Improving Target-side Lexical Transfer
in Multilingual Neural Machine Translation

Luyu Gao, Xinyi Wang, and Graham Neubig
Language Technologies Institute, Carnegie Mellon University
{luyug, xinyiwl, gneubig}@cs.cmu.edu

Abstract

To improve the performance of Neural Ma-
chine Translation (NMT) for low-resource lan-
guages (LRL), one effective strategy is to lever-
age parallel data from a related high-resource
language (HRL). However, multilingual data
has been found more beneficial for NMT mod-
els that translate from the LRL to a target
language than the ones that translate into the
LRLs. In this paper, we aim to improve
the effectiveness of multilingual transfer for
NMT models that translate info the LRL, by
designing a better decoder word embedding.
Extending upon a general-purpose multilin-
gual encoding method Soft Decoupled Encod-
ing (Wang et al., 2019), we propose DecSDE,
an efficient character n-gram based embedding
specifically designed for the NMT decoder.
Our experiments show that DecSDE leads to
consistent gains of up to 1.8 BLEU on transla-
tion from English to four different languages.'

1 Introduction

The performance of Neural Machine Transla-
tion (NMT; Sutskever et al. (2014)) tends to de-
grade on low-resource languages (LRL) due to a
paucity of parallel data (Koehn and Knowles, 2017;
Sennrich and Zhang, 2019). One effective strategy
to improve translation in LRLs is through multi-
lingual training using parallel data from related
high-resource languages (HRL) (Zoph et al., 2016;
Neubig and Hu, 2018). The assumption underlying
cross-lingual transfer is that by sharing parameters
between multiple languages the LRL can benefit
from the extra training signal from data in other
languages. One of the most popular strategies for
multilingual training is to train a single NMT model
that translates in many directions by simply append-
ing a flag to each source sentence to indicate which

'Open-source code is available at https://github.
com/luyug/DecSDE

target language to translate into (Ha et al., 2016;
Johnson et al., 2017).

Many works focus on using multilingual training
to improve many-to-one NMT models that translate
from both an HRL and an LRL to a single target
language (Zoph et al., 2016; Neubig and Hu, 2018;
Gu et al., 2018). In this situation, sentences from
the HRL-target corpus provide an extra training
signal for the decoder language model, on top of
cross-lingual transfer on the source side. When
training an NMT model that translates info an LRL,
however, multilingual data tends to lead to smaller
improvements (Lakew et al., 2019; Arivazhagan
et al., 2019; Aharoni et al., 2019).

In this paper, we aim to improve the effective-
ness of multilingual training for NMT models that
translate into LRLs. Prior work has found vocabu-
lary overlap to be an important indicator of whether
data from other languages will be effective in im-
proving NMT accuracy (Wang and Neubig, 2019;
Lin et al., 2019). Therefore, we hypothesize that
one of the main problems limiting multilingual
transfer on the target side is that the LRL and the
HRL may have limited vocabulary overlap, and
standard methods for embedding target words via
lookup tables would map corresponding vocabulary
from these languages to different representations.

To overcome this problem, we design a target
word embedding method for multilingual NMT
that encourages similar words from the HRLs and
the LRLs to have similar representations, facili-
tating positive transfer to the LRLs. While there
are many methods to embed words from charac-
ters (Ling et al., 2015; Kim et al., 2016; Wieting
et al., 2016; Ataman and Federico, 2018), we build
our model upon Soft Decoupled Encoding (SDE;
Wang et al. (2019)), a recently-proposed general-
purpose multilingual word embedding method that
has demonstrated superior performance to other
alternatives. SDE represents a word by combin-
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ing a character-based representation of its spelling
and a lookup-based representation of its meaning.
We propose DecSDE, an efficient adaptation of
SDE to NMT decoders. DecSDE uses a low-rank
transformation to assist multilingual transfer, and
it precomputes the embeddings for a fixed vocab-
ulary to speedup training and inference. We test
our method on translation from English to 4 differ-
ent low-resource languages, and DecSDE brings
consistent gains of up to 1.8 BLEUs.

2 Translating into Low-resource
Languages

Standard NMT training is performed solely on par-
allel corpora from a source language S to a target
language T'. However, in the case that 7" is an LRL,
we can use parallel data from S and a related HRL
T’ to assist learning. The standard look-up em-
bedding in NMT turns words from both the LRL
and the HRL into vectors by mapping their indices
in the vocabulary to the corresponding entry in
the embedding matrix. This is harmful for posi-
tive transfer, because different words with similar
spellings from the LRL and the HRL are mapped
to independent embeddings. For example, “Ola”
in Galician and “Ol4” in Portuguese both mean
“hello”, but they would have separate representa-
tions through the look-up embedding. We give a
demonstration of this embedding (mis-)alignment
in § 5.2. Since the target side data is essential for
training the decoder’s language model, represent-
ing lexicons from the LRL and HRL into shared
space is especially important to improve positive
transfer for NMT models that translate into LRLs.

