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Abstract

With regards to WikiSum (Liu et al., 2018b)
that empowers applicative explorations of Neu-
ral Multi-Document Summarization (MDS) to
learn from large scale dataset, this study de-
velops two hierarchical Transformers (HT)
that describe both the cross-token and cross-
document dependencies, at the same time al-
low extended length of input documents. By
incorporating word- and paragraph-level multi-
head attentions in the decoder based on the par-
allel and vertical architectures, the proposed
parallel and vertical hierarchical Transformers
(PHT &VHT) generate summaries utilizing
context-aware word embeddings together with
static and dynamics paragraph embeddings, re-
spectively. A comprehensive evaluation is con-
ducted on WikiSum to compare PHT &VHT
with established models and to answer the
question whether hierarchical structures offer
more promising performances than flat struc-
tures in the MDS task. The results suggest that
our hierarchical models generate summaries
of higher quality by better capturing cross-
document relationships, and save more mem-
ory spaces in comparison to flat-structure mod-
els. Moreover, we recommend PHT given its
practical value of higher inference speed and
greater memory-saving capacity. 1

1 Introduction

With the promising results achieved by neural ab-
stractive summarization on single documents (See
et al., 2017; Cao et al., 2018; Liu et al., 2018a;
Gehrmann et al., 2018), an increasing number
of attempts are made to study abstractive multi-
document summarization (MDS) using seq2seq
models (Liu et al., 2018b; Lebanoff et al., 2018;
Fabbri et al., 2019; Liu and Lapata, 2019). Com-
pared with the single-document summarization,
multi-document summarization places challenges

1https://github.com/yema2018/wiki_sum

in two primary aspects, that is representing large
source documents and capturing cross-document
relationships. To address the former issue, Liu et al.
(2018b) adopts a two-stage approach by first select-
ing a list of important paragraphs from all docu-
ments in an extractive framework. Then a modified
language model based on the Transformer-decoder
with memory compressed attention (T-DMCA) is
developed to conduct abstractive summarization af-
ter concatenating the extracted paragraphs to a flat
sequence. Although the proposed flat structure of
T-DMCA demonstrates both theoretical and prac-
tical soundness to learn long-term dependencies,
it fails to implant the cross-document relationship
in its summaries. On the other hand, the encoder-
decoder structure that allows hierarchical inputs of
multiple documents offers not only another solu-
tion to the long-text summarization problem (Li
et al., 2018; Zhang et al., 2019; Liu and Lapata,
2019) but also allows cross-document information
exchange in the produced summaries. In particu-
lar, Liu and Lapata (2019) proposes a Hierarchical
Transformer with local and global encoder layers
to represent cross-token and cross-paragraph in-
formation, which are both utilized later to enrich
token embeddings. Summaries are then generated
based on a vanilla Transformer (Vaswani et al.,
2017) by concatenating enriched token embeddings
from different documents to a flat sequence. Such
Hierarchical Transformer though captures cross-
document relationships, the essentially-flat Trans-
former it adopts fails to learn dependencies of se-
quences longer than 2000 tokens according to Liu
et al. (2018b).

In this paper, we develop two novel hierarchi-
cal Transformers to address both the text-length
and cross-document linkage problems in MDS.
By introducing the word-level and paragraph-level
multi-head attention mechanisms, our models are
designed to learn both cross-token and cross-

https://github.com/yema2018/wiki_sum
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Figure 1: Flat structure (top) – concatenating doc-
uments to a flat sequence. Hierarchical structure
(bottom)– hierarchical input and representation of doc-
uments + modeling cross-document relationships.

document relationships. The word- and paragraph-
level context vectors are then jointly used to gener-
ate target sequences in order to abandon the flat
structure, thus to mitigate the long-dependency
problem. In detail, both of the proposed hierar-
chical architectures are based on the Transformer
encoder-decoder model (Vaswani et al., 2017), with
context-aware word embeddings obtained from a
shared encoder and cross-token linkages described
by the word-level multi-head attention mechanism
in the decoder. The difference lies in the way that
the document-level information is handled. Based
on the static 2 paragraph embeddings computed
from the context-aware word embeddings, the par-
allel hierarchical Transformer (PHT) models cross-
document relationships with paragraph-level multi-
head attention parallel to the word-level multi-head
attention. The paragraph attentions are then used to
normalize the word attentions. On the other hand,
the vertical hierarchical Transformer (VHT) stacks
the paragraph-level attention layer on top of the
word-level attention layer in order to learn the la-
tent relationship between paragraphs with dynamic
3 paragraph embeddings from the previous layer.

