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Abstract

Recent progress in pre-trained language mod-
els led to systems that are able to generate text
of an increasingly high quality. While sev-
eral works have investigated the fluency and
grammatical correctness of such models, it is
still unclear to which extent the generated text
is consistent with factual world knowledge.
Here, we go beyond fluency and also investi-
gate the verifiability of text generated by state-
of-the-art pre-trained language models. A gen-
erated sentence is verifiable if it can be corrob-
orated or disproved by Wikipedia, and we find
that the verifiability of generated text strongly
depends on the decoding strategy. In particular,
we discover a tradeoff between factuality (i.e.,
the ability of generating Wikipedia corrobo-
rated text) and repetitiveness. While decoding
strategies such as top-k and nucleus sampling
lead to less repetitive generations, they also
produce less verifiable text. Based on these
finding, we introduce a simple and effective de-
coding strategy which, in comparison to previ-
ously used decoding strategies, produces less
repetitive and more verifiable text.

1 Introduction

Recent years have led to a considerable surge of
interest in and capabilities of pre-trained language
models (LMs). Today, they play a critical role in
many NLP tasks, such as text classification, ma-
chine comprehension and natural language infer-
ence (Peters et al., 2018; Devlin et al., 2018; Liu
et al., 2019a; Yang et al., 2019), to name just a few.
They serve as a pre-training objective for down-
stream applications and they have been used to
showcase and measure the general progress in NLP
(Yu et al., 2017; Liu et al., 2019b).

Several works (Radford et al., 2019b; Keskar
et al., 2019) show the remarkable fluency and gram-
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matical correctness of text decoded from modern
LMs. Additionally, recent works (Petroni et al.,
2019; Logan et al., 2019; Broscheit, 2019; Roberts
et al., 2020) demonstrate that beyond general lin-
guistic capabilities, language models can also pick
up factual knowledge present in the training data.
However, it is unclear if LMs are able to convey
such knowledge at decoding time when producing
long sequences—do they generate fluent, grammat-
ical but “babbler-level” text or can they produce
utterances that reflect factual world knowledge?

Understanding this behaviour becomes crucially
important as the downstream adoption of auto-
matically generated text increases. Already to-
day LMs face growing scrutiny from the media
and the broader society, as well as from the re-
searchers themselves. For example, Radford et al.
(2019b) initially argued against releasing their mod-
els in order to prevent automatic generation of fake
news (Radford et al., 2019a). Several blogs and
web resources demonstrate that differentiating be-
tween human and machine-generated text has be-
come surprisingly difficult.1

With that in mind, we set out to study state-
of-the-art auto-regressive transformer-based lan-
guage models through the lens of their verifiabil-
ity. Specifically, we use Wikipedia to first create a
set of natural language prompts to initiate genera-
tion. Next, we use transformer models of various
sizes and trained with different corpora to gener-
ate sentences off these prompts with varying de-
coding configurations. Finally, following earlier
work in fact checking (Thorne et al., 2018), we
use Wikipedia again to verify each sentence as
supported, refuted, or unverifiable using both an
off-the-shelf automatic fact-checking system and
human annotators. We define verifiability metrics
on top of the automatic and human fact-checkers’

1http://quiz.newsyoucantuse.com/

http://quiz.newsyoucantuse.com/
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evaluation outcomes (see Figure 1 for a high-level
overview).

The truthfulness of generated text can be traded
off with other properties. For example, a decod-
ing algorithm can generate the same true fact over
and over again to produce many verifiable utter-
ances, but this would be a poor outcome in terms of
repetitiveness. Similarly, a model might generate
ungrammatical text that cannot be verified as sup-
ported or refuted at all, and hence not as factually
wrong either. Our experiments show that the text
generated from auto-regressive transformer-based
LMs, especially in their large versions (1.4B pa-
rameters), is almost always grammatical and fluent
regardless of the configuration, but that repetitive-
ness can vary a lot. We hence focus on this dimen-
sion in our analysis and define metrics that combine
repetitiveness with verifiability.