3 Soft Decoupled Encoding

To address the limitation of the standard word rep-
resentation for target side multilingual transfer, we
turn to Soft Decoupled Encoding (SDE;Wang et al.
(2019)), a word embedding method designed for
multilingual data. SDE decomposes a word em-
bedding into two components: a character n-gram
embedding with a language-specific transformation
that represents its spelling, and a semantic embed-
ding that represents its meaning. Given a word
w from the target language L;, SDE embeds the
words in three steps.

Character aware embeddings are first used to
calculate the lexical representation of w. We ex-
tract a bag of n-grams frequency vector from w,

denoted as BoN(w), where each row corresponds
to the number of times a character n-gram in the
vocabulary appears in w. The character aware em-
bedding of the w is then computed as

¢(w) = tanh (W, BoN(w)), (1)

where tanh is the activation function and W, €
R?*™ is an embedding matrix of dimension d for
the n character n-grams in the vocabulary.

Language-specific transformation is then ap-
plied to lexical embedding c¢(w) to account for the
divergence between the HRL and the LRL:

¢i(w) = tanh (W, c(w)), ()

where the matrix Wy, € R¥? is a linear transfor-
mation specific to the language L;.

Latent semantic embeddings of w are calcu-
lated using an embedding matrix W, € R?** with
s entries, which is shared between the languages.
We use ¢;(w) as the query vector to perform at-
tention (Luong et al., 2015) over the embeddings

s(p) = Wy softmax (WST ci(w)) N E))

The final embedding of w is obtained by summing
the lexical and semantic representations

espe(w) = ¢;(w) + s(w). )

4 DecSDE for NMT Decoders

In this section, we build upon the previously de-
scribed SDE, and design a new method for multi-
lingual word representation on the target side.

There are two aspects to consider when incor-
porating character-based representations like SDE
in decoders: 1) the embedding method should be
efficient during both training and inference time, as
it needs to be calculated over the entire vocabulary;
2) it should support popular decoder design deci-
sions, such as weight tying (Press and Wolf, 2017),
which allows the decoder to share the parameters
of the target embedding matrix and the decoder pro-
jection before the softmax operation. With these
considerations in mind, we introduce DecSDE, a
multilingual target word embedding method based
on SDE for NMT decoders.

3561



Fixed Vocabulary and Weight Tying The stan-
dard SDE is designed to encode words directly
without segmenting them into subwords (Wang
et al., 2019). This design choice works well for
encoding words on the source side, but it can cause
problems for the decoder, which requires a finite
vocabulary to generate words for each time step.
Therefore, we choose to segment the target sen-
tences into subwords (Kudo and Richardson, 2018),
and encode each subword using DecSDE.

The use of a fixed vocabulary also allows us to
perform weight tying. Specifically, we construct an
embedding matrix for the decoder by precomputing
the DecSDE embedding for each subword in the
target vocabulary. This embedding matrix can then
be used both as the encoder lookup table and as the
projection matrix before the decoder softmax.

Efficient Training and Inference One draw-
back of the standard SDE is that it requires more
computation than standard look-up table embed-
dings because the lexical embedding requires one
to extract and embed all character n-grams for each
word. This problem is especially important for the
decoder, since it needs to embed all target words in
the vocabulary for each time step to calculate the
probability distribution over the vocabulary.

To make training more efficient, we extract the
character n-grams for all words in the target vocab-
ulary, and use an optimized embedding bag layer?
to parallelize the calculation of lexical embeddings
for all words in a batch. For inference, we pre-
compute the DecSDE embedding for all subwords,
effectively making inference as fast as the regular
look-up table embedding. An analysis of training
and inference speed can be found in § 5.2.

Low-rank Language-Specific Transformation
The language-specific transform in the standard
SDE used on the encoder side sometimes hurts the
model performance (Wang et al., 2019). Our exper-
iments confirm that this phenomenon also happens
on the decoder side. We hypothesize that this is
because the full-rank transformation matrix, that
is Wy, in Eq. 2 might overfit the training data and
project the lexical embeddings from different lan-
guages too far from each other, which could hurt
multilingual transfer. Therefore, we introduce a
novel low-rank language-specific transformation
for DecSDE: We upper-bound the rank of the trans-
formation matrix so that it is less complex, which

*Implementation with torch.nn.functional.embedding_bag

can encourage generalization. Specifically, we re-
place language-specific transformation matrix Wy,
in Eq. 2 with two components: an identity matrix
and a low-rank factorized matrix,

Wi, =1+U. Vg, )

where Uy, € R™*% | V. € R**? are the low-rank
matrices with dimension u < d. Thus, the identity
matrix I passes through the lexical embedding as-is,
and the low-rank matrix performs a simple trans-
formation to account for the divergence between
languages without amplifying the difference.

