). These events
indicate someone (or something) doing something
that affects someone (or something) in a positive or
negative manner. In the context of stories, we hy-
pothesize that such events can indicate elements of
a plot, such as conflict, resolution and goal achieve-
ment.
Affective events: These are events that affect an
experiencer in positive or negative ways (Ding and
Riloff, 2016) even though they do not, in their sur-
face form, hold a valence. The events are implicitly
affective based on the human knowledge of the
event itself, such as going on a vacation or break-
ing a record.
Sentiment Connotation : These are words that
imply a positive or negative sentiment even though
they appear objective on the surface (Feng et al.,
2013). For example, a gun-shot invariably indicates
a conflict in the plot, even though it is objective on
the surface.

3.1 Constructing Emotion Arcs

In order to construct the emotion arcs, we first ex-
tract the elements of interest described above. For
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this we use the EffectWordNet (Choi and Wiebe,
2014) for extracting good-for/bad-for events, event
polarity lexicon (Ding and Riloff, 2018) for ex-
tracting affective events, and a connotation lexicon
(Feng et al., 2013) for extracting sentiment con-
notation words. Once the elements are extracted
for each sentence, they are aggregated to obtain
a valence-token offset plot with a sliding window.
This process is detailed below:

Preprocessing For a given student essay, we first
get the tokenization, part-of-speech tags and depen-
dency parse of each sentence with ZPar5. Then we
lemmatize the words with NLTK6.

Good-for/Bad-for Event extraction The Ef-
fectWordnet lexicon is a subset of WordNet, with
an extra effect polarity annotation for every synset.
The effects are either positive, negative or neutral.
We pick out all the verbs by POS tags and exclude
the stopwords. Then for each verb, we look up
its synset(s) in WordNet, and if the synsets are
covered in EffectWordnet, we look up its effect
polarity. One verb can have multiple senses, and
thus multiple synsets in WordNet, with potentially
contradicting effect polarities. Here, we take the
majority voting approach. For example, if a verb
has 3 positive senses, 1 negative sense and 2 neutral
senses, we treat it as having a positive effect.

Affective Event extraction The Affective
Event lexicon is a mapping from event templates
to their polarities. An event template is a verb
frame, with optional subject/object/prepositional
phrase contexts. For example, @I@,love,@my@
partner. We pick out verbs from the sentences by
their POS tag, then find out their subject/object by
dependency parse, and match with the lexicon.

Sentiment Connotation extraction The
Connotation lexicon is a mapping from
verbs/nouns/adjectives to their connotation
polarities. We simply traverse through all tokens
with relevant POS tag, lemmatize them and look
up their connotation polarity from the lexicon.

Arc Generation After the above extraction steps
we associate every token with a set of extracted po-
larities. We quantify each token by the following
rules: a positive polarity equals +1, a negative po-
larity equals -1, and a neutral polarity equals 0.

5https://www.sutd.edu.sg/cmsresource/
faculty/yuezhang/zpar.html

6https://www.nltk.org/

The score of a token is the sum of all its associ-
ated polarities from different sources. If a token
has no associated polarity, it’s score is 0. Once
the sentiment score for each token is determined,
we use a sliding window to slide over the whole
narrative, moving by one token at a time, and ag-
gregate the scores within the window. The scores
are weighted with Gaussian distribution, with the
center of the sliding window being the mean of
distribution, and 1/4 of window size as standard
derivation. We use a fixed window size of 50, and
essays shorter than that are dropped (25 out of 942
total essays). We plot the aggregated scores against
the sliding window position, and smooth it with the
Savitsky-Golay filter7 to fit a smooth curve over
the narrative. As will be detailed in Section 4, this
smoothing is very important for feature extraction
on the arcs.

3.2 Emotion Arcs in Student Narratives

Figure 1: Emotion arc for a narrative on Proudest Mo-
ment. The Y-axis represents positive/negative valence
while the story time-line is along the X-axis

Figure 1 shows the emotion arc constructed for a
first person narrative describing The Proudest Mo-
ment (an essay written in response to the prompt
“Write a story about one of your proudest mo-
ments.”). In this narrative, the writer talks about
her tryout for a marching band performance. The
narrator begins with a statement that qualifying for
the marching band was her proudest moment. She
describes “flagline”, the marching band (“Flagline
is a group of 10 to 30 girls and they perform in cos-
tumes that show school colors.”). This story setup
and the writer’s aspiration is seen in the region (A)
of Figure 1. The narrator then goes on to describe
how her friends and family thought she could not
do it (“My family and friends didn’t take me seri-
ously.”) and how that created self-doubt (“I started

7https://plotly.com/python/smoothing/
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doubting myself.”). This conflict in the plot is evi-
denced as a dip into negative valence in region (B)
in the figure. Then she went to her grandmother for
advice (“She gave me the best advice.”, “...god will
always answer your prayers.). This is evidenced in
part (C) where the emotion arc peaks on the pos-
itive side of the graph. When the narrator finally
goes to the tryout, she is extremely nervous (“It
felt like my knees were going to fall off”, “It felt
like I was going to faint .”). Corresponding to this
suspense in the plot, the arc dips again at (D). Fi-
nally her name gets called by the judges, and she is
extremely elated (“... hugging everyone around me
”, “It was the proudest day of my life.”). This happy
resolution is corroborated by the arc at region (E).
The narrative concludes with a reflective note that
she remembers this day later on in life when she
faces a tough situation (F).

Figure 2: Emotion arc for a narrative on Movie Sequel
The Y-axis represents positive/negative valence while
the story time-line is along the X-axis

Figure 2 shows the emotion arc for a third per-
son fictional narrative. This essay was written in
response to the prompt Write a synopsis of your
own “sequel” to a beloved movie using the same
characters and settings as the real film. The stu-
dent chose to write a sequel to the movie “The
Grey” starring Liam Neeson. Similar to the origi-
nal movie, the sequel too is a survival thriller and
follows Ottway, the character from the original.
The story is full of adversities, such as vicious
wolves, harsh climate of the Alaskan wilderness
and starvation. The emotion arc correspondingly,
remains in the negative valence area, with the small
wave-like fluctuations to the neutral (relatively less
negative) side for small victories. Towards the end
of the climax, the protagonist is critically wounded.
In the last sentence, the narrative says that a res-
cue team is coming his way, indicating a positive
ending.

We noticed that short narrative essays written
by school students show variations in the emotion
arc corresponding to elements of a plot such as set-
ting, conflict, suspense, resolution and reflection.
Overall, emotion arcs vary across narrative genres,
topics, and even within a topic due to creative va-
riety. Nevertheless, the basic elements of a good
story can still be found across all narrative types.
For example, a plot almost always requires an emo-
tional variation and an effective narrative will have
some form of conflict or dip in emotional valence.

4 Relationship to Narrative Quality

We saw in the previous section that well-written
student narratives generally tend to have emotion
arcs corresponding to plot elements. The next ques-
tion is whether these elements can be indicators of
narrative quality score as defined by standardized
essay scoring rubrics. In order to answer this, we
study the relationship of narrative quality scores
to properties of the emotion arcs. Note that the
narrative quality score is a function of a number
of factors, such as organization of the story, effec-
tive use of transitioning, clear opening and closing,
vivid description, character development, use of
dialog, event sequencing, effective use of figurative
language and other narrative techniques. Hence
we expect presence of plot element in a story to
be just a component that would contribute to the
determination of the score.

While individual creativity makes it difficult to
directly equate emotion arcs to scores, we can ex-
tract features that represent arc characteristics. We
extract the following features from the arcs. For
the ease of explanation, we denote the arc value
at position i as d(i). We define local maximum as
positions where d(i − 1) < d(i) > d(i + 1), and
local minimum as points where d(i− 1) > d(i) <
d(i + 1). The slope at each point is calculated as
d(i)− d(i− 1).

1. Max Peak: We find the “peaks” in the arc by
looking for local maximums. And we choose
the maximum among the local maximums as
Max Peak.

2. Second Max Peak: Similar to Max Peak, but
the second greatest one of the local maxi-
mums.

3. Min Valley: The minimum of local mini-
mums.
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4. Second Min Valley: The second least local
minimum.

5. Number of Peaks: Number of identified local
maximums.

6. Number of Valleys : Number of identified
local minimums.

7. Positive Slope: The slope where the arc is
most steep and going upward, i.e. maxi d(i)−
d(i− 1).

8. Negative slope: The slope where the arc
is most steep and going downward, i.e.
mini d(i)− d(i− 1).

The plots generated by sliding windows are
noisy and contain lots of spurious local maxi-
mums/minimums. So we apply Savitsky-Golay
filter to smooth the high-frequency variations in the
plots, as we are not interested in the fine-grained
perturbations, but in how valence emerges or drops
in at a coarser granularity.

The maximum peak and minimum valley capture
the height of happiness and depth of despair in
the story. The second max peak (and min valley)
capture the second highest points. Presumably,
narratives with non-trivial story-lines will show
multiple significant peaks and valleys. The number
of peaks and valleys try to capture the emotional
variance in the story. The positive and negative
slopes try to capture the emotional pace of the story.

