
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, pages 11–24
July 9, 2020. c©2020 Association for Computational Linguistics

11

On Incorporating Structural Information to improve Dialogue Response
Generation

Nikita Moghe∗1, Priyesh Vijayan2, Balaraman Ravindran3,4, and Mitesh M. Khapra3,4

1School of Informatics, University of Edinburgh
2School of Computer Science, McGill University and Mila

3Indian Institute of Technology Madras
4Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI),

Indian Institute of Technology Madras
nikita.moghe@ed.ac.uk priyesh.vijayan@mail.mcgill.ca

Abstract

We consider the task of generating dialogue re-
sponses from background knowledge compris-
ing of domain specific resources. Specifically,
given a conversation around a movie, the task
is to generate the next response based on back-
ground knowledge about the movie such as the
plot, review, Reddit comments etc. This re-
quires capturing structural, sequential, and se-
mantic information from the conversation con-
text and background resources. We propose a
new architecture that uses the ability of BERT
to capture deep contextualized representations
in conjunction with explicit structure and se-
quence information. More specifically, we use
(i) Graph Convolutional Networks (GCNs) to
capture structural information, (ii) LSTMs to
capture sequential information, and (iii) BERT
for the deep contextualized representations
that capture semantic information. We analyze
the proposed architecture extensively. To this
end, we propose a plug-and-play Semantics-
Sequences-Structures (SSS) framework which
allows us to effectively combine such linguis-
tic information. Through a series of experi-
ments, we make some interesting observations.
First, we observe that the popular adaptation
of the GCN model for NLP tasks where struc-
tural information (GCNs) was added on top
of sequential information (LSTMs) performs
poorly on our task. This leads us to explore
interesting ways of combining semantic and
structural information to improve performance.
Second, we observe that while BERT already
outperforms other deep contextualized repre-
sentations such as ELMo, it still benefits from
the additional structural information explicitly
added using GCNs. This is a bit surprising
given the recent claims that BERT already cap-
tures structural information. Lastly, the pro-
posed SSS framework gives an improvement
of 7.95% BLEU score over the baseline.
∗The work was done by Nikita and Priyesh at Indian In-

stitue of Technology Madras.

1 Introduction

Neural conversation systems that treat dialogue re-
sponse generation as a sequence generation task
(Vinyals and Le, 2015) often produce generic and
incoherent responses (Shao et al., 2017). The pri-
mary reason for this is that, unlike humans, such
systems do not have any access to background
knowledge about the topic of conversation. For
example, while chatting about movies, we use our
background knowledge about the movie in the form
of plot details, reviews, and comments that we
might have read. To enrich such neural conver-
sation systems, some recent works (Moghe et al.,
2018; Dinan et al., 2019; Zhou et al., 2018) incorpo-
rate external knowledge in the form of documents
which are relevant to the current conversation. For
example, Moghe et al. (2018) released a dataset
containing conversations about movies where every
alternate utterance is extracted from a background
document about the movie. This background doc-
ument contains plot details, reviews, and Reddit
comments about the movie. The focus thus shifts
from sequence generation to identifying relevant
snippets from the background document and modi-
fying them suitably to form an appropriate response
given the current conversational context.

Intuitively, any model for this task should ex-
ploit semantic, structural and sequential informa-
tion from the conversation context and the back-
ground document. For illustration, consider the
chat shown in Figure 1 from the Holl-E movie con-
versations dataset (Moghe et al., 2018). In this
example, Speaker 1 nudges Speaker 2 to talk about
how James’s wife was irritated because of his ca-
reer. The right response to this conversation comes
from the line beginning at “His wife Mae . . . ”.
However, to generate this response, it is essential
to understand that (i) His refers to James from the
previous sentence; (ii) quit boxing is a contigu-

12

Source Doc: ... At this point James Brad-
dock (Russel Crowe) was a light heavyweight
boxer, who was forced to retired from the
ring after breaking his hand in his last fight.
His wife Mae had prayed for years that he
would quit boxing, before becoming perma-
nently injured. ...
Conversation:
Speaker 1(N): Yes very true, this is a real
rags to riches story. Russell Crowe was excel-
lent as usual.
Speaker 2(R): Russell Crowe owns the char-
acter of James Bradock, the unlikely hero
who makes the most of his second chance.
He’s a good fighter turned hack.
Speaker 1(N): Totally! Oh by the way do
you remember his wife ... how she wished he
would stop
Speaker 2(P): His wife Mae had prayed for
years that he would quit boxing, before be-
coming permanently injured.

Figure 1: Sample conversation from the Holl-E Dataset.
The text in bold in the first block is the background doc-
ument which is used to generate the last utterance in
this conversation. N, P, and R correspond to the type
of background knowledge used: None, Plot, and Re-
view as per the dataset definitions. For simplicity, we
show only a few of the edges for the background knowl-
edge at the bottom. The edge in blue corresponds to the
co-reference edge, the edges in green are dependency
edges and the edge in red is the entity edge.

ous phrase, and (iii) quit and he would stop mean
the same. We need to exploit (i) structural infor-
mation, such as, the co-reference edge between
His-James (ii) the sequential information in quit
boxing and (iii) the semantic similarity (or syn-
onymy relation) between quit and he would stop.

To capture such multi-faceted information from
the document and the conversation context we pro-
pose a new architecture that combines BERT with
explicit sequence and structure information. We
start with the deep contextualized word represen-
tations learnt by BERT which capture distribu-
tional semantics. We then enrich these represen-
tations with sequential information by allowing
the words to interact with each other by passing

them through a bidirectional LSTM as is the stan-
dard practice in many NLP tasks. Lastly, we add
explicit structural information in the form of de-
pendency graphs, co-reference graphs, and entity
co-occurrence graphs. To allow interactions be-
tween words related through such structures, we
use GCNs which essentially aggregate information
from the neighborhood of a word in the graph.