Extension to Multiple Target Language Note
that though in this work we focus on HRL and
LRL pairs, one can easily extend the framework to
multiple (> 2) target languages. In particular, the
only language dependent component of DecSDE
is the matrices Wp,,, while the rest of DecSDE
parameters as well as transformer encoder-decoder
parameters are shared. We can add and train W,
for each of additional language L.

S Experiments

5.1 Setup

Datasets To validate our method, we use the 58-
language-to-English TED corpus for experiments
(Qi et al., 2018). We use three LRL datasets: Azer-
baijani (aze), Belarusian (bel), Galician (glg) to
English, and a slightly higher-resource dataset Slo-
vak (slk). Each LRL is paired with a related HRL:
Turkish (tur), Russian (rus), Portuguese (por), and
Czech (ces) respectively. We translate from En-
glish to each of the four LRLs, and train together
with the corresponding HRL. For simplicity, as a
research setup, we do not use back-translation with
mono-lingual data which is also hard to come by
for languages low in resource we experiment with.

Implementation We implement our method us-
ing the fairseq (Ott et al., 2019) toolkit. We use the
Transformer (Vaswani et al., 2017) NMT model
with 6 encoder and decoder layers and 4 attention
heads. Other details of model architecture can be
found in § A.1. For all experiments, we use Sen-
tencePiece (Kudo and Richardson, 2018) with a
vocabulary size of 16K.

Compared Systems We compare with two sys-
tems: 1) LookUp-piece: we use SentencePiece
separately on each language to get subword vocabu-
laries. Both encoder and decoder use look-up based
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embeddings. 2) LookUp-word: We concatenate the
training data together and extract the most frequent
64K tokens as the shared vocabulary. Both encoder
and decoder use look-up based embeddings. Both
systems employ vanilla weight-tying.

5.2 Experiment Results

Model aze bel glg slk

LookUp-word 026 2.65 5091 6.7

LookUp-piece 5.18 9.81 21.86 21.34
DecSDE 6.66 11.56 23.68 22.55
- weight tying 575 95 2222 212
- transform 6.26 10.18 23.68 224
- low-rank transform | 5.65 11.36 22.1 22.2

Table 1: Model performance and ablations. DecSDE
outperforms the best baseline for all four languages.

Performance We measure model performance
using SacreBLEU (Post, 2018) and summarize the
results in Tab. 1. DecSDE consistently improves
over the best baseline for all languages, outper-
forming LookUp-piece by up to 1.8 BLEU. Mean-
while, we see word-level baseline has inferior per-
formance, likely due to little word-level overlap
between HRL and LRL.

Ablation We examine the effect of DecSDE com-
ponents by removing each of them, as in Tab. 1.
First, we can see that removing weight tying de-
grades the model performance by a large margin for
all four languages. Next, comparing the standard
linear transformation (- low-rank transform), and
the method without the entire language-specific
transform component (- transform), we can see that
using the regular transform without low-rank fac-
torization actually degrades the model performance
for three out of the four languages, indicating that a
full linear transformation might hinder multilingual
transfer. Using the low-rank transform achieves the
best performance for all four languages.

Speed We measure the training time for one
epoch, and the decoding time of the whole test
set for aze. The results are in Tab. 2. DecSDE in-
curs a reasonable training overhead, and has similar
inference speed as the regular lookup embedding.

Effect of Vocabulary Size We compared
DecSDE and LookUp-piece with different vo-
cabulary sizes to study the impact of subword
segmentation and show results in Tab. 3. DecSDE
consistently outperforms LookUp-piece, but both

Model Train Decode
LookUp-Piece | 152 sec 13.2 sec
DecSDE 341 sec 11.5sec

Table 2: Train/inference speed. DecSDE has similar
inference speed as standard look-up embeddings.

methods tend to demonstrate decreasing accuracy
as the vocabulary size gets larger.

Method # Vocab | aze  bel glg slk
8K 6.18 9.2 2202 2192

LookUp-piece 16K 518 981 21.86 21.34
32K 5.03 875 2127 2037
8K 6.43 11.57 23.81 2292

DecSDE 16K 6.26 1136 23.68 224
32K 536 10.65 22.85 20.16

Table 3: Performance with Different Vocab Size.