4.1 Correlation with Narrative Quality

Using the scored essays, we compute correlation
(Pearson’s r) for each of our features to the Narra-
tive Quality score. Previous studies on essay scor-
ing (Chodorow and Burstein, 2004) have found that
essay length is strongly correlated with its score.
Thus, for each of our features, we calculate correla-
tion with score after accounting for length, in order
to see its effect on the narrative quality independent
of essay length.

Table 1 presents the Pearson’s correlation r
(sorted in ascending order) and partial correlation
with narrative score. Observe that the number of
peaks and valleys are strongly correlated with score
– having more peaks and valleys is related to higher
the score. However, such stories are also relatively
longer, and hence correlation drops dramatically
when the length factor is removed. The slope-based
features (Positive Slope and Negative Slope) show

Feature Pearson’s r r After
controlling

length
Max Peak 0.151 0.006
Second Max Peak 0.184 -0.003
Positive Slope 0.307 0.155
Negative Slope 0.312 0.136
Min Valley 0.412 0.202
Second Min Valley 0.431 0.193
Num of Peaks 0.538 -0.016
Num of Valleys 0.541 -0.011

Table 1: Correlation (Pearson’s r) of each feature with
score.

moderate correlation with score. The features re-
lated to negative dips in the story (Min Valley and
Second Min Valley) show moderately strong cor-
relation with score, and have a relatively smaller
drop after accounting for length. This indicates that
elements corresponding to strong adversities are
effective narrative techniques even in short stories.

4.2 Narrative Quality Prediction

The next question we explore is if and by how much
the emotion arc features, individually or as a group,
are useful for predicting narrative quality. Given
that there has been previous work on developing
narrative quality features, our focus is on how much
the emotion arc features can help to improve a sys-
tem based on previous narrative features. For this,
we closely follow the procedure from (Somasun-
daran et al., 2018): we build a Linear regression
model using scikit-learn toolkit (Pedregosa et al.,
2011), with 10-fold cross-validation. Trimming of
the predicted output is performed; that is, if the
predicted score was above the max score (8), or be-
low the min score (0), it is assigned the max or the
min score, respectively. Bootstrapping experiments
(Berg-Kirkpatrick et al., 2012; Efron and Tibshi-
rani, 1994) were performed to test for statistical
significance. We used 10,000 bootstrap samples.

The system using the best narrative features
from previous work is our baseline. Thus the base-
line comprises of the following features: Details+
Modal+ Pronoun+ Content+ Graph+ Statives+ Sub-
jectivity+ Transition + Quote8. We build prediction
models by (1) adding one emotion arc-based fea-

8This feature, capturing the presence of dialog or air
quotes, was added by the authors after the publication of
their paper. It produces a small improvement in performance.
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ture at a time to the baseline (2) adding all of our
features to baseline

Feature QWK
Baseline 0.656
+ Negative Slope 0.652
+ Max Peak 0.657
+ Second Max Peak 0.657
+ Number of Valleys 0.661
+ Second Min Valley 0.663
+ Number of Peaks 0.666 *
+ Positive Slope 0.667 **
+ Min Valley 0.669 **
+ All 0.668

Table 2: Performance of the system when new features
are added to the baseline.
∗ indicates p < 0.1; ∗∗ = p < 0.05

Table 2 reports the performance of the resulting
systems sorted in ascending order (for individual
feature additions). Features corresponding to the
positive emotional peaks in the story (Max Peak
and Second Max Peak) add only minor improve-
ments. Features corresponding to negative valence
(Min Valley, Second Min Valley) help to improve
the performance, indicating that detecting negative
dips can improve the reliability of scoring. With
respect to pacing, moving from a negative point
to a positive point (Positive slope) seems to be in-
dicative of narrative quality. However, adding all
features together seems to produce no improve-
ment indicating that while some individual features
show promise, others tend to bring the performance
down.

We performed a detailed ablation study (8 fea-
tures resulted to 256 experiments) to find the subset
of features that can be used together. The resulting
feature combination that gave the best performance
was [Max Peak + Min Valley + Second Max Peak
+ Number of Peaks + Positive Slope] and had a
QWK value of 0.676.

4.3 Correlation with Other Sentiment
Features

Somasundaran et al. (2018) have explored
subjectivity-based features for predicting narrative
score. Their motivation was to capture evalua-
tive and subjective language that is used to de-
scribe characters, situations, and characters’ private
states (Wiebe, 1994). While our features are also
sentiment-based, we believe that our arc-based fea-

tures capture a different dimension of the narrative
and are complementary in nature.

In order to investigate this, we compared our
features with the following subjectivity-based fea-
tures in the baseline system: count of MPQA (Wil-
son et al., 2005) polar words (CMP), count of
MPQA neutral words (CMN), presence of MPQA
neutral words (PMN), presence of MPQA polar
words (PMP), count of ASSESS (Beigman Kle-
banov et al., 2012) polar words (CAP), count of
unique ASSESS polar words (UAP).

Table 3 presents the Pearson’s correlation r be-
tween our features and subjectivity features from
the baseline system. Values of r greater than 0.5
are shown in bold.

As expected, there is strong correlation between
the emotion arc features and subjectivity/sentiment.
We believe that this is because (1) There are events
that are also clearly sentiment-bearing words (e.g.,
“failing”), (2) Good/bad events and feeling about
them would co-occur in the story. For example,
if something adverse happens to a character, he
might feel bad about it. (3) It is very likely that
there is overlap between the lexical resources we
use for constructing emotion arcs and the subjec-
tivity/sentiment features.

However, the correlation values also indicate
that there is some separation between our plot-
motivated features and the subjectivity features
– except for the high correlation between count-
based subjectivity features and number-based arc
features (all of which also correlate with length),
the rest have r < 0.5.

5 Related Work

Narratives can be analyzed along many different
dimensions, such as sentiment, emotion, plot, char-
acters, engagement, creativity, and success of sto-
ries. Computational linguistic analyses started with
shorter texts, concentrating mostly on fables, folk
stories and fairy tales. In the last decade they fully
embraced analysis of full length novels and movie
scripts.

Several studies focused on character traits and
personas in stories. Elsner (2012) proposed a rich
representation of story-characters for summarizing
and representing novels. Bamman et al. (2014)
automatically inferred character types in English
novels.Valls-Vargas et al. (2014) extracted charac-
ter roles from Russian folk tales, based on character
actions. Chaturvedi et al. (2015) analyzed short sto-
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Emotion arc feature CMP CMN PMN PMP CAP UAP
Max Peak 0.34 0.19 0.07 0.05 0.33 0.34
Second Max Peak 0.40 0.23 0.06 0.03 0.39 0.40
Min Valley 0.38 0.31 0.13 0.00 0.41 0.43
Second Min Valley 0.43 0.35 0.08 0.00 0.46 0.47
Num of peaks 0.73 0.61 0.19 0.04 0.78 0.73
Num of Valleys 0.73 0.60 0.19 0.05 0.78 0.73
Positive Slope 0.38 0.23 0.14 0.08 0.39 0.42
Negative Slope 0.42 0.27 0.12 0.10 0.41 0.45

Table 3: Correlation (Pearson’s r) of each feature with previously explored subjectivity features:
count of MPQA polar words (CMP), count of MPQA neutral words (CMN), presence of MPQA neutral words
(PMN), presence of MPQA polar words (PMP), count of ASSESS polar words (CAP), count of unique ASSESS
polar words (UAP)

ries for characters’ desires and desire fulfillment.
Researchers have also studied social networks

and have modeled relationships in stories (Elson
et al., 2010; Celikyilmaz et al., 2010; Agarwal et al.,
2013). Iyyer et al. (2016); Chaturvedi et al. (2016)
modeled character inter-relations and their devel-
opment in novels. Evolving relations were repre-
sented as relationship sequences/trajectories and
learned using structured prediction techniques.

Ouyang and McKeown (2015) analyzed personal
narratives from a blogging platform for automatic
detection of turning points in stories. Papalampidi
et al. (2019) presented the task of detecting turn-
ing points in movie scripts, as a particular way for
analyzing narrative structure. They used neural net-
work models for automatically detecting sequences
of major explicit events in stories.

Sentiment analysis has been employed for narra-
tive analysis in many studies. Goyal et al. (2010a,b)
analyzed Aesop’s fables, producing automatic plot-
unit representations (Lehnert, 1981), using task-
specific knowledge base of affect. Several studies
focused on annotation of folk stories and fairy tales
for emotions (Francisco et al., 2012; Volkova et al.,
2010; Alm and Sproat, 2005). Alm et al. (2005)
described a machine learning approach for multi-
class classification of sentences for their emotional
content.