Of course, combining BERT with LSTMs in it-
self is not new and has been tried in the original
work (Devlin et al., 2019) for the task of Named En-
tity Recognition. Similarly, Bastings et al. (2017)
combine LSTMs with GCNs for the task of ma-
chine translation. To the best of our knowledge,
this is the first work that combines BERT with ex-
plicit structural information. We investigate several
interesting questions in the context of dialogue re-
sponse generation. For example,

1. Are BERT-based models best suited for this
task?

2. Should BERT representations be enriched
with sequential information first or structural
information?

3. Are dependency graph structures more im-
portant for this task or entity co-occurrence
graphs?

4. Given the recent claims that BERT captures
syntactic information, does it help to explic-
itly enrich it with syntactic information using
GCNs?

To systematically investigate such questions
we propose a simple plug-and-play Semantics-
Sequences-Structures (SSS) framework which al-
lows us to combine different semantic repre-
sentations (GloVe (Pennington et al., 2014),
BERT(Devlin et al., 2018), ELMo (Peters et al.,
2018a)) with different structural priors (depen-
dency graphs, co-reference graphs, etc.). It also
allows us to use different ways of combining struc-
tural and sequential information, e.g., LSTM first
followed by GCN or vice versa, or both in par-
allel. Using this framework we perform a series
of experiments on the Holl-E dataset and make
some interesting observations. First, we observe
that the conventional adaptation of GCNs for NLP
tasks, where contextualized embeddings obtained
through LSTMs are fed as input to a GCN, exhibits
poor performance. To overcome this, we propose
some simple alternatives and show that they lead to

13

better performance. Second, we observe that while
BERT performs better than GloVe and ELMo, it
still benefits from explicit structural information
captured by GCNs. We find this interesting because
some recent works (Tenney et al., 2019; Jawahar
et al., 2019; Hewitt and Manning, 2019) suggest
that BERT captures syntactic information, but our
results suggest that there is still more information
to be captured by adding explicit structural priors.
Third, we observe that certain graph structures are
more useful for this task than others. Lastly, our
best model which uses a specific combination of
semantic, sequential, and structural information im-
proves over the baseline by 7.95% on the BLEU
score.

2 Related work

There is an active interest in using external knowl-
edge to improve the informativeness of responses
for goal-oriented as well as chit-chat conversations
(Lowe et al., 2015; Ghazvininejad et al., 2018;
Moghe et al., 2018; Dinan et al., 2019). Even the
teams participating in the annual Alexa Prize com-
petition (Ram et al., 2017) have benefited by using
several knowledge resources. This external knowl-
edge can be in the form of knowledge graphs or
unstructured texts such as documents.

Many NLP systems including conversation sys-
tems use RNNs as their basic building block which
typically captures n-gram or sequential informa-
tion. Adding structural information through tree-
based structures (Tai et al., 2015) or graph-based
structures (Marcheggiani and Titov, 2017) on top
of this has shown improved results on several tasks.
For example, GCNs have been used to improve neu-
ral machine translation (Marcheggiani et al., 2018)
by exploiting the semantic structure of the source
sentence. Similarly, GCNs have been used with
dependency graphs to incorporate structural infor-
mation for semantic role labelling (Marcheggiani
and Titov, 2017), neural machine translation (Bast-
ings et al., 2017) and entity relation information in
question answering (De Cao et al., 2019) and tem-
poral information for neural dating of documents
(Vashishth et al., 2018).

There have been advances in learning deep
contextualized word representations (Peters et al.,
2018b; Devlin et al., 2019) with a hope that such
representations will implicitly learn structural and
relational information with the interaction between
words at multiple layers (Jawahar et al., 2019; Pe-

ters et al., 2018c). These recent developments have
led to many interesting questions about the best
way of exploiting rich information from sentences
and documents. We try to answer some of these
questions in the context of background aware dia-
logue response generation.

3 Background

In this section, we provide a background on how
GCNs have been leveraged in NLP to incorporate
different linguistic structures.

The Syntactic-GCN proposed in (Marcheggiani
and Titov, 2017) is a GCN (Kipf and Welling, 2017)
variant which can model multiple edge types and
edge directions. It can also dynamically determine
the importance of an edge. They only work with
one graph structure at a time with the most popular
structure being the dependency graph of a sentence.
For convenience, we refer to Syntactic-GCNs as
GCNs from here on.

Let G denote a graph defined on a text sequence
(sentence, passage or document) with nodes as
words and edges representing a directed relation
between words. LetN denote a dictionary of list of
neighbors with N (v) referring to the neighbors of
a specific node v, including itself (self-loop). Let
dir(u, v) ∈ {in, out, self} denote the direction of
the edge, (u, v). Let L be the set of different edge
types and let L(u, v) ∈ L denote the label of the
edge, (u, v). The (k + 1)-hop representation of a
node v is computed as

h(k+1)
v = σ(

∑
u∈N (v)

g
(k)
(u,v)(W

(k)
dir(u,v)h

(k)
u + b

(k)
L(u,v))

(1)
where σ is the activation function, g(u,v) ∈ R is
the predicted importance of the edge (u, v) and
hv ∈ Rm is node, v’s embedding. Wdir(u,v) ∈
{Win,Wout,Wself} depending on the direction
dir(u, v) andWin, Wself andWout ∈ Rm∗m. The
importance of an edge g(u,v) is determined by an
edge gating mechanism w.r.t. the node of interest,
u as given below:

g(u,v) = sigmoid
(
hu . Wdir(u,v) + bL(u,v)

)
(2)

In summary, a GCN computes new representation
of a node u by aggregating information from it’s
neighborhood N (v). When k=0, the aggregation
happens only from immediate neighbors, i.e., 1
hop neighbors. As the value of k increases the
aggregation implicitly happens from a larger neigh-
borhood.

