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Abstract

We study the problem of visual question an-
swering (VQA) in images by exploiting su-
pervised domain adaptation, where there is a
large amount of labeled data in the source do-
main but only limited labeled data in the tar-
get domain, with the goal to train a good tar-
get model. A straightforward solution is to
fine-tune a pre-trained source model by us-
ing those limited labeled target data, but it
usually cannot work well due to the consider-
able difference between the data distributions
of the source and target domains. Moreover,
the availability of multiple modalities (i.e., im-
ages, questions and answers) in VQA poses
further challenges in modeling the transfer-
ability between various modalities. In this pa-
per, we address the above issues by propos-
ing a novel supervised multi-modal domain
adaptation method for VQA to learn joint fea-
ture embeddings across different domains and
modalities. Specifically, we align the data dis-
tributions of the source and target domains by
considering those modalities both jointly and
separately. Extensive experiments on VQA 2.0
and VizWiz datasets demonstrate that our pro-
posed method outperforms the existing state-
of-the-art baselines for open-ended VQA in
this challenging domain adaptation setting.

1 Introduction
The task of visual question answering (VQA) is
to build a model for answering questions given
an image-question pair. Recently, it has received
great attention from computer vision commu-
nity (Zhou et al., 2015; Kazemi and Elqursh, 2017;
Tan and Bansal, 2019; Anderson et al., 2017; Kim
et al., 2018; Zhang et al., 2018; Singh et al.,
2019). VQA requires techniques from both im-
age recognition and natural language processing,

∗This work was done during Yiming Xu’s internship at
Futurewei Technologies.

and most existing works use Convolutional Neural
Networks (CNNs) to extract visual features from
images and Recurrent Neural Networks (RNNs) to
generate textual features from questions, and then
combine them to generate the final answers.

However, most existing VQA datasets are cre-
ated in a way that is not suitable as training data
for real-world applications. For example, VQA
2.0 (Goyal et al., 2019) and Visual7W (Zhu et al.,
2016), arguably two of the most popular datasets
for VQA, were created by using images from
MSCOCO (Lin et al., 2014) with questions asked
by crowd workers. Therefore, the images are typi-
cally of high quality and the questions are less con-
versational. On the contrary, the recently proposed
VizWiz dataset (Gurari et al., 2018) was collected
from blind people taking photos and asking ques-
tions about those photos. Therefore, the images in
VizWiz are often of poor quality, and questions are
more conversational with some questions might
even be unanswerable due to the poor quality of
the images. While VizWiz dataset reflects a more
realistic setting for VQA, its size is much smaller
due to the difficulty of collecting such data. A
straightforward solution to this problem is to first
train a model on the VQA 2.0 dataset and then
fine-tune it using the VizWiz data. However, this
solution can only provide limited improvement
with two major issues. First, the VQA datasets
are constructed in a different way, making them
differ significantly in visual content, textual ques-
tions and answers. (Sha et al., 2018) conducted an
experiment to classify different VQA datasets with
a simple multi-layer perceptron (MLP) of one hid-
den layer and it achieved over 98% accuracy. This
is a strong indication of the significant bias across
different datasets. Our experiments also validate
that directly fine-tuning the model trained on VQA
2.0 results in minor improvement on VizWiz. Sec-
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ond, the two modalities (visual and textual) also
pose a big challenge in the generalizability across
datasets. It is a nontrivial task to consistently
bridge the domain gap in a coordinated fashion,
when multiple modalities are involved, due to the
nature of the multi-modal heterogeneity with no
common feature representations.

Domain adaptation methods, which handle the
difference between two domains, have been de-
veloped to address the first issue (Hoffman et al.,
2015; Koniusz et al., 2017; Tzeng et al., 2017;
Ganin and Lempitsky, 2015; Shen et al., 2017;
Gong et al., 2012; Guo and Xiao, 2012; Yao et al.,
2015). However, most existing domain adaptation
methods focus on single-modal tasks such as im-
age classification or sentiment classification, and
thus may not be directly applicable to multi-modal
settings. On the other hand, these methods are
usually subject to a strong assumption on the label
distribution that the source domain and the target
domain share the same (usually small) label space,
which is usually unrealistic. (Qi et al., 2018) pro-
posed a new framework for unsupervised multi-
modal domain adaptation, but it was not designed
for the VQA tasks. Recently, several VQA domain
adaptation methods have been proposed to address
the multi-modal challenge. However, to the best
of our knowledge, all the existing VQA domain
adaptation methods focus on the multiple choice
setting, where several answer candidates are pro-
vided and the model only needs to select one from
them. In contrast, we focus on a more challenging
open-ended setting where there is no prior knowl-
edge of answer choices.