Piper and So (2015) used a sentiment lexicon
and compared the proportion of sentiment words
between several groups of novels. They found that,
on average, 19th century novels have a larger pro-
portion of sentiment words (7%) than modern nov-
els (about 5.5%). Bostan and Klinger (2018) pre-
sented a survey of recent corpora annotated for
emotion classification in text, with a variety of clas-

sification schemata. Liu et al. (2019) present a new
dataset of classic and modern novels, with passages
(sections of 40 to 200 words) manually annotated
for emotion classes based on Plutchik’s eight ba-
sic emotions. The data was used for training and
evaluating Deep Learning architectures for emo-
tion classification. Kim and Klinger (2019, 2018)
presented a novel challenge and datasets for affect
and emotion detection in text, calling it emotional
relationships classification: which character feels
which emotion to which character.

The idea that, in stories, emotion and sentiment
is not static, but changes dynamically, is an old
one. It is often presented as practical advice in
writing guides for aspiring screenwriters and nov-
elists (McKee, 1997). The idea of actually charting
the emotional progression of scenes and stories
(emotion arcs) is attributed to Kurt Vonnegut (see
e.g. Vonnegut (1995, 2004), described by Jockers
(2014) and Del Vecchio et al. (2018)).

The annotation study of Alm and Sproat (2005)
was one of the earliest computational studies that
considered a notion of emotional trajectory - plot-
ting the emotional values for sequences of text seg-
ments in 22 Grimms’ fairy tales. Reagan et al.
(2016) used sentiment analysis to generate emo-
tional profiles for full-length English novels. They
implemented the notion of emotion arcs, tracking
the level of emotion-laden content through con-
secutive segments (10K-long word segments) of
literary works (from Project Gutenberg), using a
lexicon of words with ratings on a single positive-
negative scale - a sentiment polarity lexicon. They
found that large-scale arcs cluster into six common
arc shapes. A similar approach was described by
Jockers (2014) and Gao et al. (2016).
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Del Vecchio et al. (2018) used a similar tech-
nique to track emotion arcs in about 6000 movie
scripts. That study also found that large-scale arcs
cluster into six common shapes. The study went
further, relating the arc shapes to movie success,
using movie gross revenue as success indicator.

Chu and Roy (2017) performed a multi-modal
analysis of emotion arcs. They used neural net-
work models to construct emotional arc represen-
tations from movie clips, audio clips, images and
two-word image captions (the latter analyzed with
SentiWordNet lexicon, (Baccianella et al., 2010)).
They applied clustering to find major groupings
of emotional arcs. They evaluated their models
by predicting viewer engagement with short on-
line videos (measured as number of comments the
videos received).

Kim et al. (2017) used lexical expressions of
emotion for genre-classification of whole novels.
They extended the emotion arc approach, by using
eight fundamental emotions defined by Plutchik
(2001), instead of a single sentiment valence di-
mension. Thus, their tracking reflects the develop-
ment of each of the eight emotions throughout the
time course of the narrative. Overall, this method
contributes to significant improvement of genre
classification over a strong lexical baseline.

6 Discussion

To the best of our knowledge, our work is a first
attempt in exploring emotion arcs and plot ele-
ments in student writing via event affect and im-
plied sentiment. The exploration is by no means
complete. In this section we discuss the rationale of
our choices, some limitations of the current study
and challenges in this task.

In order to construct emotion arcs in Section 3
we relied on a number of resources and made a
number of choices, which has influenced the pre-
cision of the resulting arcs. First, we used (semi)
automatically created lexicons, and these have is-
sues with both noise and coverage. We did not
combine the lexicons or remove duplicates between
lexicons. This could have led to a single instance
of an easily recognizable emotional element in a
sentence being counted more strongly than it oth-
erwise should have. Contextual polarity resolution
was not performed, which could have influenced
the determination of the sentence-level valence.
Finally, when employing the EffectWordnet, we
simply used the most frequent sense instead of per-

forming complete word sense disambiguation. Our
curve-fitting function might have dampened some
of the spurious errors, but there is obviously scope
for improvement.

In Section 4 we sampled arc properties and em-
ployed them as features. Our choices were driven
by the requirements that the properties should be
efficiently extracted, and be generalizable across
narrative sub-genres and writing proficiency. More
constrained environments/applications could afford
closer modeling of arcs (e.g. finding components
of the curve equation).

In our work, we have used the simplifying as-
sumption that there are emotional correlates to plot
elements, and by tracking the emotion arc, we are
able to capture some elements of the plot. While
this assumption may hold for simple short stories,
it is likely to collapse for stories from creative au-
thors. Accomplished authors can create tension
and resolution without emotional accompaniment.

Finally, it is important to note that plot and com-
ponents of a plot, such as rising action, conflict,
falling action, resolution, etc., while easily dis-
cernible to human readers, pose significant chal-
lenges for a machine. World knowledge, human
experiences, interpretation of motivations, infer-
ences of human actions and context of the story,
play an important part in the recognition. Conse-
quently, automated methods too will need to look
beyond words, sentences and paragraphs.

7 Conclusion

In this work, we studied emotion arcs in student
narratives, and explored ways to harness them for
automatically determining narrative quality.

We showed that emotion arcs are manifest in
student writing and intuitively correspond to plot
elements. Our analyses showed that simple arc
properties correlate with narrative quality score,
and that the features derived from the arcs are simi-
lar to, yet distinguished from previously explored
subjectivity features. We built scoring systems and
showed that adding our arc-based features have the
potential to improve the scoring performance.

Our future work will include addressing the lim-
itations and challenges discussed in Section 6.

References
Apoorv Agarwal, Anup Kotalwar, and Owen Rambow.

2013. Automatic extraction of social networks from

104



literary text: A case study on Alice in Wonderland.
In IJCNLP, pages 1202–1208.

Cecilia Ovesdotter Alm, Dan Roth, and Richard Sproat.
2005. Emotions from text: Machine learning
for text-based emotion prediction. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 579–586, Vancouver,
British Columbia, Canada. Association for Compu-
tational Linguistics.

Cecilia Ovesdotter Alm and Richard Sproat. 2005.
Emotional sequencing and development in fairy
tales. In International Conference on Affective Com-
puting and Intelligent Interaction, pages 668–674.
Springer.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. Sentiwordnet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining.
In Lrec, volume 10, pages 2200–2204.

David Bamman, Ted Underwood, and Noah A. Smith.
2014. A Bayesian mixed effects model of literary
character. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics,
pages 370–379, Baltimore, MA, USA.

Beata Beigman Klebanov, Jill Burstein, Nitin Madnani,
Adam Faulkner, and Joel Tetreault. 2012. Building
subjectivity lexicon (s) from scratch for essay data.
Computational Linguistics and Intelligent Text Pro-
cessing, pages 591–602.

Taylor Berg-Kirkpatrick, David Burkett, and Dan
Klein. 2012. An empirical investigation of statis-
tical significance in NLP. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 995–1005. Associa-
tion for Computational Linguistics.

Laura Ana Maria Bostan and Roman Klinger. 2018.
An analysis of annotated corpora for emotion clas-
sification in text. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 2104–2119. Association for Computational
Linguistics.

Asli Celikyilmaz, Dilek Hakkani-Tur, Hua He, Greg
Kondrak, and Denilson Barbosa. 2010. The actor-
topic model for extracting social networks in literary
narrative. In NIPS Workshop: Machine Learning for
Social Computing.

Snigdha Chaturvedi, Dan Goldwasser, and Hal
Daume III. 2015. Ask, and shall you receive?: Un-
derstanding desire fulfillment in natural language
text. arXiv preprint arXiv:1511.09460.

Snigdha Chaturvedi, Shashank Srivastava, Hal Daumé
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Abstract

A lot of progress has been made to improve
question answering (QA) in recent years, but
the special problem of QA over narrative book
stories has not been explored in-depth. We for-
mulate BookQA as an open-domain QA task
given its similar dependency on evidence re-
trieval. We further investigate how state-of-
the-art open-domain QA approaches can help
BookQA. Besides achieving state-of-the-art
on the NarrativeQA benchmark, our study also
reveals the difficulty of evidence retrieval in
books with a wealth of experiments and analy-
sis - which necessitates future effort on novel
solutions for evidence retrieval in BookQA.

1 Introduction

The task of question answering has benefited
largely from the advancements in deep learning,
especially from the pre-trained language mod-
els(LM) (Radford et al., 2019; Devlin et al., 2019).
While question answering over single passage
(reading comprehension datasets) and over the
large-scale open-domain corpora (open-domain
QA) have largely benefited from these, the perfor-
mance of QA over book stories (BookQA) lags be-
hind. For example, the most representative bench-
mark in this direction, the NarrativeQA (Kočiskỳ
et al., 2018) which was released three years ago
- the current state-of-the-art methods only show
marginal improvement over the first baselines.