14

4 Proposed Model

Given a document D and a conversational con-
text Q the task is to generate the response y =
y1, y2,, ym. This can be modeled as the prob-
lem of finding a y that maximizes the probability
P (y|D,Q) which can be further decomposed as

y = argmax
y

m∏
t=1

P (yt|y1, ..., yt−1, Q,D)

As has become a standard practice in most NLG
tasks, we model the above probability using a neu-
ral network comprising of an encoder, a decoder, an
attention mechanism, and a copy mechanism. The
copy mechanism essentially helps to directly copy
words from the document D instead of predicting
them from the vocabulary. Our main contribution is
in improving the document encoder where we use
a plug-and-play framework to combine semantic,
structural, and sequential information from differ-
ent sources. This enriched document encoder could
be coupled with any existing model. In this work,
we couple it with the popular Get To The Point
(GTTP) model (See et al., 2017) as used by the
authors of the Holl-E dataset. In other words, we
use the same attention mechanism, decoder, and
copy mechanism as GTTP but augment it with an
enriched document encoder. Below, we first de-
scribe the document encoder and then very briefly
describe the other components of the model. We
also refer the reader to the supplementary material
for more details.

4.1 Encoder

Our encoder contains a semantics layer, a sequen-
tial layer and a structural layer to compute a rep-
resentation for the document words which is a se-
quence of wordsw1, w2, ..., wm. We refer to this as
a plug-and-play document encoder simply because
it allows us to plug in different semantic repre-
sentations, different graph structures, and different
simple but effective mechanisms for combining
structural and semantic information.
Semantics Layer: Similar to almost all NLP mod-
els, we capture semantic information using word
embeddings. In particular, we utilize the ability of
BERT to capture deep contextualized representa-
tions and later combine it with explicit structural
information. This allows us to evaluate (i) whether
BERT is better suited for this task as compared to
other embeddings such as ELMo and GloVe and

(ii) whether BERT already captures syntactic infor-
mation completely (as claimed by recent works) or
can it benefit form additional syntactic information
as described below.

Structure Layer: To capture structural informa-
tion we propose multi-graph GCN, M-GCN, a sim-
ple extension of GCN to extract relevant multi-hop
multi-relational dependencies from multiple struc-
tures/graphs efficiently. In particular, we general-
ize G to denote a labelled multi-graph, i.e., a graph
which can contain multiple (parallel) labelled edges
between the same pair of nodes. LetR denote the
set of different graphs (structures) considered and
letG = {N1,N2 . . .N|R|} be a set of dictionary of
neighbors from the |R| graphs. We extend the Syn-
tactic GCN defined in Eqn: 1 to multiple graphs
by having |R| graph convolutions at each layer as
given in Eqn: 3. Here, g conv(N) is the graph
convolution defined in Eqn: 1 with σ as the identity
function. Further, we remove the individual node
(or word) i from the neighbourhood list N (i) and
model the node information separately using the
parameter Wself .

h
(k+1)
i = ReLU

(
(h

(k)
i W

(k)
self +

∑
N∈G

g conv(N)
)

(3)
This formulation is advantageous over having |R|
different GCNs as it can extract information from
multi-hop pathways and can use information across
different graphs with every GCN layer (hop). Note
that h0i is the embedding obtained for word v from
the semantic layer. For ease of notation, we use
the following functional form to represent the final
representation computed by M-GCN after k-hops
starting from the initial representation h0i , given G.

hi =M -GCN(h0i , G, k)

Sequence Layer: The purpose of this layer is to
capture sequential information. Once again, follow-
ing standard practice, we pass the word represen-
tations computed by the previous layer through a
bidirectional LSTM to compute a sequence contex-
tualized representation for each word. As described
in the next subsection, depending upon the manner
in which we combine these layers, the previous
layer could either be the structure layer or the se-
mantics layer.

15

Figure 2: The SSS framework. The Word Embeddings include GloVe, ELMo, and BERT. Seq-GCN considers
obtaining an LSTM representation first which this then passed through an M-GCN module. In Str-LSTM, we
compute the M-GCN representation first which is then passed to an LSTM layer while Par-GCN-LSTM computes
both LSTM and M-GCN representations independently which are then combined into a final representation.

4.2 Combining structural and sequential
information

As mentioned earlier, for a given document D
containing words w1, w2, w3, . . . , wm, we first ob-
tain word representations x1, x2, x3, . . . , xm using
BERT (or ELMo or GloVe). At this point, we have
three different choices for enriching the represen-
tations using structural and sequential information:
(i) structure first followed by sequence (ii) sequence
first followed by structure or (iii) structure and se-
quence in parallel. We depict these three choices
pictorially in Figure 2 and describe them below
with appropriate names for future reference. Please
note that the choice of “Seq” denotes the sequential
nature of LSTMs while “Str” denotes the structural
nature of GCNs. Though we use a specific variant
of GCN, described as M-GCN in the previous sec-
tion, any other variant of GCN can be replaced in
the “Str” layer.