One of our main findings is that while sampling
methods, such as top-k and nucleus, produce more
natural and less repetitive text, they also gener-
ate fewer supported and more refuted statements.
Beam search, on the other hand, shows much better
performance along these dimensions at the cost of
producing highly repetitive text. Based on these
observations, and inspired by findings in Holtz-
man et al. (2019), who showed how the probabil-
ity of human text under language models is vary-
ing from token to token, we introduce a simple
strategy: Delayed Beam Search (DELAYEDBS).
In DELAYEDBS, we iterate between sampling and
finding most likely utterances. By simply injecting
stochasticity in the beginning of a sentence and
then switching to beam search, we generate text
that is less repetitive while at the same time scores
well in terms of our verifiability metrics. Our main
findings hold across several experimental settings,
with varying training set size and model size.

To summarize, we make the following contribu-
tions: (i) we propose an experimental methodology
to assess machine generated text with respect to
repetitiveness and verifiability. (ii) we assess a
wide range of decoding algorithms with respect
to these dimensions, (iii) we introduce a novel de-
coding strategy that addresses some of the short-
comings of existing solutions, (iv) we carry out an
annotation campaign to validate our findings and
assess the quality of the automatic fact checking
system.

2 Related Work

Keskar et al. (2019) trained CTRL, a large (1.63B
parameters) pretrained language model that can be
conditioned on style or content for controlling gen-
erated text. Users can, for example, specify the
domain, entities, as well as relationships between
entities, to control the generated text. While im-
pressive, their work does not provide insights into
the verifiability of the generated text.

Multiple efforts focus on improving text decod-
ing with respect to different criteria. Vijayakumar
et al. (2016) and Li et al. (2016) introduce alterna-
tive scoring strategies to diversify the hypothesis
tree explored by beam search. Fan et al. (2018) pro-
pose top-k sampling, i.e., sampling from the top k
tokens with the highest probability to generate sto-
ries. Holtzman et al. (2019) find that for the same
neural language model, the choice of the decoding
strategy can have a dramatic effect on the fluency
and repetitiveness of the generation. They propose
nucleus sampling as a way to increase diversity of
the generated text while improving fluency. In our
work, we find that while this strategy does create
more fluent and less repetitive text, it does also
result in a less factually true generation. Cho et al.
(2019) choose to separate the generation and diver-
sification steps altogether, and focus on leveraging
content selection to map the input to diverse se-
quences. We describe various generation strategies
in more detail in section 3.

Welleck et al. (2019) note that with nucleus
sampling, per-token probabilities can be very low
which they attribute to the likelihood training ob-
jective. They propose a novel unlikelihood training
objective which lowers the probability of tokens in
the context of the model. Their approach is orthog-
onal to the decoding strategy and testing alternative
training objectives is out of the scope of our paper.

A recent approach by Bakhtin et al. (2019) learns
to distinguish human from machine generated text.
Zellers et al. (2019) investigate generating and de-
tecting fake news using neural language models.
Niewinski et al. (2019) propose a variation of the
GPT-2 language model to explicitly generate ma-
licious claims. Instead of directly optimizing for
generating fake or factual news, we are interested
in investigating the relationship between the verifia-
bility of the existing language models and different
decoding strategies they are coupled with.

Several metrics have been proposed to evaluate
natural language generations in the past (Novikova



225

FACT CHECKER   a

TEXT GENERATOR   a

Stephen Hawking. Stephen William 
Hawking  (8 January 1942 - 14 
March 2018) was an English 

theoretical physicist, cosmologist, 
and author who was director of 

research at the Centre for 
Theoretical Cosmology at the 
University of Cambridge at the 

time of his death.
LM

He was the 
author of several 
books, including 
A Brief History 

of Time.

He was born in 
Oxford, England, 
the son of Frank 
and his wife Jane 

Hawking.

He was the 
author of several 
books, such as  
A Brief History 

of Time.

He was born 
with a rare form 

of dyslexia.

His father was 
an electrical 
engineer and 

physicist.

XXSUPPORTED

X XXVERIFIED

X X XXUNIQUE

Supports Per Generation [SPG] = 2/5

Supports Per Verified [SPV] = 2/3

Unique Supports Per Generation [USPG] = 1/5

wikipedia prefix

Lucy 
Hawking was 

born in England 
to Stephen 

Hawking and 
Jane Hawking.

GENERATION 
STRATEGY

SENTENCE
PROCESSING

The movie  a 
concerning the 
life of Stephen 

Hawking, and his 
first wife, Jane 

Hawking.