There are several challenges in NarrativeQA
which slow down the research progress. First, the
narrative stories lead to a new writing style which
differs from previous works over formal texts like

Wikipedia. Second, the long inputs of books are
beyond the processing ability of neural models so
evidence identification from a whole book is criti-
cal. Third, NarrativeQA is a generative task, and
many of the answers cannot be exactly matched in
the original books. Hence, the generative QA mod-
els are required. Finally and most importantly, the
dataset does not provide annotations of the support-
ing evidence. While this makes it a realistic setting
like open-domain QA, together with the generative
nature of the answers, also makes it difficult to in-
fer the supporting evidence similar to most of the
extractive open-domain QA tasks.

The requirements around evidence identification
and the missing supporting evidence annotation
make BookQA task similar to open-domain QA. In
this paper, we first study whether the ideas used in
state-of-the-art open-domain QA systems can be
extended to improve BookQA including: (1) the
neural ranker-reader pipeline (Wang et al., 2018),
where a neural ranker is used to select related pas-
sages (evidence) given a question from a large can-
didate sets; (2) the usage of pre-trained LMs as
reader and ranker, such as GPT (Radford et al.,
2019), BERT (Devlin et al., 2019) and their follow-
up work; (3) the distantly supervised and unsu-
pervised training techniques (Wang et al., 2018;
Lee et al., 2019; Min et al., 2019; Guu et al., 2020;
Karpukhin et al., 2020) that help rankers learn more
from noisy gold data.

By training a ranker-reader framework on
BookQA, we successfully achieve a new state-of-
the-art on NarrativeQA using both generative and
extractive readers. Based on these results and our
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analysis, we observe the followings:
• Using the pre-trained LMs as the reader model,
such as BERT and GPT, improves the NarrativeQA
performance. With the same BM25 IR baseline,
they give 5-6% improvement on Rouge-L over their
non-pre-trained counterparts.
• Our specifically designed distant supervision sig-
nals improve the neural ranker significantly, but the
improvement is small compared to the upper bound.
Further analysis of the ranker module confirms the
difficulty in training, as the improvement from the
pre-trained LM BERT is marginal in it.

2 Proposed Method

2.1 Task Definition
Following (Kočiskỳ et al., 2018), we define the task
of BookQA as finding the answer A to a question
Q from a book B,1 where each book contains a
number of consecutive paragraphs C (usually hun-
dreds or more). A is a free-form answer that can
be concluded from the book but may not appear in
it in an exact form.

In this paper we propose an open-domain QA
formulation and solution to the task of BookQA.
Specifically, the task consists of (1) an evidence
retrieval step that selects evidence from B for Q,
which in our case is a collection of paragraphs
CQ = {Ci} ⊂ B; and (2) a question-answering
step that predicts an answer given Q and CQ.

In the state-of-the-art open-domain QA systems,
the aforementioned two steps are modeled by two
learnable models (usually based on pre-trained
LMs), namely the ranker and the reader. The
ranker predicts the relevance of each paragraph
C ∈ B to the question, where the top ranked para-
graphs form the CQ; and the reader predicts the
answer following P (A|Q, CQ).

In the following subsections, we describe our
solution to make the training of pre-trained LM-
based ranker and reader work for the BookQA task.

2.2 Reader (QA Model)
Extractive Reader We use a pre-trained BERT
model (Devlin et al., 2019; Wolf et al., 2019) to
predict the answer span given the query and the
context. One challenge of training an extraction
model in BookQA is that there is no annotation of
true spans because of its generative nature. Our
solution is to find the most likely span as answer

1To be more accurate, the question should be denoted as
QB but we use Q for simplicity.

supervision. Specifically, we compute the Rouge-
L score (Lin, 2004) between the true answer and
each candidate span of the same length, and finally
take the span with the maximum Rouge-L score
as our weak label. We initially tried the exact-
answer spans but failed to find many due to its low
coverage in BookQA.

Generative Reader Considering the GPT mem-
ory limitation, we use the GPT-2-medium model
as our pre-trained generative model and fine-tune
it on BookQA using default training parameters2.

2.3 Book Paragraph Ranker

We fine-tune another BERT binary classifier for
paragraph retrieval, following the usage of BERT
on text similarity tasks. In BookQA, training such
a classifier is challenging because of the lack of
evidence-level supervision. We deal with this prob-
lem by using an ensemble method to achieve distant
supervision. We build two weak BM25 retrievers
with one using only Q and the other using both
Q and true A. Denoting the correspondent rough-
grained retrievals as CQ and CQ+A, we then tutor
a model to select their intersection CQ ∩ CQ+A by
sampling the positive samples from CQ ∩ CQ+A

and the negative ones from (CQ∩CQ+A)c. In order
to encourage the ranker to select passages that have
better coverage of the answers, we further apply
a Rouge-L filter upon the previous sampling re-
sults, and only select the positive samples whose
answer-related Rouge-L score is higher than the up-
per threshold and the negative samples lower than
the lower threshold3.

3 Experiments

3.1 Settings

Dataset We conduct experiments on Narra-
tiveQA dataset (Kočiskỳ et al., 2018), which has a
collection of 783 books and 789 movie scripts and
their summaries, with each having on average 30
question-answer pairs. Each book or movie script
contains an average of 62k words. NarrativeQA
provides two different settings, the summary set-
ting and the full-story setting. Our BookQA task
corresponds to the full-story setting that finds an-
swers from books or movie scripts. Note that the
NarrativeQA is a generative QA task. The answers
are not guaranteed to appear in the books.

2https://huggingface.co/transformers/model doc/gpt2.html
3In practice, we set the hyperparameters 0.7 and 0.4
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System w/ trained ranker w/ pre-trained LM w/ extra training data

Attention Sum (Kočiskỳ et al., 2018)
BiDAF (Kočiskỳ et al., 2018)
IAL-CPG (Tay et al., 2019)
R3 (Wang et al., 2017) X
BERT-heur (Frermann, 2019) X X X
Our generative/extractive systems X X

Table 1: Summary of the characteristics of the compared systems. Red/blue color refers to generative/extraction
QA systems. In addition to the standard techniques, (Wang et al., 2017) uses reinforcement learning to train the
ranker; and (Tay et al., 2019) uses curriculum to train the reader to overcome the divergence of evidence retrieval
qualities between training and testing.

We preprocess the raw data with SpaCy4 tok-
enization. Then following (Kočiskỳ et al., 2018),
we cut the books into non-overlapping paragraphs
with a length of 200 each for the full-story setting.

Baseline We conduct experiments with both gen-
erative and extractive readers, and compare with the
competitive baseline models from (Kočiskỳ et al.,
2018; Tay et al., 2019; Frermann, 2019) in the full-
story setting. Meanwhile, we take a BM25 retrieval
as the baseline ranker and evaluate our distantly
supervised BERT rankers. We also compare to
the strong results from (Frermann, 2019), which
constructed evidence-level supervision with the us-
age of book summaries. However, the summary is
not considered available by design (Kočiskỳ et al.,
2018) in the general full-story scenario where ques-
tions should be answered solely from books.5

Although not the focus of the paper, our reader
performance in the summary setting is also reported
(Section 3.2), to show the properties of the readers.

Metrics Because of the generative nature of the
task, following previous works (Kočiskỳ et al.,
2018; Tay et al., 2019; Frermann, 2019), we evalu-
ate the QA performance with Bleu-1, Bleu-4 (Pa-
pineni et al., 2002), Meteor (Banerjee and Lavie,
2005), Rouge-L (Lin, 2004).6 We also report the
Exact Match(EM) and F1 scores7 that are com-
monly used in open-domain QA evaluation. We
convert both hypothesis and reference to lowercase
and remove the punctuation before evaluation.

Model Selection We select the best models on
the development set according to its average score

4https://spacy.io/
5In NarrativeQA, the summary has a good coverage of the

answers due to the data collection procedures; also, summaries
can be viewed as humans’ comprehension of the books.

6We used an open-source evaluation library (Sharma et al.,
2017): https://github.com/Maluuba/nlg-eval.

7The squad/evaluate-v1.1.py script is used.

of Rouge-L and EM. For ranker model selection,
we use the average score of upper bound EM and
Rouge-L of top-5 ranked paragraphs.

3.2 Reader Model Validation
(the QA-over-Summary Setting)

First, we compare our readers under the summary
setting, to verify the correctness of our readers.
Our BERT reader achieves performance close to
the public state-of-the-art in this setting.

Our GPT-2 reader outperforms the existing sys-
tems without usage of pointer generators (PG), but
is behind the state-of-the-art with PG. Despite the
large gap between systems with and without PG in
this setting, (Tay et al., 2019) demonstrates that it
didn’t contribute much in the full-story setting in
the ablation study. Nonetheless, we will investigate
the usage of PG in pre-trained LMs in the future
work.

3.3 Main Results (the QA-over-Book Setting)

We then experimented our whole QA pipelines in
the full-story setting. Table 3 and Table 4 compare
our results with public state-of-the-art generative
and extractive QA systems.

Our pipeline system with the baseline BM25
ranker outperforms the existing state-of-the-art,
confirming the advantage of pre-trained LMs as
observed in most QA tasks. Our distantly super-
vised ranker adds another 1-2% of improvement to
all the metrics, bringing both our generative and
extractive models with the best performance. It
also helps outperform (Frermann, 2019) on multi-
ple metrics without the usage of the strong extra
supervision from the summaries.