4.2.1 Sequence contextualized GCN
(Seq-GCN)

Seq-GCN is similar to the model proposed in (Bast-
ings et al., 2017; Marcheggiani and Titov, 2017)
where the word representations x1, x2, x3, . . . , xm
are first fed through a BiLSTM to obtain sequence
contextualized representations as shown below.

hseqi = BiLSTM(hseqi−1, xi)

These representations h1, h2, h3, . . . , hm are

then fed to the M-GCN along with the graph G
to compute a k-hop aggregated representation as
shown below:

hstri =M -GCN(hseqi , G, k)

This final representation hfinali = hstri for the
i-th word thus combines semantics, sequential and
structural information in that order. This is a popu-
lar way of combining GCNs with LSTMs but our
experiments suggest that this does not work well
for our task. We thus explore two other variants as
explained below.

4.2.2 Structure contextualized LSTM
(Str-LSTM)

Here, we first feed the word representations
x1, x2, x3, . . . , xm to M-GCN to obtain structure
aware representations as shown below.

hstri =M -GCN(xi, G, k)

These structure aware representations are then
passed through a BiLSTM to capture sequence in-
formation as shown below:

hseqi = BiLSTM(hseqi−1, h
str
i)

This final representation hfinali = hseqi for the i-
th word thus combines semantics, structural and
sequential information in that order.

16

4.2.3 Parallel GCN-LSTM (Par-GCN-LSTM)
Here, both M-GCN and BiLSTMs are fed with
word embeddings xi as input to aggregate structural
and sequential information independently as shown
below:

hstri =M -GCN(xi, G, k)

hseqi = BiLSTM(hseqi−1, xi)

The final representation, hfinali , for each word
is computed as hfinali = hstri + hseqi and combines
structural and sequential information in parallel as
opposed to a serial combination in the previous two
variants.

4.3 Decoder, Attention, and Copy
Mechanism

Once the final representation for each word is com-
puted, an attention weighted aggregation, ct, of
these representations is fed to the decoder at each
time step t. The decoder itself is a LSTM which
computes a new state vector st at every timestep t
as

st = LSTM(st−1, ct)

The decoder then uses this st to compute a dis-
tribution over the vocabulary where the probabil-
ity of the i-th word in the vocabulary is given by
pi = softmax(V st +Wct + b)i. In addition, the
decoder also has a copy mechanism wherein, at ev-
ery timestep t, it could either choose the word with
the highest probability pi or copy that word from
the input which was assigned the highest attention
weight at timestep t. Such copying mechanism is
useful in tasks such as ours where many words in
the output are copied from the document D. We
refer the reader to the GTTP paper for more details
of the standard copy mechanism.

5 Experimental setup

In this section, we briefly describe the dataset and
task setup followed by the pre-processing steps we
carried to obtain different linguistic graph struc-
tures on this dataset. We then describe the dif-
ferent baseline models. Our code is available
at: https://github.com/nikitacs16/horovod_
gcn_pointer_generator

5.1 Dataset description
We evaluate our models using Holl-E, an English
language movie conversation dataset (Moghe et al.,

2018) which contains ∼ 9k movie chats and ∼ 90k
utterances. Every chat in this dataset is associated
with a specific background knowledge resource
from among the plot of the movie, the review of the
movie, comments about the movie, and occasion-
ally a fact table. Every even utterance in the chat is
generated by copying and or modifying sentences
from this unstructured background knowledge. The
task here is to generate/retrieve a response using
conversation history and appropriate background
resources. Here, we focus only on the oracle setup
where the correct resource from which the response
was created is provided explicitly. We use the same
train, test, and validation splits as provided by the
authors of the paper.

5.2 Construction of linguistic graphs
We consider leveraging three different graph-based
structures for this task. Specifically, we evaluate the
popular syntactic word dependency graph (Dep-G),
entity co-reference graph (Coref-G) and entity co-
occurrence graph (Ent-G). Unlike the word depen-
dency graph, the two entity-level graphs can cap-
ture dependencies that may span across sentences
in a document. We use the dependency parser pro-
vided by SpaCy (https://spacy.io/) to obtain
the dependency graph (Dep-G) for every sentence.
For the construction of the co-reference graph
(Coref-G), we use the NeuralCoref model (https:
//github.com/huggingface/neuralcoref) inte-
grated with SpaCy. For the construction of the en-
tity graph (Ent-G), we first perform named-entity
recognition using SpaCy and connect all the enti-
ties that lie in a window of k = 20.

5.3 Baselines
We categorize our baseline methods as follows:
Without Background knowledge: We consider
the simple Sequence-to-Sequence (S2S) (Vinyals
and Le, 2015) architecture that conditions the re-
sponse generation only on the previous utterance
and completely ignores the other utterances as well
as the background document. We also consider
HRED (Serban et al., 2016), a hierarchical vari-
ant of the S2S architecture which conditions the
response generation on the entire conversation his-
tory in addition to the last utterance. Of course, we
do not expect these models to perform well as they
completely ignore the background knowledge but
we include them for the sake of completeness.
With Background Knowledge: To the S2S archi-
tecture we add an LSTM encoder to encode the

https://github.com/nikitacs16/horovod_gcn_pointer_generator
https://github.com/nikitacs16/horovod_gcn_pointer_generator
https://spacy.io/
https://github.com/huggingface/neuralcoref
https://github.com/huggingface/neuralcoref

17

document. The output is now conditioned on this
representation in addition to the previous utterance.
We refer to this architecture as S2S-D. Next, we
use GTTP (See et al., 2017) which is a variant of
the S2S-D architecture with a copy-or-generate de-
coder; at every time-step, the decoder decides to
copy from the background knowledge or generate
from the fixed vocabulary. We also report the per-
formance of the BiRNN + GCN architecture that
uses the dependency graph only as discussed in
(Marcheggiani and Titov, 2017). Finally, we note
that in our task many words in the output need to
be copied sequentially from the input background
document which makes it very similar to the task
of span prediction as used in Question Answering.
We thus also evaluate BiDAF (Seo et al., 2017), a
popular question-answering architecture, that ex-
tracts a span from the background knowledge as a
response using complex attention mechanisms. For
a fair comparison, we evaluate the spans retrieved
by the model against the ground truth responses.