In this paper, we address the aforementioned
challenges by proposing a novel multi-modal
domain adaptation framework, which learns a
multi-modal feature embedding that simultane-
ously keeps each domain invariant and each in-
dividual modality discriminative, based on an ad-
versarial loss and a classification loss. We addi-
tionally incorporate the maximum mean distance
(MMD) to further reduce the domain mismatch by
learning embeddings from different modalities.

Our contributions are summarized as follows:
1) We propose a novel supervised multi-modal
domain adaptation framework to tackle the more
challenging open-ended VQA task. To the best of
our knowledge, this is the first attempt of using
domain adaptation for open-ended VQA.
2) We propose a method that learns a multi-modal

feature embedding that simultaneously keeps each
domain invariant and each individual modality dis-
criminative, with an adversarial loss and a classi-
fication loss. At the same time, it minimizes the
difference of cross-domain feature embeddings
jointly over multiple modalities.
3) We conduct extensive experiments on two
popular benchmark datasets (i.e., VQA 2.0 and
VizWiz), and the results clearly show the effec-
tiveness of our proposed method over the existing
state-of-the-art baselines.

2 Related Work
VQA datasets: Over the past few years, several
VQA datasets (Zhu et al., 2016; Goyal et al., 2019;
Gurari et al., 2018; Krishna et al., 2017; Antol
et al., 2015) and tasks were proposed to encour-
age researchers to develop algorithms that answer
visual questions. One limitation of many exist-
ing datasets is that they were created either auto-
matically or from an existing vision dataset like
MSCOCO (Lin et al., 2014) with the questions ei-
ther generated automatically or contrived by hu-
man annotators. This makes the images in these
datasets typically of high quality and the questions
less conversational, and thus might not be directly
applicable to real-world applications such as (Gu-
rari et al., 2018) which aims to answer the visual
questions asked by blind people in their daily life.
The main differences between (Gurari et al., 2018)
and other VQA datasets are as follows: 1) Both the
image and question quality of (Gurari et al., 2018)
are lower as they suffer from poor lighting, out of
focus and audio recording problems like clipping a
question at either end or catching background au-
dio content; 2) The questions can be unanswerable
since blind people can hardly verify whether the
images contain the visual content they are asking
about, due to blurring, inadequate lighting, fram-
ing errors, finger covering the lens, etc. Our ex-
periments also reveal that fine-tuning the model
trained on the VQA 2.0 dataset provides limited
improvement on VizWiz, due to the significant dif-
ference in bias between both datasets.

VQA settings: There are two main VQA set-
tings, namely multiple choice and open-ended fol-
lowing (Antol et al., 2015)1. Under the multiple
choice setting, the model is provided with multi-
ple candidates of answers and is expected to se-

1Please note that these two terms are inherited from the
original paper proposed a VQA dataset by (Antol et al., 2015)
and are commonly used in VQA challenges.
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lect the correct one. VQA models following this
setting take characteristics of all answer candi-
dates like word embeddings as the input to make
a selection (Sha et al., 2018; Jabri et al., 2016).
However, in the open-ended setting, there is nei-
ther prior knowledge nor answer candidates pro-
vided, and the model can respond with any free-
form answers. This makes the open-ended setting
more challenging and realistic (Kim et al., 2018;
Kazemi and Elqursh, 2017; Singh et al., 2019; An-
derson et al., 2017).