3.4 Ablation of Ranker Performance

To take a deeper look at the challenges in ranker
training, we conduct an ablation study on the ranker
independently. The quality of a ranker is measured
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System Bleu-1 Bleu-4 Meteor Rouge-L

Extractive Readers
BERT + Hard EM (Min et al., 2019) - - - 58.1/58.8
BERT-only (Min et al., 2019) - - - 55.8/56.1
BERT w/ full training signals [Ours] 49.35/49.02 25.76/25.85 23.93/24.14 52.62/52.02
BERT w/ exact answer match only [Ours] 49.78/49.64 27.01/28.94 25.22/25.12 57.19/56.35

Generative Readers
Attention Sum (Kočiskỳ et al., 2018) (w/o PG) 23.54/23.20 5.90/6.39 8.02/7.77 23.28/22.26
Masque (Nishida et al., 2019) (w/ PG) -/48.70 -/20.98 -/21.95 -/54.74
GPT-2 Reader(w/o PG) [Ours] 33.63/35.49 11.87/14.33 13.71/14.36 34.32/35.65

Table 2: Results under NarrativeQA summary setting on dev/test set (%). PG refers to the usage of pointer
generator. For extractive model, we compare with the best public result (Min et al., 2019) and its BERT-only
ablation. The latter corresponds to the same setting as ours. For generative model, we compare with the best
public models with and without pointer generators.

System Bleu-1 Bleu-4 Meteor Rouge-L EM F1

Public Generative Baselines
AttSum (top-10) (Kočiskỳ et al., 2018) 20.00/19.09 2.23/1.81 4.45/4.29 14.47/14.03 - -
AttSum (top-20) (Kočiskỳ et al., 2018) 19.79/19.06 1.79/2.11 4.60/4.37 14.86/14.02 - -
IAL-CPG (Tay et al., 2019) 23.31/22.92 2.70/2.47 5.68/5.59 17.33/17.67 - -

- curriculum 20.75/- 1.52/- 4.65/- 15.42/-

Our Generative QA Models
BM25 + GPT-2 Reader 24.54/24.43 4.74/4.37 7.32/7.32 20.25/21.04 5.12/5.22 17.72/18.38

+ BERT Ranker 24.94/25.03 4.76/4.42 7.74/7.81 21.89/22.36 6.79/6.31 19.67/19.94
+ Oracle IR (BM25 w/ Q+A) 33.18/32.95 8.16/7.70 12.35/12.47 34.83/34.96 17.09/15.98 33.65/33.75

Table 3: Generative performance in NarrativeQA full-story setting (BookQA setting) dev/test set(%). Oracle IR
utilizes question and true answers for retrieval.

System Bleu-1 Bleu-4 Meteor Rouge-L EM F1

Public Extractive Baselines
BiDAF (Kočiskỳ et al., 2018) 5.82/5.68 0.22/0.25 3.84/3.72 6.33/6.22 - -
R3 (Wang et al., 2017) 16.40/15.70 0.50/0.49 3.52/3.47 11.40/11.90 - -

Our Extractive QA Models
BM25 + BERT Reader 13.27/13.84 0.94/1.07 4.29/4.59 12.59/13.81 4.67/5.26 11.57/12.55

+ BERT Ranker 14.60/14.46 1.81/1.38 5.09/5.03 14.76/15.49 6.79/6.66 13.75/14.45
+ Oracle IR (BM25 w/ Q+A) 23.81/24.01 3.54/4.01 9.72/9.83 28.33/28.72 15.27/15.39 28.42/28.55

Extractive Models w/ additional supervision
BERT-heur (Frermann, 2019) -/12.26 -/2.06 -/5.28 -/15.15 - -

Table 4: Extractive performance in NarrativeQA full-story setting (BookQA setting) dev/test set(%). Oracle IR
utilizes question and true answers for retrieval.

by the answer coverage of its top-5 selections on
the basis of the top-32 candidates from the baseline.
The answer coverage is estimated by the maximum
Rouge-L score of the subsequences of the selected
paragraphs of the same length as the answers; and
whether the answer can be covered by any of the
selected paragraphs (EM).

Our BERT ranker together with supervision fil-
tering strategy has a significant improvement over
the BM25 baseline. Our BERT ranker improves
by 0.7%, compared with MatchLSTM (Wang and
Jiang, 2016) or an improved BiDAF architec-

ture (Clark and Gardner, 2018). On the other hand,
comparing the benefits that BERT brings to open-
domain QA tasks, the relatively small improvement
demonstrates the difficulty of evidence retrieval in
BookQA. This shows the potential room for future
novel improvements, which is also exhibited by the
large gap between our best rankers and either the
upper bound or the oracle.

3.5 Discussion of Future Improvement

We can see a considerable gap between our best
models (ranker and readers) and their correspond-

111



Question Gold Answer 1 Gold Answer 2 Generative Result

Where is Millicent sent to
boarding school?

Millicent is sent to a
boarding school in France

France France

What is Morgan’s
relationship to Wyatt?

Morgan is Wyatt’s brother Brothers Brother

What illness does Doc
Holiday suffer from?

Tuberculosis Tuberculosis Lung cancer

How does Carl make his
house fly?

He attaches thousands of
helium balloons to it

Balloons He uses a parachute to
climb up the side of the

dirigible

How does Felipe die? Suicide He suffers a physical
breakdown

He is killed by a bullet in
the head

What was the great stone
face and how did it

appear?

A natural rock formation
on the side of a mountain

A natural rock formation
which appeared when

viewed at a proper distance

It was a stone face

Table 5: Generative result examples. The model tends to generate shorter answers in general. The longer answer
it generates, the less likely the answer tends to be correct. The grammatical correctness and fluency of the long
generative answers are approaching to human level, regardless of the problematic logic between the generated
answer and question. The majority of the generative results do not make sense logically which leads to the low
scores in different metrics.

IR Method EM Rouge-L

BM25 18.99 47.48
BERT ranker 24.26 52.68

- Rouge-L filtering 22.63 51.02
Repl BERT w/ BiDAF 21.88 50.64
Repl BERT w/ MatchLSTM 21.97 50.39

Upperbound (BM25 top-32) 30.81 61.40
Oracle (BM25 w/ Q+A) 35.75 63.92

Table 6: IR Evaluation on NarrativeQA dev set(%).

ing oracles in Table 3, 4, and 6. One difficulty
that limits the effectiveness of ranker training is
the noisy annotation resulted from the nature of the
free-form answers. Our filtering technique helps
significantly but is still not sufficient. One way
we believe that can improve the distant supervi-
sion signals is by iteratively updating the ranker
and reader like in Hard-EM (Min et al., 2019; Guu
et al., 2020). Another possible direction is to ex-
tend the idea of inferring evidence on training data
with game-theoretic approaches (Perez et al., 2019;
Feng et al., 2020), then use the inferred evidence
paragraph as labels to train the ranker.

4 Conclusion

We explored the BookQA task and systemically
tested on NarrativeQA dataset different types of
models and techniques from open-domain QA. Our
proposed approaches bring significant improve-
ments to the state-of-the-art across different met-
rics. Our insight and analysis lay the path for excit-

ing future work in this domain.
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Abstract

Here we experiment with the use of infor-
mation retrieval as an augmentation for pre-
trained language models. The text corpus
used in information retrieval can be viewed as
form of episodic memory which grows over
time. By augmenting GPT 2.0 with informa-
tion retrieval we achieve a zero shot 15% rel-
ative reduction in perplexity on Gigaword cor-
pus without any re-training. We also validate
our IR augmentation on an event co-reference
task.

1 Introduction

We are interested in exploring the value of long
term episodic memory in language modeling. For
example, a language model can be used in January
to assign a probability distribution over the state-
ments that will appear in the newspaper in March.
But one month later, in February, the distribution
over the predictions for March should be updated
to take into account factual developments since
the previous prediction. Long term episodic mem-
ory should be taken into account when assigning a
probability to a statement.

Here we take a simple approach in which a pre-
trained GPT language model (Radford et al., 2018a,
2019) is zero-shot augmented with an episodic
memory consisting simply of a corpus of past news
articles. Conceptually the past news articles are
viewed as additional training data which can be
legitimately accessed when evaluating on future
text. In our most basic experiment we calculate
the probability of a future article by first calculat-
ing the probability of its first k sentences using
the pre-trained GPT model. We then use the first
k sentences as a query in an information retrieval
system to extract a relevant past article. We then
insert the past article following the first k sentences
when calculating the probability of the remainder

of the future article using the same pre-trained GPT
model. This is a zero-shot augmentation in the
sense that there is no additional training or fine tun-
ing of the pre-trained model. Our results show that
this augmentation significantly reduces perplexity.
We also present various other experiments includ-
ing results on fine-tuning the model in the presence
of the memory and the effect of this memory on
event co-reference.