We use BLEU-4 and ROUGE (1/2/L) as the eval-
uation metrics as suggested in the dataset paper.
Using automatic metrics is more reliable in this
setting than the open domain conversational setting
as the variability in responses is limited to the infor-
mation in the background document. We provide
implementation details in Appendix A.

6 Results and Discussion

In Table 1, we compare our architecture against the
baselines as discussed above. SSS(BERT) is our
proposed architecture in terms of the SSS frame-
work. We report best results within SSS chosen
across 108 configurations comprising of four differ-
ent graph combinations, three different contextual
and structural infusion methods, three M-GCN lay-
ers, and, three embeddings. The best model was
chosen based on performance of the validation set.
From Table 1, it is clear that our improvements in
incorporating structural and sequential information
with BERT in the SSS encoder framework signifi-
cantly outperforms all other models.

6.1 Qualitative Evaluation

We conducted human evaluation for the SSS mod-
els from Table 1 against the generated responses of
GTTP. We presented 100 randomly sampled out-
puts to three different annotators. The annotators
were asked to pick from four options: A, B, both,
and none. The annotators were told these were con-

Model BLEU ROUGE
1 2 L

S2S 4.63 26.91 9.34 21.58
HRED 5.23 24.55 7.61 18.87
S2S-D 11.71 26.36 13.36 21.96
GTTP 13.97 36.17 24.84 31.07

BiRNN+GCN 14.70 36.24 24.60 31.29
BiDAF 16.79 26.73 18.82 23.58

SSS(GloVe) 18.96 38.61 26.92 33.77
SSS(ELMo) 19.32 39.65 27.37 34.86
SSS(BERT) 22.78 40.09 27.83 35.20

Table 1: Results of automatic evaluation. The
architectures within the SSS framework outperform
the baseline methods with our proposed architecture
SSS(BERT) performing the best.

versations between friends. Tallying the majority
vote, we obtain win/loss/both/none for SSS(BERT)
as 29/25/29/17, SSS(GloVe) as 24/17/47/12 and
SSS(ELMo) as 22/23/41/14. This suggests quali-
tative improvement using the SSS framework. We
also provide some generated examples in Appendix
B1. We found that the SSS framework had less con-
fusion in generating the opening responses than the
GTTP baseline. These “conversation starters” have
a unique template for every opening scenario and
thus have different syntactic structures respectively.
We hypothesize that the presence of dependency
graphs over these respective sentences helps to al-
leviate the confusion as seen in Example 1. The
second example illustrates why incorporating struc-
tural information is important for this task. We also
observed that the SSS encoder framework does not
improve on the aspects of human creativity such as
diversity, initiating a context-switch, and common-
sense reasoning as seen in Example 3.

6.2 Ablation studies on the SSS framework
We report the component-wise results for the SSS
framework in Table 2. The Sem models condition
the response generation directly on the word em-
beddings. As expected, we observe that ELMo
and BERT perform much better than GloVe embed-
dings.

The Sem+Seq models condition the decoder on
the representation obtained after passing the word
embeddings through the LSTM layer. These mod-
els outperform their respective Sem models. The
gain with ELMo is not significant because the un-
derlying architecture already has two BiLSTM lay-
ers which are already being fine-tuned for the task.

18

Emb Paradigm BLEU ROUGE
1 2 L

GloVe
Sem 4.4 29.72 11.72 22.99

Sem+Seq 14.83 36.17 24.84 31.07
SSS 18.96 38.61 26.92 33.77

ELMo
Sem 14.36 32.04 18.75 26.71

Sem+Seq 14.61 35.54 24.58 30.71
SSS 19.32 39.65 27.37 34.86

BERT
Sem 11.26 33.86 16.73 26.44

Sem+Seq 18.49 37.85 25.32 32.58
SSS 22.78 40.09 27.83 35.2

Table 2: Performance of components within the SSS
framework. BERT based models outperform both
ELMo and GloVe based architectures in the respective
paradigms. Notably, adding all the three levels of infor-
mation: semantic, sequential, and structural is useful.

Hence the addition of one more LSTM layer may
not contribute to learning any new sequential word
information. It is clear from Table 2 that the SSS
models, that use structure information as well, ob-
tain a significant boost in performance, validating
the need for incorporating all three types of infor-
mation in the architecture.

6.3 Combining structural and sequential
information

The response generation task of our dataset is a
span based generation task where phrases of text
are expected to be copied or generated as they
are. The sequential information is thus crucial
to reproduce these long phrases from background
knowledge. This is strongly reflected in Table 3
where Str-LSTM which has the LSTM layer on
top of GCN layers performs the best across the
hybrid architectures discussed in Figure 2. The
Str-LSTM model can better capture sequential in-
formation with structurally and syntactically rich
representations obtained through the initial GCN
layer. The Par-GCN-LSTM model performs second
best. However, in the parallel model, the LSTM
cannot leverage the structural information directly
and relies only on the word embeddings. Seq-GCN
model performs the worst among all the three as
the GCN layer at the top is likely to modify the
sequence information from the LSTMs.