VQA models: Recently, a plethora of VQA
models were proposed (Zhou et al., 2015; Kazemi
and Elqursh, 2017; Anderson et al., 2017; Kim
et al., 2018; Singh et al., 2019). Most of them
consist of image and question encoders, and a
multi-modal fusion module followed by a classifi-
cation module. (Kazemi and Elqursh, 2017) used
an LSTM to encode the question and a residual
network (He et al., 2015) to compute the image
features with a soft attention mechanism. (Ander-
son et al., 2017) implemented a bottom-up atten-
tion using Faster R-CNN (Ren et al., 2015) to ex-
tract features of detected image regions, and then a
top-down mechanism used task-specific context to
predict an attention distribution over the image re-
gions. The final output was generated by an MLP
after fusing the image and question features. (Kim
et al., 2018) used a bilinear attention between two
groups of input channels on top of low-rank bilin-
ear pooling which extracted the joint representa-
tions for each pair of channels. (Singh et al., 2019)
proposed an approach that takes original image
features, bottom-up attention features from object
detection module, question features and the opti-
cal character recognition (OCR) strings detected
from the image as the input, and answers either
with an answer from the fixed answer vocabulary
or by selecting one of the OCR strings detected
in the image. Similar to the state-of-the-art model
by (Singh et al., 2019), our VQA base model also
takes original image features, bottom-up attention
features and question features to predict the final
answer. Details of our VQA base model is de-
scribed in the next section.

Domain adaptation: Domain adaptation tech-
niques have been proposed to learn a common do-
main invariant latent feature space where the dis-
tributions of two domains are aligned. Recent
works typically focused on transferring knowl-
edge from a labeled source domain to a tar-

get domain where there is no or limited labeled
data (Hoffman et al., 2015; Koniusz et al., 2017;
Tzeng et al., 2017; Shen et al., 2017; Ganin and
Lempitsky, 2015; Gong et al., 2012; Guo and
Xiao, 2012). (Hoffman et al., 2015) optimized
for domain invariance to facilitate domain transfer
and used a soft label distribution matching loss to
transfer information between tasks. (Tzeng et al.,
2017) proposed a framework which combines dis-
criminative modeling, untied weight sharing and
a GAN loss to reduce the difference between do-
mains. (Shen et al., 2017) estimated empirical
Wasserstein distance between the source and the
target samples and optimized the feature extrac-
tor network to minimize the estimated Wasserstein
distance in an adversarial manner. (Ganin and
Lempitsky, 2015) utilized gradient reversal layer
(GRL) to incorporate the training process of do-
main classifier, label classifier and feature extrac-
tor to align domains. Similarly, (Guo and Xiao,
2012) simultaneously minimized the classification
error, preserved the structure within and across do-
mains, and restricted similarity on target samples.
The major difference between our work and these
works is that we propose a novel multi-modal do-
main adaptation framework, while these works as-
sumed a single modality.

Domain adaptation for VQA: Although do-
main adaptation has been successfully applied to
computer vision, its applicability to VQA has yet
to be well-studied. There was one recent work in-
vestigating domain adaptation for VQA by (Sha
et al., 2018). It reduces the difference in distri-
butions by transforming the feature representation
of the data in the target domain. However, one
major limitation is the assumption of a multiple
choice setting, where four answer candidates are
provided as the input to the model. It is unrealistic
because one can never guarantee that the ground
truth answer is among four candidates. Moreover,
it is unclear how to create answer candidates for an
image-question pair. On the contrary, our model
is only provided with an image-question pair and
can generate any free-form answers. This makes
our task more challenging and realistic.

3 The VQA Framework
In this section, we describe our base VQA frame-
work. Given an image I and a question Q, the
VQA model estimates the most likely answer â
from a large vocabulary based on the content of
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Figure 1: The proposed multi-modal domain adapta-
tion framework. Xa

s ,X
b
s,X

a
t ,X

b
t denote original fea-

tures for two modalities. The blue arrow denotes for-
ward propagation while the orange arrow denotes the
loss calculation. The purple and green arrows denote
backward propagation for discriminator loss Ladv .

the image, which can be written as follows:

â = argmaxa P (a|I,Q). (1)

Our base framework consists of four components:
1) a question encoder; 2) an image encoder; 3) a
multi-modal fusion module; and 4) a classification
module. We will elaborate about each component
in the following subsections.

Question encoding: The question Q of length
T is first tokenized and encoded using word em-
bedding based on pre-trained GloVe (Pennington
et al., 2014) as S = {x0,x1, ...,xT }. These em-
beddings are then fed into a GRU cell (Cho et al.,
2014). The encoded question is obtained from
the last hidden state at time step T denoted as
q = f q(Q;θq) ∈ Rdq , where f q(Q;θq) = hT ,
ht = GRU(xt,ht−1;θq) for 1 ≤ t ≤ T , and dq is
the feature dimension.