To evaluate the performance of the proposed
models as well as to compare flat and hierarchi-
cal structures in the MDS task, we select several
strong baselines covering abstractive models of
flat strucuture (T-DMCA (Liu et al., 2018b) and
Transformer-XL (Dai et al., 2019)) and of hier-
archical structure (Liu’s hierachical Transformer
(Liu and Lapata, 2019)). A systematic analysis
is conducted on the WikiSum dataset according

2static means the embedding remains the same for different
time steps in the decoder.

3dynamic means the embeddings are dynamic for different
time steps in the decoder.

to four criteria including the models’ abilities of
capturing cross-document relationships, ROUGE
evaluation, human evaluation and computational
efficiency. The results show that PHT&VHT out-
perform other baselines significantly with memory
space.

2 Related work

Neural multi-document summarization Re-
garding to extractive models, neural networks are
the most widely-used approach to model in- and
cross-document knowledge with the objective to
minimize the distance between the selected sen-
tence set and the gold summary (Cao et al., 2017;
Li et al., 2017; Ma et al., 2016; Nallapati et al.,
2016; Yasunaga et al., 2017). One representative
study (Yasunaga et al., 2017) is to construct a graph
of the document cluster based on the similarities
between sentences. Graph Neural Network (GNN)
(Kipf and Welling, 2016) is then employed to se-
lect salient sentences. Argued by Liu and Lap-
ata (2019), self-attention is a better mechanism to
learn the latent dependency among documents than
GNNs. As for abstractive models, studies tend to
extract important paragraphs from different doc-
uments followed by a abstractive seq2seq model
to generate summaries (Liu et al., 2018b; Liu and
Lapata, 2019; Fabbri et al., 2019). Additionally,
Chu and Liu (2019) adopts an auto-encoder model
to conduct MDS in an unsupervised way.

Hierarchical neural network Hierarchical neu-
ral document models are applied in various fields
of NLP such as document auto-encoder (Li et al.,
2015) or text classification (Yang et al., 2016).
In the area of abstractive summarization, Li
et al. (2018) extends a hierarchical RNN encoder-
decoder (Lin et al., 2015) with the hybrid sentence-
word attention. Instead of trainable attention mach-
anisms, Fabbri et al. (2019) hires a hierarchical
RNN with Maximal Marginal Relevance (MMR)
(Carbonell and Goldstein, 1998) to represent the
relationship between sentences. Liu and Lapata
(2019) proposes a hierarchical Transformer by
incorporating a global self-attention to represent
cross-document relationships. Moreover, Zhang
et al. (2019) constructs a hierarchical BERT (De-
vlin et al., 2018) to learn the context relationships
among sentences by using other sentences to gen-
erate the masked sentence.
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3 Hierarchical Transformer

This paper proposes two hierarchical Transformers
with parallel & vertical architectures, respectively.
Section 3.1 explicitly explains the construction of
the parallel hierarchical Transformer (PHT) and its
application in MDS, whereas Section 3.2 places em-
phasis on explaining the structural differences be-
tween the vertical hierarchical Transformer (VHT)
and PHT.

3.1 Parallel hierarchical Transformer
3.1.1 Encoder
As shown in Figure 2, the PHT encoder is shared
by all paragraphs and consist of two major units,
i.e. the transformer encoder and the Multi-head
Attention Pooling layer, to obtain the token- and
paragraph-embeddings. To be specific, context-
aware word embeddings are first produced as the
output of the transformer encoder based on the sum-
mation of word embeddingsW and fixed positional
encodings (Vaswani et al., 2017).

Cp = TransE(Wp + Ep) (1)

where Cp ∈ Rn×d denotes context-aware word em-
beddings in the paragraph p and n is the paragraph
length. We select the fixed encoding method rather
than other learning models given that the former
has the capacity to deal with sequences of arbitrary
length. The context-aware word embedding is then
used to generate paragraph embeddings as well as
being a part of inputs to the PHT decoder.