6.4 Understanding the effect of structural
priors

While a combination of intra-sentence and inter-
sentence graphs is helpful across all the models,
the best performing model with BERT embeddings

relies only on the dependency graph. In the case
of GloVe based experiments, the entity and co-
reference relations were not independently useful
with the Str-LSTM and Par-GCN-LSTM models,
but when used together gave a significant perfor-
mance boost, especially for Str-LSTM. However,
most of the BERT based and ELMo based models
achieved competitive performance with the indi-
vidual entity and co-reference graphs. There is
no clear trend across the models. Hence, probing
these embedding models is essential to identify
which structural information is captured implicitly
by the embeddings and which structural informa-
tion needs to be added explicitly. For the quantita-
tive results, please refer to Appendix B2.

6.5 Structural information in deep
contextualised representations

Earlier work has suggested that deep contextualized
representations capture syntax and co-reference re-
lations (Peters et al., 2018c; Jawahar et al., 2019;
Tenney et al., 2019; Hewitt and Manning, 2019).
We revisit Table 2 and consider the Sem+Seq mod-
els with ELMo and BERT embeddings as two ar-
chitectures that implicitly capture structural infor-
mation. We observe that the SSS model using the
simpler GloVe embedding outperforms the ELMo
Sem+Seq model and performs slightly better than
the BERT Sem+Seq model.

Given that the SSS models outperform the cor-
responding Sem+Seq model, the extent to which
the deep contextualized word representations learn
the syntax and other linguistic properties implic-
itly are questionable. Also, this calls for better loss
functions for learning deep contextualized represen-
tations that can incorporate structural information
explicitly.

More importantly, all the configurations of SSS
(GloVe) have a lesser memory footprint in com-
parison to both ELMo and BERT based models.
Validation and training of GloVe models require
one-half, sometimes even one-fourth of computing
resources. Thus, the simple addition of structural
information through the GCN layer to the estab-
lished Sequence-to-Sequence framework that can
perform comparably to stand-alone expensive mod-
els is an important step towards Green AI(Schwartz
et al., 2019).

19

Emb Seq-GCN Str-LSTM Par-GCN-LSTM
BLEU ROUGE BLEU ROUGE BLEU ROUGE

1 2 L 1 2 L 1 2 L
GloVe 15.61 36.6 24.54 31.68 18.96 38.61 26.92 33.77 17.1 37.04 25.70 32.2
ELMo 18.44 37.92 26.62 33.05 19.32 39.65 27.37 34.86 16.35 37.28 25.67 32.12
BERT 20.43 40.04 26.94 34.85 22.78 40.09 27.83 35.20 21.32 39.9 27.60 34.87

Table 3: Performance of different hybrid architectures to combine structural information with sequence informa-
tion. We observe that using structural information followed by sequential information, Str-LSTM, provides the
best results.

7 Conclusion and Future Work

We demonstrated the usefulness of incorporating
structural information for the task of background
aware dialogue response generation. We infused
the structural information explicitly in the stan-
dard semantic+sequential model and observed a
performance boost. We studied different structural
linguistic priors and different ways to combine se-
quential and structural information. We also ob-
serve that explicit incorporation of structural infor-
mation helps the richer deep contextualized rep-
resentation based architectures. The framework
provided in this work is generic and can be applied
to other background aware dialogue datasets and
several tasks such as summarization and question
answering. We believe that the analysis presented
in this work would serve as a blueprint for analyz-
ing future work on GCNs ensuring that the gains
reported are robust and evaluated across different
configurations.

Acknowledgements

We would like to thank the anonymous reviewers
for their useful comments and suggestions. We
would like to thank the Department of Computer
Science and Engineering, and Robert Bosch Center
for Data Sciences and Artificial Intelligence, IIT
Madras (RBC-DSAI) for providing us with ade-
quate resources. Lastly, we extend our gratitude
to the volunteers who participated in the human
evaluation experiments.

References
Joost Bastings, Ivan Titov, Wilker Aziz, Diego

Marcheggiani, and Khalil Sima’an. 2017. Graph
convolutional encoders for syntax-aware neural ma-
chine translation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1957–1967, Copenhagen, Den-
mark. Association for Computational Linguistics.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2019.
Question answering by reasoning across documents
with graph convolutional networks. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2306–2317, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2019. Wizard
of wikipedia: Knowledge-powered conversational
agents. International Conference on Learning Rep-
resentations.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and
Michel Galley. 2018. A knowledge-grounded neural
conversation model. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 5110–5117.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4129–4138, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/N19-1240
https://doi.org/10.18653/v1/N19-1240
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16710
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16710
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419

20

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3651–3657, Florence, Italy. Associa-
tion for Computational Linguistics.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

Ryan Lowe, Nissan Pow, Iulian Serban, Laurent Char-
lin, and Joelle Pineau. 2015. Incorporating unstruc-
tured textual knowledge sources into neural dialogue
systems. In Neural Information Processing Systems
Workshop on Machine Learning for Spoken Lan-
guage Understanding.

Diego Marcheggiani, Joost Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 486–492, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506–1515, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Nikita Moghe, Siddhartha Arora, Suman Banerjee, and
Mitesh M. Khapra. 2018. Towards exploiting back-
ground knowledge for building conversation sys-
tems. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2322–2332, Brussels, Belgium. Association
for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Inter-
est Group of the ACL, pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018a. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. 2018b. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matthew Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018c. Dissecting contextual
word embeddings: Architecture and representation.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1499–1509, Brussels, Belgium. Association
for Computational Linguistics.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 7–14, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu
Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn,
Behnam Hedayatnia, Ming Cheng, Ashish Nagar,
Eric King, Kate Bland, Amanda Wartick, Yi Pan,
Han Song, Sk Jayadevan, Gene Hwang, and Art Pet-
tigrue. 2017. Conversational AI: the science behind
the alexa prize. Alexa Prize Proceedings.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren
Etzioni. 2019. Green AI.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C. Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In Pro-
ceedings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA., pages 3776–3784.