Image encoding: Similar to (Anderson et al.,
2017) and (Singh et al., 2019), we first feed the
input image I to an object detector (Girshick
et al., 2018) pre-trained on the Visual Genome
dataset (Krishna et al., 2017) based on Feature
Pyramid Networks (FPN) (Lin et al., 2016) with
ResNeXt (Xie et al., 2017) as the backbone. The
output from fc6 layer is used as the region-based
features, i.e., Vr = {v1,v2, ...,vK} with vi as
the feature for i-th object. Meanwhile, we di-
vide the entire image into a 7 × 7 grid, and ob-
tain the grid-based features Vg by average pooling
features from the penultimate layer 5c of a pre-
trained ResNet-101 network (He et al., 2015) on
ImageNet dataset. Finally, we combine Vr and

Vg as well as the question embedding q to obtain
the joint feature embedding in a multi-modal fu-
sion module (see next paragraph for more details).

Multi-modal fusion and classification: The
question embedding q is used to obtain the at-
tention weights on region-based image features
Vr. Then, the region-based features Vr are av-
eraged based on the attention weights to obtain
the weighted region-based image features. Simi-
larly, grid-based features Vg are fused with ques-
tion embedding q by concatenation. The fused
grid-based features and the weighted region-based
image features are concatenated to obtain the final
image features v. We have also tried other combi-
nation schemes such as (Ben-younes et al., 2017;
Yu et al., 2018, 2017), but they fail to outperform
concatenation and are much slower. Since our fo-
cus is on domain adaptation instead of the base
VQA model, we use concatenation in our work.

We denote the final image feature embedding
as v = fv(q, I;θv). The final joint embed-
ding e = f j(q,v) is calculated by taking the
Hadamard product of q and v, and then is fed
to an MLP f c(e;θc) for classification, i.e., a =
f c(e;θc). The final answer is determined by â =
argmaxa f

c(e;θc).

4 Multi-Modal Domain Adaptation
In this section, we present our framework for su-
pervised multi-modal domain adaptation. We as-
sume there are two modalities2 of source samples
Xs = [Xa

s ,X
b
s], which would be vision and lan-

guage in the context of VQA, where a, b denote
the two modalities, and labels Ys drawn from a
source domain joint distribution Ps(x, y), as well
as the two modalities of target samples Xt =
[Xa

t ,X
b
t ] and labels Yt drawn from a target joint

distribution Pt(x, y). We also assume there are
sufficient source data so that a good pre-trained
source model can be built, but the amount of tar-
get data is limited so that learning on only the tar-
get data leads to poor performance. Our goal is to
learn the target representations for two modalities
fat , f bt , the multi-modal fusion f jt and the target
classifier f ct with the help of the pre-trained source
representations fas , f bs , f js and the source classifier
f cs . For the VQA task in our work, a, b denote vi-
sual and textual modalities, respectively.

A typical approach to achieve this goal

2For simplicity, we assume the data has two modalities,
but it can be easily generalized to more modalities.
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is to regularize the learning of the source
and target joint representations by minimiz-
ing the distance of empirical distributions
between the source and target domains, i.e.,
between f js

(
fas (X

a
s ;θ

a
s ), f

b
s (X

b
s;θ

b
s);θ

j
s

)
and

f jt

(
fat (X

a
t ;θ

a
t ), f

b
t (X

b
t ;θ

b
t );θ

j
t

)
. In this way,

the data from the source domain and the target
domain are projected onto a similar latent space,
such that well-performing source model can lead
to well-performing target model. Following this
idea, we propose a novel multi-modal domain
adaptation framework as shown in Figure 3.

4.1 Joint Embedding Alignment
We propose to reduce the difference of joint em-
beddings between the source and the target do-
mains by minimizing the Maximum Mean Dis-
crepancy (MMD) (Gretton et al., 2012). The in-
tuition is that two distributions are identical if and
only if all of their moments coincide.