As the second step, the parallel architecture gen-
erates additional static paragraph embeddings to
model cross-document relationships from the multi-
head attention pooling:

headip = HeadSplit(CpW1) (2)

φip = (Softmax(headipW2))
Theadip (3)

φp = W3[φ
0
p;φ

1
p; · · ·] (4)

φp := layerNorm(φp + FFN(φp)) (5)

where W1 ∈ Rd×d, W2 ∈ Rdhead×1 and
W3 ∈ Rd×d are linear transformation parameters,
headip ∈ Rn×dhead and φip ∈ Rdhead denote the ith
attention head and paragraph embedding. These
head embeddings are concatenated and fed to a
two-layer feed forward network (FFN) with Relu
activation function after linear transformation. The
paragraph embedding is another input to the de-
coder, together with the context-aware word em-
bedding.

3.1.2 Decoder
The PHT decoder accepts three classes of inputs,
namely the target summary, context-aware word
embeddings in the pth paragraph Cp ∈ Rn×d

where n is the length of the paragraph, and static
paragraph embeddings Φ ∈ Rm×d where m is the
number of paragraphs. Let X1 ∈ Rk×d denote the
output of part I where k is the length of target se-
quence or the number of time steps. Note that both
the word embedding and vocabulary in the decoder
part I are shared with the encoder.

Paragraph embeddings are added with the rank-
ing encoding R generated by the positional encod-
ing function (Vaswani et al., 2017):4

Φ := Φ +R (6)

Different from the token-level ranking encoding
(Liu and Lapata, 2019), we intend to incorporate
the positional information of paragraphs to their
embeddings.

The PHT decoder consists of three parts. Simi-
lar to a vanilla Transformer (Vaswani et al., 2017),
the first and last parts of the PHT decoder are the
masked multi-head attention and the feed forward
network, whereas the second part includes two par-
allel multi-head attentions to capture the inter-word
and inter-paragraph relations.

Paragraph-level multi-head attention: This
self-attention mechanism is to create paragraph-
level context vectors that represent the latent cross-
paragraph relationships. The query is the output
of part I: X1, whilst the key and value are static
paragraph embeddings Φ:

Xpara, Apara = MultiHead(X1,Φ,Φ), (7)

where Xpara ∈ Rk×d is the paragraph-level con-
text vector and Apara ∈ Rk×m denotes the at-
tention weights of paragraphs5. Both Xpara and
Apara are comprised of representations of all time
steps.

Word-level multi-head attention: This shared
self-attention mechanism is to output word-level
context vectors which represent the cross-token
dependency for each paragraph. Since there are m
paragraphs, so the mechanism is implemented m
times at each time step. The query of self attention

4We directly use the ranked paragraphs provided by Liu
and Lapata (2019)

5In this paper, average pooling is adopted to compute the
final attention from multi-head attentions
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Figure 2: PHT –shared encoders on the left and
the decoder on the right.

Figure 3: VHT – removing attention pooling in
the encoder and using the vertical architecture in
the decoder.

is X1, whilst the key and value are context-aware
word embeddings Cp.

Xword
p = MultiHead(X1, Cp, Cp), (8)

where Xword
p ∈ Rk×d denotes the word-level con-

text vectors of all time steps in the pth paragraph.
The outputs Xword ∈ Rk×d×m are integrated

by first being normalized by paragraph attentions
Apara, then propagated to subsequent layers after
summation.

Xint = XwordApara (9)

where the dimension of Apara is expanded to
Rk×m×1 and matrices are multiplied in the last
two dimensions so Xint ∈ Rk×d. The output of
part II: X2 is written as:

X2 = LayerNorm(X1 +Xpara +Xint). (10)

With the outputs of part II , we are able to pro-
ceed to part III and compute the final probability
distributions.

3.2 Vertical hierarchical Transformer
The key difference between the parallel and the ver-
tical architectures is the latter only passes context-
aware word embeddings from the encoder to de-
coder part II without additional paragraph embed-
dings. Instead, the cross-document relationships
in this architecture are modeled based on word-
level context vectors by stacking the paragraph-
level multi-head attention vertically on top of the
word-level multi-head attention.

Vertical paragraph-level multi-head atten-
tion: Since the word-level context vectors

Xword
t ∈ Rm×d are the weighted summation of

token embeddings in the paragraph at the tth time
step, the VHT decoder regards them as dynamic
paragraph embeddings, opposite to the static para-
graph embeddings in PHT. According to Figure 3,
the dynamic paragraph embedding serves as the
key and value of the vertical paragraph-level multi-
head attention after adding the ranking embeddings,
and the query remains as the output of part I after
separating in the time dimension, i.e., X1

t ∈ R1×d.