  Hawking 1 
was born on 8 
January 1942 in 
Oxford to Frank 
and Isobel Eileen 

Hawking.

wikipedia evidence

IR SD REFUTED

X

Unique Supports Per unique Verified [USPV] = 1/2

Figure 1: High level description of our experimental methodology that combines a language model (LM) with a
fact checker, usually implemented combining an information retrieval (IR) and a stance detector (SD) component.

et al., 2017). Given that recent studies (Fan et al.,
2018; Holtzman et al., 2019; Welleck et al., 2019)
point to repetitiveness as one of the main problems
affecting the generation of state-of-the-art models,
we mainly consider this dimension in our analysis.

3 Background

Language models (LMs) assign probabilities to
sequences of tokens. Given a context, that is, a
sequence of tokens ct = [w1, w2, . . . , wt−1], au-
toregressive LMs commonly estimate the proba-
bility distribution of the next target using neural
models (Mikolov and Zweig, 2012; Melis et al.,
2017; Bengio et al., 2003) with:

p(wt | ct) = softmax(Wht + b) (1)

where ht ∈ Rk is the output vector of a neural net-
work at position t and W ∈ R|V| × k is a learned
parameter matrix that maps ht to unnormalized
scores for every word in the vocabulary V . In this
work, we consider self-attention mechanisms (Rad-
ford et al., 2018; Dai et al., 2019; Radford et al.,
2019b) to compute ht given the word history.

Open-Ended Text Generation As described in
Holtzman et al. (2019), the task of open-ended
text generation involves producing a coherent com-
pletion of the provided context. We consider the
common left-to-right generation, where a token at
position t in the sequence is generated by consider-
ing the probability distribution over the vocabulary
defined in equation 1. Once a decision is made for
wt according to a decoding strategy, it is incorpo-
rated into the context and the process is iterated

- i.e., the token at position t + 1 is generated by
considering p(wt+1 | ct+1 = [w1, . . . , wt]). In this
work, we consider different decoding strategies of
selecting wt given p(wt | ct).

3.1 Decoding Strategies

The decoding strategies we consider in our analysis
can be broadly divided in two families: sampling-
based and likelihood-based.

Sampling-based This family of techniques aims
at increasing the diversity of the output and avoid-
ing repetitions by introducing stochastic decisions
during the generation process.
Top-k sampling (Fan et al., 2018) selectswt by sam-
pling from the k tokens with the highest probability
in p(wt | ct).
Top-p sampling, also referred to as nucleus sam-
pling (Holtzman et al., 2019), selects wt from the
smallest set of tokens whose cumulative probability
(given by p(wt | ct)) is above a threshold p.

Likelihood-based These strategies navigate the
solution space by selecting sequences of tokens
that maximize the overall likelihood. Given that
the number of possible sequences is typically very
large, it is a common practice to define heuristics
to make the generation practical.
Beam Search (BS). This strategy approximately
maximizes the likelihood of the whole sequence.
Throughout the generation, we hold a beam of β
prefixes which are iteratively extended. At each
time-step, β tokens are generated to complete each
of the prefixes in the beam and we retain β hypothe-
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ses with the highest score out of the β2 candidates
for the next step. β is referred to as the beam size.
Greedy decoding, where at each step the most likely
token is selected, is a special case of beam search
with beam size 1.
Group diverse Beam Search (GROUPBS). To favor
the diversity of the exploration, Vijayakumar et al.
(2016) propose to divide the beam into groups. The
diversity between groups is imposed by introduc-
ing a group dissimilarity penalty into the search
objective.
Sibling diverse Beam Search (SIBLINGBS). With
the same aim of diversifying the exploration, Li
et al. (2016) propose a variant of beam search
which introduces a penalty proportional to the rank
of a candidate token with respect to its source in
the beam. The goal is to encourage preserving
hypotheses from diverse sources within the beam.

A simple trick to reduce repetitiveness is to ex-
plicitly prevent the generation of already observed
n-grams (Paulus et al., 2017). We refer to this
approach as n-gram blocking.

Delayed Beam Search (DELAYEDBS). We pro-
pose a new hybrid strategy that uses sampling to
generate the first L tokens of a sentence and then
it finishes the sentence using beam search. The
smaller the L, the closer the behaviour is to beam
search. Conversely, the larger the L, the closer we
are to sampling strategies. Consequently, by tuning
L, it is possible to combine the advantages of both
sampling and likelihood-based strategies.