Empirically, we can minimize the following ob-
ject function

MMD(Xs,Xt)=
∥∥∥ 1
ns

∑ns
i=1 ϕ(x

s
i )−

1
nt

∑nt
i=1 ϕ(x

t
i)
∥∥∥
H
. (2)

We then define the loss function as

Lj = EXs∼ps,Xt∼pt

[
MMD2(es, et)

]
, (3)

where es = f js
(
fas (Xa

s ;θ
a
s ) , f

b
s (X

b
s;θ

b
s);θ

j
s

)
and et = f jt

(
fat (X

a
t ;θ

a
t ), f

b
t (X

b
t ;θ

b
t );θ

j
t

)
. By

minimizing the difference between source and tar-
get joint embeddings, we enforce that the joint em-
beddings of both source domain and target domain
will be projected onto a similar latent space.

4.2 Multi-Modal Embedding Alignment
It is more challenging to reduce multi-modal do-
main shift than conventional single-modal domain
shift. The previous loss Lj in Eq. (3) does not ex-
plicitly consider the multi-modal property. Align-
ing only the joint feature embedding is insuffi-
cient to adapt the source domain to the target do-
main. This is because the feature extractor for
each modality has its own complexity of domain
shift, which often differs from each other (e.g., vi-
sual vs. textual). Aligning only the fused features
cannot fully reduce domain differences.

Therefore, we introduce the following
term to minimize the maximum mean dis-
crepancy between every single modality,
i.e., MMD(fas (X

a
s ;θ

a
s ), f

a
t (X

a
t ;θ

a
t )) and

MMD
(
f bs (X

b
s;θ

b
s), f

b
t (X

b
t ;θ

b
t )
)
. Then, the loss

function to minimize can be written as

Lmm =

E
Xs∼ps,Xt∼pt

[
γaMMD2 (fas (X

a
s ;θ

a
s ), f

a
t (X

a
t ;θ

a
t ))

+ γbMMD2
(
f bs (X

b
s;θ

b
s), f

b
t (X

b
t ;θ

b
t )
) ]
, (4)

where γa and γb are trade-off parameters.

Figure 2: Sample image-question pairs and valid an-
swers for VQA 2.0 and VizWiz datasets. For each
image-question pair, there are 10 answers provided by
10 different crowd workers.

4.3 Classification
While minimizing the distance between source
and target embeddings, we also want to maintain
the classification performance on both the source
domain and the target domain. Similarly as in a
standard supervised learning setting, we employ
the cross entropy loss for classification:

Lc = E(Xt,Yt)∼pt [CE(f
c
t (et;θ

c
t ),Yt)]

+ γcE(Xs,Ys)∼ps [CE(f
c
s (es;θ

c
s),Ys)] , (5)

where CE denotes the cross entropy loss with γc as
the trade-off parameter between the two domains.

4.4 Domain Discriminator
We also propose to use a domain classifier fd to
reduce the mismatch between the source domain
and target domain by confusing the domain clas-
sifier from correctly distinguishing a sample from
source domain or target domain. The domain clas-
sifier fd has a similar structure to f ct or f cs ex-
cept the last layer outputs a scalar in [0, 1] with the
value indicating how likely the sample comes from
the source domain. Thus, fd can be optimized ac-
cording to a standard cross-entropy loss. To make
the features domain-invariant, the source and tar-
get mappings are optimized according to a con-
strained adversarial objective. The domain clas-
sifier minimizes this objective while the encoding
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model maximizes this objective. The generic for-
mulation for domain adversarial technique is:

Ladv =− EXs∼ps

[
log fd(es;θd)

]
− EXt∼pt

[
log(1− fd(et;θd))

]
. (6)

For simplicity, we denote θF =(
θa
s ,θ

a
t ,θ

b
s,θ

b
t ,θ

j
s,θ

j
t

)
as the parameters of

all feature mappings and θC = (θc
s,θ

c
t ) as the

parameters of all label predictors. The final
objective function to minimize then becomes:

LθF ,θC ,θd=Lc+λjLj+λmmLmm−λadvLadv. (7)

We seek a saddle point θ̂F , θ̂C , θ̂d of L which sat-
isfies the following conditions:(

θ̂F , θ̂C
)

= argminθF ,θC L(θ
F ,θC , θ̂d)

θ̂d = argmaxθd L(θ̂
F , θ̂C ,θd). (8)

At the saddle point, the parameters θd of the
domain classifier minimize the domain classifica-
tion loss Ladv (since we maximize −Ladv) while
the parameters θC of the label predictor minimize
the label prediction loss Lc. The feature map-
ping parameters θF minimize the label prediction
loss such that the features are discriminative, while
maximizing the domain classification loss such
that the features are domain-invariant. In addition
to MMD which explicitly aligns the distributions,
domain discriminator implicitly aligns the distri-
butions, leading to stronger regularization in the
non-convex optimization problem.