Xword
t := Xword

t +R, (11)

Xpara
t = MultiHead(X1

t , X
word
t , Xword

t ),
(12)

where Xpara
t ∈ R1×d are concatenated to Xpara ∈

Rk×d along time steps before passed to decoder
part III with X1:

X2 = LayerNorm(X1 +Xpara). (13)

4 Experimental setup

4.1 WikiSum dataset
Data sparsity has been the bottleneck of Neural
MDS models til the WikiSum dataset (Liu et al.,
2018b) came along. In this study, we use the ranked
version of WikiSum provided in Liu and Lapata
(2019), in which each sample contains a short title,
40 ranked paragraphs with a maximum length of
100 tokens as source inputs, and a target summary
with an average length of 140 tokens. Consistent
with Liu and Lapata (2019), the dataset is split with
1,579,360 samples for training, 38,144 for valida-
tion and 38,205 for test. Subword tokenization
(Bojanowski et al., 2017) is adopted to tokenize
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our vocabulary to 32,000 subwords to better solve
unseen words.

4.2 Training configuration

We apply a dropout rate of 0.3 to the output of each
sub-layer and a warm-up Adam optimizer (Vaswani
et al., 2017) with 16,000 warm-up steps. Given
the limited computing resources (one 2080Ti), we
stack 3-layers of encoder-decoder in both of our
hierarchical Transformers with 256 hidden units,
1024 units in the feed-forward network and 4 head-
ers. To demonstrate that our model has the potential
to stack, 1-layer models are trained for comparison.
All parameters are randomly initialized including
token embeddings.

All multi-layer models are trained for approxi-
mately 600,000 steps, while single-layer models
for approximately 300,000 steps. Checkpoints are
saved per 20,000 steps and the best-performing
checkpoint on the validation set is used to generate
the final summary.

During the inference, the beam size is set as 5
and the average length normalization is used. The
beam search is terminated til the length exceeds
200. In addition, we disallow repetition of trigrams
and block two tokens (except the comma) before
the current step to prevent degeneration situations
such as Mike is good at cooking and cooking.

4.3 Baselines

We compare the proposed hierarchical Transform-
ers with the following baselines of different model-
ing natures.

Extractive model
Lead is an extractive model that extracts the top

K tokens from the concatenated sequence, given
that K is the length of the corresponding gold sum-
mary. We combine paragraphs in order and place
the title at the beginning of the concatenated se-
quence.

Abstractive model with flat structure
Flat Transformer (FT) is the vanilla Trans-

former encoder-decoder model (Vaswani et al.,
2017). In this study, We adopt a 3-layers Trans-
former and truncate the flat sequence to 1600 to-
kens.

T-DMCA (Liu et al., 2018b) is a Transformer-
decoder model that splits a concatenated sequence
into segments, and uses a Memory Compressed
Attention to exchange information among them.
We construct this model with 3 layers and 256

hidden states. The top 3000 tokens are truncated as
inputs.

Transformer-XL (Dai et al., 2019) is a lan-
guage model that excels in handling excessively
long sequences. This model improves the vanilla
Transformer-decoder with the recurrent mechanism
and relative positional encoding. We use 512 mem-
ory length and disable the adaptive softmax, with
other hyper-parameters and token length remained
the same as T-DMCA.

Abstractive model with hierarchical structure
Liu’s Hierarchical Transformer (Liu’s HT)

(Liu and Lapata, 2019) uses a hierarchical structure
to enrich tokens with information from other para-
graphs before inputting to the flat Transformer. We
use 3 local-attention layers and 3 global-attention
layers introduced in Liu and Lapata (2019). Since
this model is essentially based on the flat Trans-
former where token length should not exceed 2000,
concatenated sequences are truncated to 1600 to-
kens.

Parallel & Vertical Hierarchical Trans-
former (PHT/VHT) are models proposed in this
paper. To verify that the models could be improved
with deeper architectures, we train two 1-layer mod-
els to compare with the 3-layer models. We extract
the top 30 paragraphs with 100 tokens per para-
graph as inputs, and concatenate the title before the
first paragraph.