2 Related Work

Various language models have utilized external
knowledge or long contexts (Paperno et al., 2016;
Yang and Mitchell, 2017; Peng et al., 2019; Khan-
delwal et al., 2018; Ghosh et al., 2016; Lau et al.,
2017; Grave et al., 2016; Parthasarathi and Pineau,
2018). But these papers do not address the question
of whether additional context or external knowl-
edge is useful as a zero-shot augmentation of large
scale pre-trained NLP models.

The value of external knowledge has previously
been demonstrated for NLP tasks such as natu-
ral language inference (Chen et al., 2018; Yang
et al., 2019), language generation (Parthasarathi
and Pineau, 2018), knowledge base comple-
tion (Toutanova et al., 2015; Das et al., 2017) and
question answering (Sun et al., 2019, 2018; Dhin-
gra et al., 2017). However, all those prior works
assume the model is small and trained from scratch.

As large scale pre-trained models have become
more powerful it is not immediately clear whether
external resources can still add value. The only
work we know of on using external resources in
modern large scale models is Yang et al. (2019)
where a human curated external lexical resource is
used to improve BERT.

Our approach bears some resemblance to neural
cache models (Grave et al., 2016). However, neural
cache models store past hidden states as memory
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and accesses them through a dot product with the
current hidden states. This is different from retriev-
ing knowledge from a corpus-sized memory.

Our approach is also somewhat related to mem-
ory networks (Weston et al., 2014). Memory net-
works have a memory module which can be learnt
jointly with other components. It has shown suc-
cess in applications such as machine reading com-
prehension (Kumar et al., 2016a,b; Shi et al., 2016)
and visual question answering (Na et al., 2017; Ma
et al., 2018; Su et al., 2018). Significant progress in
memory networks has been achieved in both archi-
tecture (Chandar et al., 2016; Miller et al., 2016;
Gulcehre et al., 2017) and model scale (Rae et al.,
2016; Lample et al., 2019).

Several papers have formulated, and experi-
mented with, scalable memory networks — mem-
ory networks that employ some method of effi-
ciently reading and writing to very large neural
memories. This is done with approximate nearest
neighbor methods in Rae et al. (2016) and with
product keys in Lample et al. (2019). These large
memories are used to provide additional model
capacity where the memory contents are trained
over a large data set using gradient descent train-
ing, just as one would train the parameters of a
very large network. It is shown in Lample et al.
(2019) that it is possible to insert a large memory
as a layer in a transformer architecture resulting a
model where the same number of parameters and
the same performance can be achieved with half
the layers and with much faster training time than
a standard transformer architecture. Here, however,
we are proposing zero-shot augmentation with an
external data source used as an episodic memory.

The use of key-value memories in Miller et al.
(2016) is particularly similar to our model. Key-
value memories were used there in treating a corpus
of Wikipedia movie pages as a memory for answer-
ing questions about movies. As in our system,
articles were extracted using word based informa-
tion retrieval. Each article was encoded as a vector
which was then given to a question answering archi-
tecture. This was shown to improve on automated
knowledge base extraction from the same corpus
but was still not competitive with human curated
knowledge graphs for movies. Here we give the
text of the retrieved article directly to the language
model architecture and focus on augmenting large
scale language models.

3 Model

We use the pre-trained transformer GPT 2.0 (Rad-
ford et al., 2019). Let Ww and Wp be the subword
and position embeddings respectively. Let M de-
note the total number of layers, for a token at time
step t, the m-th layer’s hidden state hmt is given by:

hmt =

{
Ww +Wp if m = 0

TB(hm−1t ) if 1 ≤ m ≤M

where TB stands for Transformer Block. We use
last layer’s hidden state hMt as the presentation Ht

for the token at time step t. We augment GPT 2.0
with a large episodic memory component, and the
overall architecture is shown in Figure 1.

Figure 1: GPT with large episodic memory component

For a sequence S with T tokens, let S1, . . ., Sp
be the tokens of the first k sentences. Let C be a
sequence (article) retrieved from memory using the
first k sentences as the query, the vector Ht is:

Ht =

{
GPT(S1, . . . , St), if t ≤ p
GPT(S1, . . . , Sp, C, . . . , St), otherwise

That’s to say, for the first k sentences, we directly
feed them to GPT to obtain their representations.
For remaining sentences, their representations are
conditioned on both the first k sentences and the
retrieved context C. Table 1 compares features of
our simple memory augmentation with those of
other memory models.

4 Experiments

We focus on two tasks: document level language
modelling and event co-retrieved . In both tasks we
take a document as input and use first k sentences
to query the memory. To calculate the perplexity
of a document, we compute the log-probability of
a document by multiplying byte level probability,
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Model episodic search memory size
DMN yes exact ∼1K words
SAM: no approx ∼100K slots
KVM: yes exact ≤ 1M slots
LMN: no exact ∼1M slots
Ours: yes approx ∼10M documents

Table 1: Comparison between different models. DMN:
Dynamic Memory Network (Kumar et al., 2016b);
SAM: Sparse Access Memory (Rae et al., 2016); KVM:
Key Value Memory (Miller et al., 2016); LMN: Large
Memory Network (Lample et al., 2019). Memory size
is measured in their own words.

then divide the log-probability by the actual word
count in the query document.

We use Gigaword (Parker et al., 2011) as both
our language modeling test set and as our external
memory. Gigaword contains news from different
sources such as NY Times and XinHua News etc.
For language modelling we use the NY Times por-
tion because it is written by native English speakers.
Since GPT 2.0 is trained on Common Crawl which
contains news collections started from 2008. To
avoid testing on GPT-2 training data, we use Gi-
gaword articles collected prior to 2008. For the
pre-trained language model we use GPT 2.0 (Rad-
ford et al., 2019) 1. It contains three pre-trained
models: GPT Small, Medium and Large.

For information retrieval we use Lucene due to
its simplicity. Given a query document we first do
sentence and word tokenization and then use the
first k sentences to retrieve top 20 retrieved doc-
uments with the default TF-IDF distance metric
provided by Lucene. Since too distant document
pairs are uninformative and too related document
pairs tends to be duplicates of the test article, we
further filter those top ranked documents by time
stamp, news source and cosine similarity. More
specifically, we choose the highest ranked retrieved
document that simultaneously satisfies the follow-
ing three conditions: it comes from a different news
source; it appears earlier but within two weeks
time window of the test document, and the bag of
word cosine similarity between the test and the re-
trieved cannot be larger than 0.6α where α is the
largest bag of word cosine similarity between the
test article and any retrieved articles. To support
fine-tuning experiments we constructed a corpus
of pairs of a query article and a cached retrieved

1https://github.com/huggingface/pytorch-transformers

document. We split the dataset into train/dev/test
by query document’s time stamp. The train/dev/test
size is: 79622,16927,8045. For zero-shot experi-
ments we use the test set of 8045 articles. We do
experiments with k ∈ {1, 2, 5}.

To check the quality of query-retrieved pairs, we
randomly sample 100 pairs from dev set and com-
pute the bag of word cosine similarity between the
two documents. The mean cosine similarity is 0.15.
We also manually inspect them: we ask two NLP
researchers to annotate the query-retrieved pair
as “BAD” or “OK” independently, i.e., if two doc-
uments are almost duplicates or totally unrelated,
then it’s “BAD”, otherwise, it’s “OK”. Among
100 pairs, 83 pairs are “OK”, 17 pairs are “BAD”
due to irrelevance. The Cohen’s kappa coefficient
between two annotations is 0.94.

4.1 Language modelling
For language modeling we try zero-shot memory
augmentation, fine-tuned memory augmentation,
and training a small memory-augmented network
from scratch. When training, we use the Adam
optimizer from GPT 1.0 (Radford et al., 2018b).
The learning rate is 0.001, weight decay parameter
is 0.01, the warm up proportion is 0.1. For other
parameters, we use the default values from GPT
2.0. The fine-tuning on Gigaword takes less than
one day with a single GPU.

Zero-shot and fine-tuning results Following
Radford et al. (2019), we first evaluate our model
on Gigaword with zero-shot setting and then fine-
tune the model. The results are given in Table 2.

Model Size woc k=1 k=2 k=5

GPT-Small 35.15 29.29 30.54 32.38
GPT-Medium 22.78 19.84 20.54 21.48
GPT-Large 19.90 17.41 18.00 18.80

GPT-Small 23.03 21.01 21.89 22.66

Table 2: Perplexity for zero-shot (top 3 rows) and fine-
tuning (last row) settings when use different k to re-
trieve the context. woc: without retrieved context.

From Table 2, we see that with additional context
retrieved from episodic memory, for all different
GPT models, we obtain significantly lower perplex-
ity than using original GPT 2.0. When fine tuning
the model with context, we can further reduce the
overall perplexity. We only fine tune GPT small
due to our GPU memory constraints. Preliminary
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analysis indicates that most of the perplexity re-
duction comes at content words and semantically
rich words where predictions require broader con-
text. This is consistent with the phenomena found
in Khandelwal et al. (2018). We further find that
smaller k leads to slightly worse retrieval qual-
ity, however, more continued sentences will ben-
efit from the retrieved context. Since Gigaword
contains newswire, the first several sentences usu-
ally are importation summarizations, thus overall,
smaller k will result in lower perplexity.