5 Experiments
In this section, we validate our proposed method
for the challenging open-ended VQA task, by
comparing with a few state-of-the-art baselines.

5.1 Datasets
Two popular VQA benchmarks are used in our
experiments, VQA 2.0 (Goyal et al., 2019) and
VizWiz (Gurari et al., 2018). A comparison of
the statistics for both datasets are listed in Table 1,
which shows that the scale of VizWiz is much
smaller in terms of the numbers of images and
questions. Although VizWiz has more unique an-
swers, only 824 out of its top 3,000 answers over-
lap with the top 3,000 answers in VQA 2.0. This
explains why models trained on VQA 2.0 perform

Table 1: The statistics of VQA 2.0 and VizWiz
dataset. Numbers are in train/validation/test order, and
“# unique” denotes the number of unique answers.

VQA 2.0 VizWiz
# images 83K / 41K / 81K 20K / 3K / 8K
# questions 443K / 214K / 448K 20K / 3K / 8K
# answers 4.4M / 2.1M / NA 0.2M / 0.03M / NA
# unique 3,126 58,789

poorly on VizWiz, and their limited transferabil-
ity. There are 28.63% of questions in VizWiz are
even not answerable due to reasons mentioned be-
fore, making the domain gap even more signifi-
cant. Figure 2 shows some examples from both
VQA 2.0 and VizWiz datasets. The difficulty of
the task can also be seen from the VizWiz samples:
images are blurry, viewpoints are unusual, some
questions are unanswerable, and ground truth an-
swers are highly inconsistent (e.g., “soda”, “coca
cola 0”, “coke 0”).

5.2 Evaluation Metrics
In VQA, each question is usually associated with
10 valid answers from 10 distinct annotators. We
follow the conventional evaluation metric on the
open-ended VQA setting to compute the accuracy
using the following formula:

Acc(ans) = min
(# humans said ans

3
, 1
)
. (9)

Namely, an answer is considered correct if at
least three annotators agree on the answer. Note
that the true answers in VizWiz test set are
not publicly available. In order to obtain the
performance on the test set, results need to
be uploaded to the official online submission
system at https://evalai.cloudcv.org/web/

challenges/challenge-page/102.

5.3 Implementation Details
In all experiments, we extract K=100 objects for
each image to construct the region-based features
Vr and set the visual feature dimension to 2048.
We also set the hidden dimension of GRU to 1024
and hidden dimension after fusion to 4096. The
question length is truncated at 24. During train-
ing, we apply a warm-up strategy by gradually in-
creasing the learning rate η from 0.001 to 0.01 in
the first 2000 iterations. It is then multiplied by
0.15 after every 4000 iterations. We use a batch
size of 128.

For domain adaptation, we let the source and
target networks share the same parameters up to
the penultimate layer, i.e., θv = θv

s = θv
t and

https://evalai.cloudcv.org/web/challenges/challenge-page/102
https://evalai.cloudcv.org/web/challenges/challenge-page/102
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θq = θq
s = θq

t . In multi- or single-modal
alignment, we use Gaussian kernel k(x, y) =

exp−
||x−y||2

2σ2 to compute MMD, because the Gaus-
sian kernel can approximate functions under mild
assumptions (continuous, bounded) fairly well,
while other kernels such as the polynomial ker-
nel do not have such properties. The trade-off pa-
rameters are set as λj = 0.025, λmm = 0.008,
γv = 0.8, γq = 1, γc = 0.001, and λadv = 0.003.

5.4 Experimental Setup
First, we conduct experiments using VQA 2.0 as
the source domain and VizWiz as the target do-
main, to evaluate the effectiveness of our proposed
method for multi-modal domain adaptation. We
also conduct experiments in the opposite way, i.e.,
using VizWiz as the source domain and VQA 2.0
as the target domain, to further demonstrate the ef-
fectiveness of our approach.