Yuanlong Shao, Stephan Gouws, Denny Britz, Anna
Goldie, Brian Strope, and Ray Kurzweil. 2017. Gen-
erating high-quality and informative conversation re-
sponses with sequence-to-sequence models. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2210–
2219, Copenhagen, Denmark. Association for Com-
putational Linguistics.

https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://blueanalysis.com/iulianserban/Files/IncorporatingExternalKnowledge.pdf
http://blueanalysis.com/iulianserban/Files/IncorporatingExternalKnowledge.pdf
http://blueanalysis.com/iulianserban/Files/IncorporatingExternalKnowledge.pdf
https://doi.org/10.18653/v1/N18-2078
https://doi.org/10.18653/v1/N18-2078
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D18-1255
https://doi.org/10.18653/v1/D18-1255
https://doi.org/10.18653/v1/D18-1255
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
http://arxiv.org/abs/1801.03604
http://arxiv.org/abs/1801.03604
http://arxiv.org/abs/1907.10597
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://openreview.net/forum?id=HJ0UKP9ge
https://openreview.net/forum?id=HJ0UKP9ge
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957
https://doi.org/10.18653/v1/D17-1235
https://doi.org/10.18653/v1/D17-1235
https://doi.org/10.18653/v1/D17-1235

21

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556–1566, Beijing, China. Association for
Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Shikhar Vashishth, Shib Sankar Dasgupta,
Swayambhu Nath Ray, and Partha Talukdar.
2018. Dating documents using graph convolution
networks. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1605–1615, Mel-
bourne, Australia. Association for Computational
Linguistics.

Oriol Vinyals and Quoc V. Le. 2015. A neural conver-
sational model. In ICML Deep Learning Workshop.

Kangyan Zhou, Shrimai Prabhumoye, and Alan W
Black. 2018. A dataset for document grounded con-
versations. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 708–713, Brussels, Belgium. Association
for Computational Linguistics.

A Implementation Details

A.1 Base Model

The authors of Moghe et al. (2018) adapted the ar-
chitecture of Get to the Point (See et al., 2017) for
background aware dialogue response generation
task. In the summarization task, the input is a doc-
ument and the output is a summary whereas in our
case the input is a {resource/document, context}
pair and the output is a response. Note that the con-
text includes the previous two utterances (dialog
history) and the current utterance. Since, in both
the tasks, the output is a sequence (summary v/s
response) we don’t need to change the decoder (i.e.,
we can use the decoder from the original model as
it is). However, we need to change the input fed to
the decoder. We use an RNN to compute a repre-
sentation of the conversation history. Specifically,
we consider the previous k utterances as a single
sequence of words and feed these to an RNN. Let
M be the total length of the context (i.e., all the k
utterances taken together) then the RNN computes
representations hd1, h

d
2, ..., h

d
M for all the words in

the context. The final representation of the context
is then the attention weighted sum of these word
representations:

f ti = vT tanh(Wch
d
i + V st + bd)

mt = softmax(f t)

dt =
∑
i

mt
ih

d
i

(4)

Similar to the original model, we use an RNN to
compute the representation of the document. Let
N be the length of the document then the RNN
computes representations hr1, h

r
2, ..., h

r
N for all the

words in the resource (we use the superscript r
to indicate resource). We then compute the query
aware resource representation as follows.

eti = vT tanh(Wrh
r
i + Ust + V dt + br)

at = softmax(et)

ct =
∑
i

atih
r
i

(5)

where ct is the attended context representation.
Thus, at every decoder time-step, the attention on
the document words is also based on the currently
attended context representation.

The decoder then uses rt (document representa-
tion) and st (decoder’s internal state) to compute a
probability distribution over the vocabulary Pvocab.
In addition, the model also computes pgen which in-
dicates that there is a probability pgen that the next
word will be generated and a probability (1−pgen)
that the next word will be copied. We use the fol-
lowing modified equation to compute pgen

pgen = σ(wT
r rt + wT

s st + wT
x xt + bg) (6)

where xt is the previous word predicted by the
decoder and fed as input to the decoder at the cur-
rent time step. Similarly, st is the current state of
the decoder computed using this input xt. The final
probability of a word w is then computed using a
combination of two distributions, viz., (Pvocab) as
described above and the attention weights assigned
to the document words as shown below

P (w) = pgenPvocab(w)+(1−pgen)
∑

i:wi=w

ati (7)

where ati are the attention weights assigned to every
word in the document as computed in Equation 5.
Thus, effectively, the model could learn to copy
a word i if pgen is low and ati is high. This is

https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/P18-1149
https://doi.org/10.18653/v1/P18-1149
http://arxiv.org/abs/1506.05869
http://arxiv.org/abs/1506.05869
https://doi.org/10.18653/v1/D18-1076
https://doi.org/10.18653/v1/D18-1076

22

the baseline with respect to the LSTM architecture
(Sem + Seq). For, GCN based encoders, the hri
is the final outcome after the desired GCN/LSTM
configuration.