Train from scratch We also investigate train-
ing this form of memory-augmented model from
scratch on our query-retrieved pairs. For these ex-
periments we train smaller transformers and the
results are given in Table 3. From Table 3, we see
that additional context still helps and we can get
decent perplexity even with quite small models.

Model Config woc k=1 k=2 k=5

E=384,H=6,L=6 35.62 31.94 33.18 35.26
E=384,H=8,L=8 33.67 29.62 30.76 32.73
E=576,H=8,L=8 31.32 27.38 28.54 30.63

Table 3: Perplexity when train from scratch. E: hidden
states dimensionality; H: # of head; L: # of layer. GPT-
Small has the configuration: E=764, H=12, L=12.

When context is irrelevant We also evaluate
our method on Wikitext-2/103, in which the re-
trieved context is irrelevant due to domain differ-
ence between Wikipedia and Gigaword. In this
case, we use the most top ranked document from
Gigaword as reference. Table 4 shows that irrele-
vant contexts have very little impact on perplexity.

Dataset woc k=1 k=2 k=5

Wikitext-2 28.67 28.96 28.95 28.70
Wikitext-103 25.38 25.68 25.56 25.39

Table 4: Zero-shot perplexity using GPT-Small

4.2 Event Co-reference
Intuitively episodic memory is useful because it
contains information about the particular events
mentioned in the test document. With this in mind
we evaluate our approach on the event co-reference
dataset ECB+ (Cybulska and Vossen, 2014). ECB+
contains 982 documents clustered into 43 topics,
and has two evaluation settings: coreferring men-
tions occurring within a single document (within

document) or across a document collection (cross
document). For the event co-reference pipeline, we
follow the joint modeling method of Barhom et al.
(2019) where they jointly represented entity and
event mentions with various features and learned
a pairwise mention/entity scorer for coreference
classification. We augment their mention features
with the mention’s vector representations extracted
from either GPT 2.0 or our zero-shot augmented
GPT 2.0. For event co-reference, we use the whole
test document to retrieve the context from Giga-
word. From Table 5, we see that the context can
help boost the CONLL F1 score.

System MUC B3 CONLL

Within Document

KCP 63.0 92.0 81.0
JM 70.9 93.5 85.1
JM+GPT 80.1 93.5 85.2
JM+GPT+CTX♣ 80.2 93.9 85.4

Combined Within and Cross Document

CV 73.0 74.0 73.0
KCP 69.0 69.0 69.0
JM 80.9 80.3 79.5
JM+GPT 81.2 80.2 79.6
JM+GPT+CTX♣ 81.3 80.5 79.8

Table 5: F1 score on ECB+ dataset. KCP: Kenyon-
Dean et al. (2018) where they add a clustering-oriented
regularization term; CV: Cybulska and Vossen (2015)
where they add the feature calculated from “event tem-
plate”; JM: Barhom et al. (2019). ♣: we also feed the
retrieved context to GPT to get the representation.

5 Conclusion

In this paper we propose a method to augment a
pre-trained NLP model with a large episodic mem-
ory. Unlike previous work, we use information
retrieval to handle a large external corpus of text
and feed retrieved documents directly to language
models. Evaluation results on language modelling
and event co-reference show the promise of our
method. To the best of our knowledge, this is
the first work that augments pre-trained NLP mod-
els with large episodic memory. In principle, the
memory-augmented GPT-2 can be used as a variant
of GPT-2 for any downstream tasks, such as GLUE
tasks (Wang et al., 2018), although we have not
experimented with that here.
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Abstract

We describe work in progress on detecting
and understanding the moral biases of news
sources by combining framing theory with
natural language processing. First we draw
connections between issue-specific frames and
moral frames that apply to all issues. Then we
analyze the connection between moral frame
presence and news source political leaning.
We develop and test a simple classification
model for detecting the presence of a moral
frame, highlighting the need for more sophis-
ticated models. We also discuss some of the
annotation and frame detection challenges that
can inform future research in this area.

1 Introduction

While much attention has focused on the role of
fake news in political discourse, comparatively
little attention has been paid to the dissemina-
tion of news frames. Framing in news coverage–
highlighting certain aspects of an issue or event–
can have a significant impact on public opinion for-
mation (Callaghan, 2014). Framing theory posits
that preference formation depends on which sub-
set of relevant considerations or beliefs–”frame
in mind”–are activated by a particular message–
”frame in communication.” Scholars refer to the
power of such a frame as a framing effect, a phe-
nomenon widely reported in academic scholarship
on domestic and foreign issues alike (Jacob, 2000;
Grant and Rudolph, 2003; Nicholson and Howard,
2003; Baumgartner and Boydstun, 2008; Perla,
2011). If one-sided and morally charged, it can
exacerbate polarization and post-truth politics.

According to the most widely cited model used
by social scientists (Entman, 1993), the essential
components of a frame include problem definition,
diagnosis of cause, moral judgment, and prescribed
remedy. For example, obesity may be defined as a
significant national health problem, diagnosed as

the result of increasingly passive lifestyles judged
as detrimental to the strength of society and individ-
uals, and effectively treated by increased physical
activity. Such an emphasis on individual choice
redirects attention from other possible causes such
as genetic disposition or advertising campaigns for
caloric rich foods.

Even though moral judgment is central to frame
analysis, much of the frame analysis research ne-
glects the moral dimension. Our work responds
to this gap by adapting Moral Foundations Theory
(MFT) which proposes a set of five modalities–each
with a virtue and vice binary partner–that underlie
moral thinking (Graham et al., 2013). Morally-
inflected frames follow the contours of political
ideology (Graham et al., 2009), are more likely to
be shared on social media (Valenzuela et al., 2017),
and, most importantly, reinforce attitudes, making
compromise more difficult (Koleva et al., 2012).

Technology offers little solution to mitigate these
framing effects at the scale and speed of modern in-
formation networks. Our work responds to the need
for cross-disciplinary frameworks that enable the
early detection, propagation, and influence of moral
frames in such networks. In this paper, we offer an
initial analysis on the steps necessary for detecting
and understanding the prominence of moral frames
in news. We annotate a small corpus of news ar-
ticles with moral frames and look into their con-
nection to issue-specific frames and news source
leaning, together with models for detecting them.

2 Related work

In the last few years, a number of NLP approaches
have been devised for frame identification in text:
most focus on coarser-grained primary frame iden-
tification (Card et al., 2016; Ji and Smith, 2017;
Johnson et al., 2017a), possibly based on a prob-
abilistic distribution (Burscher et al., 2014); few
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Statistics Values
Sentences with at least one moral frame 2.81 %
Articles with at least one moral frame 20.61 %

Article frame presence agreement alpha 0.0485
Sentence frame presence agreement alpha -0.0264

Article frame type agreement alpha 0.8435
Sentence frame type agreement alpha 0.8525

Table 1: Dataset annotation statistics.

address finer-grained frame tagging at the para-
graph level (Tsur et al., 2015). Most research relies
on word-based approaches, from direct keyword
matching to latent representations (Boydstun et al.,
2013; Burscher et al., 2014; Baumer et al., 2015;
Tsur et al., 2015; Johnson et al., 2017a,b). Few
studies use rhetorical information such as discourse
structure (Ji and Smith, 2017).

Additionally, work has been done on general
frames, such as economy or law and order (Card
et al., 2016; Burscher et al., 2014) that can apply
across issues, or on issue-specific (also called topi-
cal) frames, such as innocence as concerns capital
punishment; than on identifying moral foundations.
Approaches to the latter mostly rely on moral foun-
dation keyword dictionaries, again directly (Ful-
goni et al., 2016) or via latent representations (Kaur
and Sasahara, 2016; Garten et al., 2016).

3 Datasets and annotation

Since there is no existing corpus with moral frame
annotations for news articles, we put together a
small initial dataset to help us understand the in-
tricacies of moral frame annotation and analysis.
Our dataset contains 400 articles on four different
issues. 300 articles are from a previously collected
corpus (Card et al., [n. d.]), 100 articles for each of
immigration, smoking and same-sex marriage is-
sues from 13 news sources. Another set of 100 arti-
cles was collected on the racial unrest in Baltimore
from 16 national and local newspaper sources.

Three undergraduate student annotators were
hired as summer interns for this project. Each ar-
ticle was independently annotated with sentence-
level and article-level moral frames by all three
annotators based on the 10 moral foundations (Gra-
ham et al., 2013) – Care/Harm, Fairness/Cheating,
Loyalty/Betrayal, Authority/ Subversion, Sanc-
tity/Degradation – or with NA. The annotators
used the BRAT software to perform the annota-
tions (https://brat.nlplab.org/).