Effect of N-gram Size DecSDE builds up its
character n-gram vocabulary by extracting n-grams
of lengths from 1 up to n from the input vocabulary.
Using a larger n makes the model more expressive,
but it might adds more parameters the model which
could lead to overfitting. In this section, we exam-
ine the effect of different n values on DecSDE. The
results are listed in Tab. 4.

N-gram | aze  bel glg slk
3 524 11.07 2145 21.48
4 6.16 1136 2335 224
5 6.26 10.86 23.68 21.62

Table 4: N-gram Size

We observe that using upto 4-gram give a huge
performance improvement, while using 5-gram
leads to small improve in aze and glg but small
decrease in bel, slk. This suggests using character
n-grams up to size 4 is enough to provide enough
discriminative power for our model.

Latent | aze bel glg slk
5K 573 11.1  23.87 22.65
10K | 6.26 11.36 23.68 224
20K [592 11.06 2294 2225

Table 5: Latent Size

Effect of Latent Size We train DecSDE with dif-
ferent latent embedding sizes of 5K, 10K and 20K
and record BLEU in Tab. 5. We observe small dif-
ferences among them for each LRL. We do find
a trend that increasing the size too high will hurt
performance, indicating a latent size of around 10K
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Figure 1: Top: Gain in embedding similarity for simi-
larly spelled HRL, LRL word pairs. Bottom: Gain in
word accuracy F-1 over rare words in the LRLs.

is sufficient while going larger is likely to incur
over-fitting problem.

Embedding Analysis One main advantage of
DecSDE is its ability to capture spelling similar-
ity between LRL and HRL. To show this, we pick
word pairs from HRL and LRL with edit distance
from 1 to 4, and compare their embeddings. For
each word pair word pair, we take the LRL word
and use the cosine similarity between embeddings
to retrieve words from the HRL. Retrieval suc-
cess is measured by mean reciprocal rank (MRR,
the higher the better). The gain of DecSDE over
LookUp-piece with respect to edit distance is plot-
ted in the top of Fig. 1, which shows that DecSDE
embed similar spelling words closer in the embed-
ding space.

Next, we examine performance of DecSDE for
rare words in the LRLs. We calculate word F-1 of
rare words for DecSDE and LookUp-piece using
compare-mt (Neubig et al., 2019), and plot word
frequency vs. gain in word F-1 of in the bottom
of Fig. 1. DecSDE brings more significant gains
for less frequent words, likely because it encodes
similar words in HRL and LRL to closer space,
thus assisting positive transfer.

6 Implications and Future Work

In this paper, we have demonstrated that DecSDE,
a multilingual character-sensitive embedding
method, improves translation accuracy into low
resource languages. This implies, on a higher level,
that looking into the character-level structure of the
target-side vocabulary when creating word or sub-
word embeddings is a promising way to improve

cross-lingual transfer. While ablations have shown
that the proposed design decisions (such as Low-
rank Language-specific transformation, weight ty-
ing, etc.) are reasonable ones, this is just a first
step in this direction. Future work could examine
even more effective methods for target-side lexical
sharing in MT or other language generation tasks.
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A Appendix
A.1 Training Details

For DecSDE and both baseline models, we use the
transformer architecture. Both the transformer en-
coder and decoder have six layers, four attention
heads, 512 embedding dimension and 1024 FFN
dimension. All models are trained with a stochastic
gradient descent with Adam optimizer, with a learn-
ing rate of Se-4 with a inverse square root scheduler,
for a maximum of 50 epochs. Dropout of 0.3, label
smoothing of 0.1 are used. These are inherited from
fairseq (Ott et al., 2019)’s low resource IWSLT’ 14
German to English (Transformer) example®. For
DecSDE, we have u = 16 for aze, u = 80 for bel,
u = 0 for glg and © = 48 for slk. We select u by
manual search based on dev set perplexity. A la-
tent size of 10K is used unless specified otherwise
following the original SDE paper. Charater n-gram
up to size of 5 are used for aze and glg, and up to
4 for bel and slk. We pick this among 3, 4 an 5
by dev set perplexity. With DecSDE, the models
have approximately 60M parameters. In compari-
son, the baseline LookUp-piece have roughly 52M
parameters.

A.2 Datasets

TED dataset and preprocessing tools we used
are available at https://github.com/neulab/word-
embeddings-for-nmt. Futher word segementations
are done with SentencePiece running the uni-gram
sub-word algorithm.

3https://github.com/pytorch/fairseq/tree/master/examples/translation
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