4 Evaluating Verifiability

In this section we first describe the tools used to
evaluate the verifiability of the generated text. We
then formally introduce our repetitiveness and veri-
fiability metrics.

The high level overview of our evaluation setup
is shown in Figure 1. For the purpose of this anal-
ysis, we consider both the text generator and the
fact checker as black boxes which produce and as-
sess text respectively. More specifically, the text
generator gets in input a prefix p and produces a
sequence of tokens that can be interpreted as a com-
pletion of p. We segment the generated completion
into sentences and consider the first k sentences.
The fact checker gets in input a sentence and out-
puts a positive (SUPPORTED), negative (REFUTED)
or unverifiable (NOT ENOUGH INFO) response as
well as textual evidence used for the judgment. We

consider a sentence as verified if the output label is
either SUPPORTED or REFUTED.

Our metrics assess the generation process given
a set of prefixes P . The set P can be seen as the
data source for our verifiability probe. Let Gp =
[sp1, ..., s

p
k] be the sequence of sentences generated

by the LM from prefix p ∈ P . We indicate with
V p ∈ Gp the set of sentences that are verified by
the fact checker, while with Sp ∈ V p we denote
the subset of sentences labeled as SUPPORTED. To
assess the verifiability of the generated text we
introduce the following two metrics:
Supports Per Generation (SPG): is the fraction
of supported sentences among the generated ones:

SPG =
1

|P |
∑
p∈P

|Sp|
k

(2)

Supports Per Verified (SPV): is the fraction of
supported sentences among the verified ones:

SPV =
1

|P |
∑
p∈P

|Sp|
|V p|

(3)

SPG can be interpreted as a sort of a recall metric
while SPV as a precision one.

Note that a generation could achieve a high score
in terms of SPG and SPV by repeating the same
supported sentence over and over again. To capture
this behaviour, we define the unique variants of our
metrics. We consider two sentences as equivalent
if they have the same factuality label (i.e., SUP-
PORTED or REFUTED) and the decision is justified
by the same evidence. For a set of equivalent sen-
tences, we consider only the one which appeared
first in the generation as unique. We denote the set
of unique sentences as Sp

u ∈ Sp, V p
u ∈ V p is a set

of unique verified sentences. We introduce:
Unique Supports Per Generation (USPG): the
fraction of unique supported sentences among the
generated ones:

USPG =
1

|P |
∑
p∈P

|Sp
u|
k

(4)

Unique Supports Per unique Verified (USPV):
the fraction of unique supported sentences among
unique verified sentences:

USPV =
1

|P |
∑
p∈P

|Sp
u|
|V p

u |
(5)
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5 Methodology

In this section we describe in detail the implemen-
tational choices for all components in Figure 1.

Prefix Dataset We retrieve title and description
of the top-1000 most visited Wikipedia pages of
2017 and 2018. For each page, we concatenate
the title and the first sentence in the description to
create a string prefix for the language model. We
use 2018 data as validation set and run parameter
sweeps over it. We tested the best configuration of
every decoding strategy on 2017 data (test set). We
ensure no overlap between 2017 and 2018 prefixes.

Language Model We consider three sizes of
language models (small, medium, large) based
on the Transformer architecture (Vaswani et al.,
2017; Radford et al., 2019b), with 124M, 354M
and 1.4B parameters respectively. We train mod-
els on four corpora: (i) WIKIPEDIA, an English
Wikipedia dump consisting of roughly 2 Billion
Words; (ii) BOOKS, the Toronto books corpus (Zhu
et al., 2015; Kiros et al., 2015), which consists of
fiction books totaling about half a billion words;
(iii) OPENWEBTEXT, a reconstruction of the Web-
Text corpus (Radford et al., 2019b) consisting of
roughly 3 Billion Words; (iv) CCNEWS, a de-du-
plicated subset of the English portion of the Com-
monCrawl news dataset (Nagel, 2016; Bakhtin
et al., 2019; Liu et al., 2019a), which totals around
16 Billion words. We train models using the
FAIRSEQ toolkit (Ott et al., 2019).

Generation Strategy We consider the genera-
tion strategies discussed in Section 3.1, namely
top-k, top-p, greedy, Beam Search (BS), Group-
Diverse Beam Search (GROUPBS), Sibling-
Diverse Beam Search (SIBLINGBS) and Delayed
Beam Search (DELAYEDBS). Additionally, we ex-
periment with n-gram blocking and indicate that a
model is equipped with blocking with a subscript
b, e.g., BSb. We fix the generation length to 256
tokens. We perform three generations per prefix
with different seeds for all strategies that make
stochastic decisions, and report average values.