A.2 Hyperparameters

We selected the hyper-parameters using the valida-
tion set. We used Adam optimizer with a learning
rate of 0.0004 and a batch size of 64. We used
GloVe embeddings of size 100. For the RNN-based
encoders and decoders, we used LSTMs with a hid-
den state of size 256. We used gradient clipping
with a maximum gradient norm of 2. We used a
hidden state of size 512 for Seq-GCN and 128 for
the remaining GCN-based encoders. We ran all the
experiments for 15 epochs and we used the check-
point with the least validation loss for testing. For
models using ELMo embeddings, a learning rate
of 0.004 was most effective. For the BERT-based
models, a learning rate of 0.0004 was suitable. Rest
of the hyper-parameters and other setup details re-
main the same for experiments with BERT and
ELMo. Our work follows a task specific architec-
ture as described in the previous section. Following
the definitions in (Peters et al., 2019), we use the
“feature extraction” setup for both ELMo and BERT
based models.

B Extended Results

B.1 Qualitative examples

We illustrate different scenarios from the dataset
to identify the strengths and weaknesses of our
models under the SSS framework in Table 4. We
compare the outputs from the best performing
model on the three different embeddings and use
GTTP as our baseline. The best performing com-
bination of sequential and structural information
for all the three models in the SSS framework is
Str-LSTM. The best performing SSS(GloVe) and
SSS(ELMo) architectures use all the three graphs
while SSS(BERT) uses only the dependency graph.

We find that the SSS framework improves over
the baseline for the cases of opening statements
(see Example 1). The baseline had confusion
in picking opening statements and often mixed
the responses for “Which is your favorite charac-
ter?”, “Which is your favorite scene” and “What
do you think about the movie?”. The responses
to these questions have different syntactic struc-
tures - “My favorite character is XYZ”, “I liked
the one in which XYZ”, and “ I think this movie

is XYZ” where XYZ was the respective crowd-
sourced phrase. The presence of dependency
graphs over the respective sentences may help to
alleviate the confusion.

Now consider the example under Hannibal in
Table 4. We find that the presence of a co-reference
graph between “Anthony Hopkins” in the first sen-
tence and “he” in the second sentence can help
in continuing the conversation on the actor “An-
thony Hopkins”. Moreover, connecting tokens
in “Anthony Hopkins” to refer to “he” in the sec-
ond sentence is possible because of the explicit
entity-entity connection between the two tokens.
However, this is applicable only to SSS(GloVe)
and SSS(ELMo) as their best performing versions
use these graphs along with the dependency graph
while the best performing SSS(BERT) only uses
dependency graph and may have learnt the inter-
sentence relations implicitly.

There is a limited diversity of responses gener-
ated by the SSS framework as it often resorts to the
patterns seen during training while it is not copying
from the background knowledge. We also iden-
tify that SSS framework cannot handle the cases
where Speaker2 initiates a context switch, i,e; when
Speaker2 introduces a topic that has not been dis-
cussed in the conversation so far. In the chat on The
Road Warrior in Table 4, we find that Mad Max:
Fury Road has been used to initiate a discussion
that compares the themes of both the movies. All
the models produce irrelevant responses.

B.2 Quantitative results
We explore the effect of using different graphs in
Table 5.

23

Movie Rocky V (Example 1) Hannibal (Example 2) The Road Warrior (Exam-
ple 3)

Resource Rocky V, terribly under-
rated. I liked the one
in which Rocky
My favorite character was
Adrian because she was
...I think it was enjoyable,
though slightly less than
th.

Anthony Hopkins gave
However, the material he
was given to work al-
most seemed like an ex-
cuse to present us

Box Office: $ 9,003,011
Similar Movies: Lethal
Weapon, Mad Max: Fury
Road ...

Chat Speaker 1: Which is
your favourite character
in this?

Speaker 1: What is your
opinion about the movie?
Speaker 2: I think it was
a fair sequel.
Speaker 1: Anthony Hop-
kins gave an impeccable
performance.

Speaker 1: Which is
your favourite character
in this?
Speaker 2: My favorite
character was Dog
Speaker 1: I liked the
feral kid even after he’s
found in the car and Max
evicts him without cere-
mony he doesn’t give up.

Ground Truth my favorite character was
adrian because she was
strong and did her best to
keep her family together
through tough times .

however , the material he
was given to work with
was not as good as silence
of the lambs .

Have you seen the new
Mad Max: Fury Road?

Baseline i liked the one in which
rocky and gunn fight in
the street .

in fairness , perhaps there
was no way it could be .

lethal weapon .

SSS(GloVe) my favorite character was
adrian because she was
strong and did her best to
keep her together through
tough times .

however , the material he
was given to work with
was not as good as silence
of the lambs .

it made $ 9,003,011

SSS(ELMo) my favorite character was
adrian because she was
strong and did her best to
keep her family together
through tough times .

the material he was given
to work with was not as
good as silence of the
lambs .

[UNK] only one man can
make the difference in the
future .

SSS(BERT) my favorite character was
adrian because she was
strong and did her best to
keep her family together
through tough times .

the material he was given
to work with was not as
good as silence of the
lambs .

yes .[UNK] only one man
can make the difference
in the future .

Table 4: Sample outputs from the SSS framework compared with baseline and ground truth responses.

24

Graph GloVe ELMo BERT
BLEU ROUGE BLEU ROUGE BLEU ROUGE

1 2 L 1 2 L 1 2 L
Dep 16.79 37.77 25.89 32.88 17.00 37.56 26.14 32.77 22.78 40.09 27.83 35.2

Dep+Ent 14.44 35.14 24.61 30.43 18.34 39.55 28.00 34.76 19.33 39.37 27.52 34.33
Dep+Coref 16.58 37.60 25.72 32.63 18.56 40.08 28.42 35.06 20.99 40.10 28.66 35.11
Dep+Ent
+Coref

18.96 38.61 26.92 33.77 19.32 39.65 27.37 34.86 20.37 39.11 27.2 34.19

Table 5: Comparing performance of different structural priors across different semantic information on the Str-
LSTM architecture.