5 Results

5.1 The ability of capturing cross-document
relationships

Cross-document relationships could be reflected
by paragraph attentions. That is to say, if a model
assigns higher attention weights to more important
paragraphs and vice versa, the model is believed to
have greater capacity of capturing cross-document
relationships. To analytically assess the models’
performance in this aspect, we use paragraph at-
tentions of written summaries as the gold atten-
tion distribution, and its cosine similarity to the
attention distribution of generated summaries as
the evaluation metric. To model the paragraph at-
tention of gold summaries, the normalized tf-idf
similarities between the gold summary and each
input paragraph are computed as the gold atten-
tion distribution. For non-hierarchical models, the
summation of token weights in each paragraph are
computed to indicate each paragraph’s attention,
whilst the hierarchical model returns the paragraph
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attention distribution directly from its paragraph-
level multi-head attention.

Table 1: Average cosine similarities between attention
distributions of generated summaries and the gold at-
tention distribution

Model Cosine similarity

Flat Transformer 0.8143
T-DMCA 0.8654
Transformer-XL 0.8447

Liu’s HT 0.8769
Vertical HT 0.9142
Parallel HT 0.8936

It is proved by Table 1 that hierarchical struc-
tures place significant improvements on the flat
models in learning cross-document dependencies
by assigning paragraph attentions in a way that is
closer to the gold summaries. Moreover, VHT gen-
erates summaries of the greatest similarity 91.42%
with the gold summaries, most likely due to its
dynamic paragraph embedding architecture which
allows more accurate representation of informa-
tion that is continuously updated according to the
changes of input targets.

5.2 ROUGE evaluation
In this section, we adopt a widely-used evaluation
metrics ROUGE (Lin, 2004) to evaluate the MDS
models. ROUGE-1 & -2 and ROUGE-L F1 scores
are reported in Table 2 assessing the informative-
ness and fluency of the summaries, respectively.

Table 2: Average ROUGE F1 scores. The second and
the third panels are models of the flat and hierarchical
structures, respectively.

Model R-1 R-2 R-L

Lead 36.40 16.66 32.95

FT 40.30 18.67 32.84
T-DMCA 41.09 19.78 33.31
Transformer-XL 41.11 19.81 33.72

Liu’s HT 40.83 19.41 33.26
1-layer PHT 41.02 19.82 33.28
1-layer VHT 41.04 19.50 33.64
PHT 41.99 20.44 34.50
VHT 41.85 20.21 34.61

As shown in Table 2, the extractive model Lead
exhibits overall inferior performance in comparison

to the abstractive models, except that it produces a
0.11-higher ROUGE-L than the Flat Transformer.
Although Liu’s HT improves FT with a hierarchical
structure, it fails to outperform the two extended
flat models, i.e. T-DMCA and Transformer-XL,
that are developed to learn with longer input of
tokens. Moreover, T-DMCA and Transformer-XL,
the two flat models based on the Transformer de-
coder, report comparable results in terms of the
informativeness (ROUGE-1 & -2), whilst the lat-
ter outperforms the former by 0.41 in terms of the
fluency (ROUGE-L).

Further, the proposed hierarchical Transformers
show promising ROUGE results. Profited from the
pure hierarchical structure that enlarges the input
length of tokens, PHT & VHT outperform Liu’s
HT in all domains of the ROUGE test. Moreover,
the models’ potential to be deepened is suggested
by enhanced results of the 3-layer architecture over
the 1-layer architecture. The ultimate 3-layer PHT
& VHT surpass T-DMCA and Transformer-XL,
the two flat models that also handle long input
sequences of 3,000 tokens. Between the parallel
and vertical architectures, PHT appears to be more
informative in its summaries as it produces the
highest ROUGE-1 & -2 among all models, whilst
VHT is more fluent with the highest ROUGE-L.

5.3 Human evaluation

To provide a better comparison between the hierar-
chical and the flat structures, we select 4 represen-
tative models with the best ROUGE performances,
namely T-DMCA & Transformer-XL (flat struc-
ture), and PHT & VHT (hierarchical structure).
The human evaluation is divided into two parts.