Sentence Processing Given that our fact checker
expects a single sentence as input, we segment the
generated text into sentences. We consider the first
k = 5 sentences. We perform coreference resolu-
tion to replace pronouns with the corresponding
referring entity in order to give the complete infor-
mation to the fact checker. For the same reason, we

apply a simple heuristic that replaces each deter-
miner (i.e., ”The”) at the beginning of a sentence
and the subsequent noun with the original entity
(i.e., the title of the Wikipedia page). For all these
steps we use spaCy.2 We consider sentences longer
than 50 tokens as not verifiable, since long sen-
tences are likely to contain multiple claims and can
be misclassified by the automatic fact-checking
system, we consider that has been trained on short
single claim statements.

Fact Checker We consider an off-the-shelf fact
checker3 trained on the FEVER dataset (Thorne
et al., 2018) which achieves the highest FEVER
score of 68.46% in the second FEVER shared task
(Thorne et al., 2019). This solution takes inspira-
tion from Hanselowski et al. (2018) and consists of
three main stages: (i) identify relevant Wikipedia
pages, as in Hanselowski et al. (2018); (ii) retrieve
relevant sentences from such pages; (iii) recognize
textual entailment between input and retrieved text.
The system uses a hierarchical sentence retrieval
approach in order to verify claims that require mul-
tiple statements as evidence. It uses BERT (Devlin
et al., 2018) for both retrieval and entailment.

Metrics We use all the metrics introduced in Sec-
tion 4. We also consider the following metrics to
capture the repetitiveness of the generation:
Distinct 4-gram: is the average number of distinct
4-grams present in the generated text (Vijayakumar
et al., 2016).
4-gram proportion: is the average ratio between
distinct 4-grams in machine and human generated
text (Holtzman et al., 2019). For the latter, we
consider the 256 tokens after the first sentence in
the description for each Wikipedia page.

6 Results

We summarize the main results in Table 1. It shows
the performance of the different generation strate-
gies on the considered metrics on the test set of
prefixes, considering the large transformer model
trained on CCNEWS (this corpus led to the best per-
formance according to our ablation, see Figure 2a).
We performed an exhaustive grid search over the
parameters for all considered generation strategies
using the small model on the validation set, and
consider the configuration that led to the highest

2https://spacy.io
3https://github.com/

dominiksinsaarland/domlin_fever

https://spacy.io
https://github.com/dominiksinsaarland/domlin_fever
https://github.com/dominiksinsaarland/domlin_fever
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strategies

metrics repetitiveness verifiability diverse verifiability

distinct
4-grams

4-grams
proportion SPG SPV USPG USPV

human - Wikipedia 222.48 100.00 36.56 93.03 36.56 93.03

sampling
top-k 143.52 64.51 13.02 70.15 11.06 69.39
top-p 136.66 61.43 13.94 70.76 11.36 68.93

likelihood

greedy 67.42 30.31 19.62 78.67 12.06 77.21
BS 59.53 26.76 25.50 84.49 11.88 81.59

GROUPBS 66.06 29.69 20.56 78.29 11.54 76.53
SIBLINGBS 67.11 30.16 22.32 80.11 11.36 76.76

hybrid DELAYEDBS 112.12 50.40 17.52 78.99 12.74 77.59

blocking BSb 92.00 41.35 23.62 83.35 15.28 80.76

Table 1: Performance of the different generation strategies on the considered metrics. We report percentage values
for the large transformer model on the test set. The first row shows human performance computed on Wikipedia.

USPG value (see the Appendix for details). We re-
port as reference human performance computed on
Wikipedia considering at most the first 5 sentences
of the prefix article.