We need to emphasize that we choose not to use
an overly strong base model (i.e., question embed-
ding from FastText, complex fusion techniques,
OCR tokens etc.), as our focus is on multi-modal
adaptation instead of the base model itself. De-
spite that, we will show that our proposed domain
adaptation method with a weaker base model still
outperforms the fine-tuned state-of-the-art model.

5.5 Results and Analysis
Adaptation from VQA 2.0 to VizWiz: As dis-
cussed in previous sections, we first pre-train a
source model on the VQA 2.0 dataset, and then
adapt it to the target dataset VizWiz. The results
of our proposed method and other leading meth-
ods are shown in Table 2.

We first compare our method with the original
VizWiz baseline proposed by (Gurari et al., 2018),
the previous state-of-the-art VQA model BAN by
(Kim et al., 2018) and the current state-of-the-art
VQA model Pythia by (Singh et al., 2019). It is
clear that our method outperforms the state-of-the-
art models by a significant margin from Table 2.3

In order to validate that the better performance
of our method is not from a strong base model, we
additionally report the results of our method in Ta-
ble 3, with 1) training our single base model from
scratch using only the VizWiz dataset (Target
only), 2) fine-tuning from the model pre-trained
on the VQA 2.0 dataset (Fine-tune), and 3) our
proposed domain adaptation method (DA). From

3The results are averaged over five runs with a standard
deviation of 0.11 for our model.

Table 2: Accuracy (in %) comparisons on VizWiz.
Method Accuracy
VizWiz baseline (Gurari et al., 2018) 47.50
BAN (Kim et al., 2018) 51.40
Pythia4 (Singh et al., 2019) 54.72
Ours 55.87

Table 3: Accuracy (in %) comparison for our base
model. Target only denotes training from scratch,
Fine-tune means fine-tuning and DA presents our do-
main adaptation method.

Target only Fine-tune DA
53.11 53.97 55.87

Table 3, it shows that our model fine-tuned from
VQA 2.0 is about 0.75 percent worse than Pythia
fine-tuned from VQA 2.0 (53.97% vs. 54.72%),
indicating that the better performance of our fi-
nal model than the state-of-the-art is not from a
strong base model. Moreover, the accuracy of
our base model trained from scratch is 53.11%,
falling behind 0.6 percent to Pythia trained from
scratch, which is consistent with our observation
that our method even with a weaker base model
can achieve better final results.
Results breakdown into answer categories: Ta-
ble 4 shows the accuracy breakdown into dif-
ferent answer categories. The results show that
our model achieves new state-of-the-art perfor-
mance on “Number” and “Other” categories as
well as overall accuracy. Note that the overall ac-
curacy for Pythia in this table is 54.22% instead
of 54.72% which we were unable to reproduce
using the released code and there are no break-
down numbers reported associated with it. The
best we can achieve with Pythia (after fine-tuning
from VQA 2.0) is 54.22% and the corresponding
breakdown numbers are reported in the table.
Ablation study: We conduct an ablation study
to show the contributions of different components
of our method. The results show that the multi-
modal MMD brings the most significant perfor-
mance gain, which validates that aligning on ev-
ery single modality is beneficial to the transferabil-
ity of multi-modal tasks. Comparing two single
modalities, MMD alignment on textual features is
more helpful for model performance than MMD
alignment on visual features, which we postulate
is because the VizWiz dataset contains a large
number of blurry images and thus those images
are unhelpful for adaptation. In addition, MMD on
joint embedding and discriminator is also crucial
to bring further performance gain of 0.41%. Not
surprisingly, an ensemble of three models pushes
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Table 4: Results breakdown into different categories of different methods for domain adaptation from VQA 2.0 to
VizWiz. Breakdown numbers are performance on VizWiz test-dev split.