The annotation process proceeded in two stages,
each of which involved a detailed annotation man-

ual, that was modified in the second stage 1.

Stage 1. The annotation manual instructed the
annotators to proceed with coding in 3 ordered
steps: (1) to identify the moral frame type; (2)
to decide whether the author supports or rejects
the frame; and (3) to decide whether the author
explicitly favors or opposes the specific issue the
article is about. The annotators were also instructed
to do so for both sentences and the whole article;
at the article-level, the annotators were asked to
evaluate the entire article and specify what they
regarded as its main moral frame. The annotators
were told to first annotate the sentences in an article
and then the article as a whole, but no explicit
written guidelines were provided in this regard.

Stage 2. After the initial set of annotations from
Stage 1 (which were discarded), the protocol was
adjusted based on annotator feedback, with the goal
of making the annotation process less ambiguous.
First, a preliminary step was added to the three
annotation steps, a.k.a step 0: annotators were in-
structed to identify the presence or absence of any
moral frame before embarking in the subsequent
three steps. Second, the sentence and article an-
notation were clearly separated, and for the article
annotation specific guidelines were provided: Eval-
uate the entire article and specify what you regard
is its main moral claim. Keep in mind that it may
or may not be the most frequent one (based on
counting sentences with moral claims).

Another main adjustment was providing the an-
notators with a list of keywords associated with
each moral foundation developed by Graham et
al. (Graham et al., 2013). The annotators were in-
structed to use such sets as keywords as guidance,
but were warned that (a) a moral frame may con-
tain none of the keywords listed in the codebook,
and that (b) the presence of a keyword does not
necessarily indicate the presence of a moral frame.
The annotators were provided with examples of
both (a) and (b).

We refer to the dataset with sentence-level anno-
tations as mf-sent and with article-level annotations
as mf-art. 116 articles have both an article-level
frame and at least one sentence-level frame, as an-
notated by at least one annotator. The percentage
of articles whose moral frame is different from
the most frequent moral frame among the article’s
sentences is 14.3%.

1Annotation manual: https://bit.ly/2LXiiR5
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(a) Sentence level (b) Article level

Figure 1: Moral frame distribution for each annotator in moral frames datasets

Figure 2: Coincidence matrix showing number of times
annotators (dis)agree on sentence-level frame types.

To study the connection between issue-specific
frames and more general, moral frames, a domain
expert annotated a subset of 48 Baltimore unrest
articles from mf-sent with issue-specific frames
at the sentence level following (Rojecki, 2017):
Black Criminality, Police Racism, Rogue Cops,
and Structural Inequality. We refer to this dataset
as ol-sent.

Subjectivity in Moral Frame Annotation. Ta-
ble 1 shows dataset annotation statistics includ-
ing Krippendorff’s alpha for inter-annotator agree-
ment. Despite the protocol iterations, the anno-
tators had a fairly low level of agreement on the
presence/absence of a moral frame both at the ar-
ticle level (alpha=0.0485) and the sentence level
(alpha=-0.0264). However, when at least two an-
notators agreed that a moral frame is present, the
frame type agreement was relatively high both at
the article level (alpha=0.8435) and at the sentence
level (alpha=0.8525). Figure 1 shows the distri-

bution of frames for each annotator at article and
sentence level. While some frames like Cheating
and Harm are prevalent across annotators, the ac-
tual distributions are different. Figure 2 shows
the frame confusion matrix at the sentence level.
Each box represents the number of times a moral
frame disagreement occurred at the sentence level.
The figure shows that annotators often disagree on
the most frequent frames, Harm, Subversion and
Cheating.

These results reflect the challenges in using non-
experts for moral frame annotation. A number of
annotation studies have analyzed the reliability of
non-expert annotations, and investigated whether
corrections need to be applied to the annotation
process and / or to the models derived from the non-
expert annotated datasets (Snow et al., 2008; Welin-
der and Perona, 2010; Patton et al., 2019; Lavee
et al., 2019). However, many of these studies can
actually compare the performance of non-expert
and expert annotation, since datasets annotated by
experts for the phenomenon of interest did exist;
this was not the case for us. In fact, this initial
effort of ours at annotation can be taken as an indi-
cation of how difficult annotating for moral frames
is for non-experts; it remains to be seen how expert
annotators would fare on this task. This is part of
the future research we will undertake to understand
whether this task can be crowdsourced successfully
at scale or whether it requires expert annotators.

4 Moral frame analysis

4.1 Issue-specific vs. moral frames
We analyze the connection between issue-specific
and moral frames in the Baltimore unrest articles
(ol-sent dataset). When a sentence is annotated
with multiple frames, we consider the one with the

122



(a) Issue specific frame distribution
(b) Moral frame distribution

(c) Frame type Pearson correlation.

Figure 3: Frame distributions for different types of frames in ol-sent dataset.

(a) Issue specific frame distribution
(b) Moral frame distribution

Figure 4: Frame type distributions in ol-sent dataset based on news source type (Conservative, Liberal, Neutral).

Figure 5: Moral frame distributions for different types
of sources in Baltimore articles from mf-art dataset.

highest agreement. The sentence-level distribution
of issue-specific and moral frames is given in Fig-
ure 3. While issue-specific frames are more evenly
distributed, moral frames have a skewed distribu-
tion with Cheating and Harm being the dominant
frames. The most likely reason for this is that, the
Care/Harm and Fairness/Cheating foundations are
valued by conservatives and liberals alike and is
therefore more likely to be present in news frames.

We computed the Pearson correlation between
different frame labels, and their heat-map represen-
tation can be found in Figure 3c. It is interesting
to note that for most moral frames, there is a domi-
nant corresponding issue-specific frame. For Sub-
version, it is Black Criminality (Blk Crm), for
Fairness, it is Rogue Cops (Rog Cop), for Cheat-
ing/Injustice it is Structural Inequality (Str Inq).

4.2 Moral frames and news source leaning

In order to understand whether moral frames can
explain the political leanings of news sources, a do-
main expert labeled each news source based on the
history of their support for a liberal/conservative
candidate. 2 We use the ol-sent dataset for this
purpose since it has both issue-specific and moral
frame labels. The sentence-level distributions for
liberal/conservative/neutral news sources can be
seen in Figure 4. Issue-specific frame distribu-
tions (Fig. 4(a)) are very revealing and consistent

2Other possible news-source leaning annotations (e.g.,
(Wihbey et al., 2017)) can be considered in future work.
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Model Precision Recall F-score
Keyword match 0.08 0.65 0.14

SVM 0.20 0.41 0.27

Table 2: Moral frame presence classification results.

with previous work (Rojecki, 2017): conservative
sources tend to criminalize the protesters while lib-
eral sources focus more on police racism and rogue
cops. Neutral sources are harder to explain, how-
ever, according to the domain expert, the structural
inequality in issue-specific frames can be explained
by the fact that these sources are more likely to be
aligned with the liberal sources.

Since Black Criminality strongly correlates with
Subversion as shown in Figure 3c, we can see in
Figure 4(b) that subversion frame is heavily used
by conservatives as opposed to liberals. Cheating
or Injustice is heavily used by liberal sources as
opposed to conservative. Authority and Betrayal
are present in conservative sources and absent in
the liberal ones. Liberal sources have some sen-
tences labeled as Sanctity which is missing from
conservative sources.

Figure 5 shows the distribution of article-level
moral frames for the 100 Baltimore articles in the
mf-art dataset. It shows similar patterns as the
sentence-level annotations, except that the differ-
ences between news source categories are not as
pronounced.

4.3 Moral frame detection

We train a binary classifier to detect whether a
moral frame is present or absent in a sentence using
all articles in mf-sent. Each sentence is represented
by a normalized sum of its word2vec word vectors.
A balanced SVM classifier is tuned and trained us-
ing 5-fold stratified cross-validation. Its accuracy
is reported in Table 2. It is compared to a baseline
Keyword match which reports a frame present if
at least one of the MFT keywords (Graham et al.,
2013) is present in the sentence. The relatively poor
results partially reflect the class skew (95% of sen-
tences do not have a moral frame present). For the
subset of sentences with moral frames present (396
in total), we used the same methods and evaluation
mechanism as above to classify sentences in spe-
cific moral frame categories. The only exception
is that we used frame-specific MFT keywords and
SVM is trained using a one-versus-one multi-class
classification setup. The weighted-average results
are reported in Table 3.

Model Precision Recall F-score
Keyword match 0.69 0.29 0.31

SVM 0.68 0.70 0.68

Table 3: Multi-class moral frame classification results.

5 Conclusion

We presented a small-scale study of moral frames
in news showing that moral frames have the poten-
tial to explain issue-specific frames and the biases
of their news sources. In order to increase the anal-
ysis scale and reliability, we need to collect a larger
dataset covering more issues and news sources. We
also need to improve the annotation protocol and
overcome the challenges associated with annota-
tor subjectivity. Future directions include improv-
ing on the machine learning models for predicting
moral frames in news articles and studying their
impact on opinions expressed in social media.
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