The first part is to score multi-document sum-
maries from four perspectives, including (A) In-
formativeness (Does the summary include all im-
portant facts in the gold summary), (B) Fluency
(Is the summary fluent and grammatically-correct),
(C) Conciseness (Does the summary avoid repe-
tition and redundancy), (D) Factual consistency
(Does the summary avoid common sense mistakes
such as wrong date, wrong location, or anything
else against facts). We specify five levels ranging
from Very poor (1) to Very good (5) to assess cri-
teria (A)-(C), and three levels of Much better (2),
Better (1), and Hard to score (0) to assess crite-
ria (D). Twenty examples are randomly selected
from generated summaries. As shown in Table 3,
both Parallel and Vertical Hierarchical Transformer
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Table 3: Human evaluation results

Model Informativeness Fluency Conciseness Factual consistency Preference

T-DMCA 3.69 3.66 3.82 3.04
1

Transformer-XL 3.57 3.71 3.77 2.88

PHT 4.11 3.97 3.81 3.28
2.92

VHT 4.24 3.87 3.81 3.36

Table 4: Computational efficiency (Transformer-decoder is used to show that abandoning the encoder removes
approximately one quarter of parameters from the encoder-decoder model.).

Model Max Batch Size Parameters (MB) Validation Speed (s)

Flat Transformer 11 165.0 634
Transformer-decoder - 127.1 -
T-DMCA 10 131.1 656
Transformer-XL 8 130.4 489

Liu’s HT 11 190.8 639
Vertical HT 13 174.5 930
Parallel HT 17 182.4 648

bring significant improvements over T-DMCA and
Transformer-XL in terms of informativeness, flu-
ency and factual consistency, with the former being
more fluent and the latter being more informative
and fact-consistent6. In terms of conciseness, T-
DMCA outperforms with a minor advantage in
comparison to the other three models. In compari-
son to changing model architectures, it is believed
that enlarging training data and using regulariza-
tion rules in the inference are more effective in
preventing repetitive generations.

The second part of human evaluation is a side-by-
side preference test, which is comprised of thirty
control groups of two sides. In each control group,
Side A randomly places a summary generated by
a flat model and side B places the corresponding
summary generated by a hierarchical model. Asses-
sors select their preferred side and briefly explain
their reasons. Preference results show that the hi-
erarchical class is approximately three times more
likely to be chosen than the flat class, due to their
overall accuracy and informativeness according to
the assessors’ comments.

6It is interesting to note that the human evaluation suggests
opposite results to the ROUGE test in terms of PHT&VHT’s
informativeness and fluency. The authors choose to place
more trust on the quantitative measure, i.e. ROUGE, as it
represents the quality of the entire sample rather than a limited
segment of it.

5.4 Computational efficiency

We assess the computational efficiency of the ab-
stractive models in three aspects, namely the mem-
ory usage, parameter size and validation speed.
We uniformly hire the 3-layers architecture and
1600 input tokens. In the experimental process,
we increase the batch size until out of memory in
a 2080ti GPU, and the model with the maximum
batch size occupies the lowest memory space. To
measure the parameter size, we count the number
of parameters in the neural network. Finally, we
run each trained model in the validation set (38,144
samples), and the average time consumed in each
checkpoint is used to evaluate the efficiency of
forward-propagating in the model.

According to Table 4, the hierarchical struc-
ture (the second panel) appears to be overall more
memory-saving than the flat structure (the first
panel), with higher requirements on the param-
eters. On the other hand, models based on the
Transformer-decoder, i.e. Transformer-decoder, T-
DMCA and Transformer-XL, demonstrate abso-
lute superiority in reducing the parameter size. For
the speed of forward-propagating, Transformer-XL
dominates due to its recurrent mechanism, whereas
VHT performs the worst in this aspect indicating
the model’s slow inference speed. Between the
two proposed models, PHT is proven to outper-
form VHT in both the memory usage and inference
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speed, due to its parallel, rather than sequential,
computation of the word & paragraph-level atten-
tion mechanisms.

5.5 Conclusion

This paper proposes two pure hierarchical Trans-
formers for MDS, namely the Parallel & Vertical
Hierarchical Transformers (PHT & VHT). We ex-
perimentally confirm that hierarchical structure im-
proves the quality of generated summaries over
flat structure by better capturing cross-document
relationships, at the same time saves more memory
space. Given the similar performance of the two
proposed models, we recommend PHT over VHT
due to its practical value of higher inference speed
and memory-saving capacity.
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