(Accuracy in %) Overall Yes/No Number Unanswerable Other
VizWiz baseline (Gurari et al., 2018) 47.50 66.90 22.00 77.00 29.40
BAN (Kim et al., 2018) 51.40 68.10 17.90 85.30 31.50
Pythia (Singh et al., 2019) 54.22 74.83 31.11 84.08 35.03
Ours 55.87 74.33 32.00 83.32 38.53

Table 5: Ablation study of our proposed method.
Method Accuracy Improved
Target only 53.11 -
(+ Fine-tune) 53.97 + 0.86
+ MMD on V 54.61 + 0.64
+ MMD on Q 55.46 + 0.85
+ MMD on joint 55.69 + 0.23
+ GRL 55.87 + 0.18
+ Ensemble of 3 models 56.20 + 0.33

our performance even higher to 56.20%, which is
the state-of-the-art performance to date.
Comparisons on other domain adaptation
methods: We compare our multi-modal domain
adaptation method with some popular domain
adaptation methods, including DANN (Ganin and
Lempitsky, 2015), ADDA (Tzeng et al., 2017),
WDGRL (Shen et al., 2017), and SDT (Hoff-
man et al., 2015). Note that DANN, ADDA and
WDGRL were originally designed for unsuper-
vised domain adaptation. For fair comparison, we
fine-tune the model using target labels after unsu-
pervised adaptation (hence they are indicated by
a suffix ‘+’), and we also compare with a pop-
ular and effective supervised domain adaptation
method SDT. The results shown in Table 6 illus-
trate that compared to direct fine-tuning, the exist-
ing domain adaptation methods do not help much
(DANN performs even worse) in the multi-modal
task, while our method outperforms both direct
fine-tuning and existing domain adaptation meth-
ods by a notable margin.

Table 6: Accuracy (in %) comparisons of our method
with state-of-the-art domain adaptation methods.

VizWiz Accuracy
Fine-tune 53.97
DANN+ (Ganin and Lempitsky, 2015) 53.65
ADDA+ (Tzeng et al., 2017) 54.06
WDGRL+ (Shen et al., 2017) 54.28
SDT (Hoffman et al., 2015) 54.56
Ours 55.87

Adaptation with fewer target training samples:
We also validate the robustness of our frame-
work by reducing the target training dataset size.
We experiment with various target sizes of 12.5%
(2,500), 25% (5,000), 50% (10,000) and all data
(20,000). The results are shown in Table 7. We
can observe that with the increase of the amount
of training data, the performance gain over fine-

Table 7: Accuracy (in %) comparison using less data.
% target data Target only Fine-tune DA
12.5% 39.51 43.39 45.02
25% 43.75 47.71 48.93
50% 47.48 50.12 52.32
All data 53.11 53.97 55.87

tuning is decreasing. We conjecture that this is
because when we have limited amount of target
data, having more prior knowledge is beneficial
to model performance, while having more target
data will make prior knowledge less helpful. How-
ever, our method can stably improve the perfor-
mance because it sufficiently makes use of target
data and source data. It is more promising that
our domain adaptation method using fewer sam-
ples can achieve comparable or even better perfor-
mance compared with training from scratch using
doubled amount of data (especially when target
data is scarce), e.g., our method using 25% data
(48.93%) outperforms training from scratch using
50% data (47.48%).

Table 8: Accuracy (in %) comparison for our single
base model adapted from VizWiz to VQA 2.0.

Target only Fine-tune DA
68.89 69.25 70.06

Adaptation from VizWiz to VQA 2.0: In order to
further validate the robustness of our method, we
reverse the source domain and the target domain
and perform adaptation. We pre-train the source
model on VizWiz and adapt the source model to
VQA 2.0. The results are shown in Table 8, from
which we still can observe a significant improve-
ment for our method against fine-tuning. In com-
parison, the performance of MFH (Yu et al., 2018),
BAN and Pythia is 67.7%, 69.08% and 69.21%,
respectively, all under-performing our proposed
method. Our DA model achieves comparable per-
formance to the state-of-the-art on VQA 2.0.

6 Conclusion
We have presented a novel supervised multi-modal
domain adaptation framework for open-ended vi-
sual question answering. Under the proposed
framework, we have developed a new method for
VQA which can learn a multi-modal feature em-
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bedding that simultaneously keeps each domain
invariant and each individual modality discrimi-
native. We validate our proposed method on two
popular VQA benchmark datasets, VQA 2.0 and
VizWiz, in both directions of adaptation. The ex-
perimental results show our method outperforms
the state-of-the-art methods.
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