Sampling strategies (i.e., top-p and top-k) out-
perform the other strategies in terms of repetitive-
ness metrics, that is, they are able to generate text
with a higher degree of diversity, consistently with
previous works (Fan et al., 2018; Holtzman et al.,
2019). However, diversity comes at a price, as the
verifiability metrics are low (in particular, preci-
sion values - they generate more refuted sentences).
Intuitively, random choices might hamper verifia-
bility when sampling a token in specific positions
of the sentence, for instance, in a named entity,
potentially making the overall sentence non fac-
tual. We notice that this problem gets even worse
by increasing k or p. Following a generation path
that maximizes likelihood is a better approach for
verifiability. In particular, BS achieves the highest
performance in terms of SPG and SPV. Neverthe-
less, generation diversity drops, consistently with
previous works (Vijayakumar et al., 2016; Li et al.,
2016; Welleck et al., 2019; Holtzman et al., 2019).
Solutions such as GROUPBS and SIBLINGBS have
been proposed to mitigate this problem, and their
numbers actually look slightly better than BS in
terms of repetitiveness metrics.

When we assess diverse verifiability (that is, we
consider distinct supported/refuted sentences), like-
lihood and sampling based strategies are similar in
terms of recall (i.e., USPG), while likelihood-based
solutions outperform both top-k and top-p in terms

of precision (i.e., USPV) by a large margin - they
generate less sentences refuted by the fact checker.

DELAYEDBS tries to combine the best of these
two approaches, by defining a hybrid strategy that
starts a sentence by sampling tokens and ends it
by following a max-likelihood path. It achieves
results comparable to likelihood-based solutions in
terms of precision and recall for diverse verifiability
while being much less repetitive (it almost doubles
the number of distinct 4-grams). Interestingly, it is
sufficient to sample just the first token with high
uncertainty (top-100) and finish the sentence with
beam search to trigger this behaviour (Figure 5 in
the Appendix Section reports a detailed ablation
study for the delay length).

Another way of mitigating repetitiveness is
through n-gram blocking. We combine it with BS,
sweeping over the values of n between 3 and 20.
In line with our expectations, low n values score
low in verifiability metrics, as the model is forced
to explore less likely parts of the solution space
in order to avoid generating previously observed
n-grams. Unsurprisingly, the diversity of the solu-
tion drops as n increases. In this sense, BSb and
DELAYEDBS attempt to strike a similar balance
between diversity (introduced via n-gram blocking
in BSb and via sampling in DELAYEDBS) and ver-
ifiability (achieved by incorporating BS). Figure 3
highlights this analogy further. Overall, we achieve
the best USPG performance by combining 20-gram
blocking and BS - we believe it is due to the fact
that n-gram blocking prevents BS from repeating
the same phrases multiple times, while remaining
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Figure 2: USPV vs USPG, inspired by precision-recall curve.
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relaxed enough to allow the generation to produce
a high-likelihood solution. However, even though
BSb archives the best results in terms of diverse ver-
ifiability metrics, DELAYEDBS still produces less
repetitions, hence constituting a viable alternative.

Ablation studies We experiment with different
training corpora (Figure 2a) and different sizes of
the transformer model (Figure 2b), using the valida-
tion set. We report USPV vs USPG values, taking
inspiration from the popular precision-recall curve.
The average perplexity of the small transformer
model is the lowest for WIKIPEDIA (8.31) com-
pared to BOOKS (53.08), OPENWEBTEXT (11.14)
and CCNEWS (12.23). Even though all prefixes are
likely to be in the corpus, WIKIPEDIA performance
in terms of USPG is low regardless of the decoding
strategy. This counter-intuitive behaviour seems
to occur mainly due to the tendency of the small
model trained on WIKIPEDIA to generate endless,
unverifiable entity lists, mimicking Wikipedia lists.
CCNEWS leads to the best performance in terms

of recall (USPG) for all decoding strategies, but
also in terms of precision (USPV) for top-k and
DELAYEDBS.

We did explore several other dimensions, includ-
ing grammaticality (through a syntactic parser)
and relevance (i.e., tf-idf score with the prefix
Wikipedia page) during our experiments (see Table
4 in the Appendix). Figure 4 reports the Pearson
correlation coefficient between supported and ver-
ified sentences and these set of metrics. We con-
sider the four runs of the large transformer model
reported in Figure 2b. We notice, for instance, that
the average log probability of a sentence is posi-
tively correlated with verifiability, suggesting that
max-likelihood strategies are better suited in this
regards. Furthermore, the tf-idf score with the pre-
fix Wikipedia page content is positively correlated
with supported sentences. This behaviour is related
to the implementation of the fact checker we use,
which, by considering exclusively Wikipedia as
knowledge source, favours text with a high overlap
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Figure 4: Pearson correlation coefficient for sup-
ported/verified sentences (large model) and a set of met-
rics per sentence: number of entities, if successfully
parsed by the Link-Grammar syntactic parser,4number
of conjunctions in the dependency tree, average token
log probability, prefix perplexity, tf-idf score with the
prefix Wikipedia page, number of tokens.

with the latter. Note, however, that the model was
not explicitly exposed to Wikipedia during training
(i.e., CCNEWS does not explicitely include it).

We report examples of text generated by the
large transformer model using different decoding
strategies in the Appendix section (Table 5).

Human Evaluation We carry out an annotations
campaign, where we ask human annotators to fact
check generated text. We base the evaluation on
a set of 200 prefixes randomly selected from the
test set. We consider completions produced by 5
of the generation strategies studied in this paper.
We collect 5 annotations per generation. Results,
reported in Table 2, confirm our findings: sampling
strategies generate text which is less repetitive but
also with less supported sentences than in the case
of beam search. DELAYEDBS emerges as a reason-
able trade-off between the two, being less repetitive
than BS and producing more supported sentences
than top-k. The analysis also highlights how block-
ing n-grams does not really address the repetitive
nature of BS. Looking at some examples (see Ta-
ble 5) we notice that BSb avoids repeating n-grams
by introducing superficial, token-level modifica-
tions which, most of the time, fail to alternate the
underline meaning of the sentence. In terms of
absolute values, precision metrics (i.e., USPV and
SPV) are lower than those computed with the auto-
matic fact checker, and recall metrics (i.e., SPG and
USPG) higher. This is due to the poor recall per-
formance of the fact checking system - 45.66% for
SUPPORTED and 5.78% for REFUTED. Precision

4abisource.com/projects/link-grammar

REP NAC UNG SPG SPV USPG USPV

top-k 16.0 3.4 1.4 27.2 41.36 20.1 41.16
greedy 35.6 1.7 2.0 32.5 42.23 17.6 41.75

BS 38.7 8.2 1.8 44.6 64.62 20.1 65.1
DELAYEDBS 25.0 6.2 3.0 35.4 50.22 23.3 50.68

BSb 31.6 9.8 4.3 38.2 56.92 19.7 58.12

Table 2: Results based on human fact checkers, 5 an-
notations per sentence. Average inter-annotator agree-
ment is 0.66 Cohen’s kappa (average majority of 81%
for SUPPORTED, 78% for REFUTED and 65% for NOT
ENOUGH INFO). We report the percentage of sentences
annotated as repetitions (REP), not a claim (NAC), un-
grammatical (UNG), and our verifiability metrics.

values are 80.89% for SUPPORTED and 52.69% for
REFUTED. In sum we find that while off-the-shelf,
state-of-the-art fact checker systems still leave am-
ple room for improvement, they already serve as a
good proxy for ranking pre-trained language mod-
els and decoding strategies with respect to the veri-
fiability of the text they generate.

7 Conclusion and Discussion

We presented a systematic analysis of the verifiabil-
ity of text generated by a wide range of decoding
strategies from large autoregressive language mod-
els. We assessed generated sentences with an off-
the-shelf automatic fact-checker as well as through
human annotations. We found that sampling de-
coding strategies produce text that is less verifiable,
but also less repetitive when compared to strate-
gies that consider most likely sequences according
to the model distribution. We proposed a hybrid
decoding strategy, combining the non-repetitive
nature of sampling solutions with the verifiable
generation of likelihood-based approaches.

In our analysis, we considered the most viewed
Wikipedia pages in 2017 and 2018. Our rationale
was that such pages would represent topics that are
likely to be highly covered in a random web crawl
(e.g., OPENWEBTEXT and CCNEWS). Results
(not reported in the paper) with a random set of
Wikipedia pages showed lower values in terms of
SPG and USPG (i.e., recall metrics). A potential
line of future work could be to investigate relation-
ships among training corpora and generation.

We considered each sentence as a single claim to
keep our experimental setting clean and avoid noise
from an automatic claim extractor. However, some
generations contain multiple claims that could be
independently assessed. Studying such phenomena
is an interesting future direction.

abisource.com/projects/link-grammar
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stette, and Tomás Kociský. 2017. The neural noisy
channel. In Proceedings of the 5th International
Conference on Learning Representations, ICLR.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. arXiv preprint arXiv:1905.12616.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the 15th IEEE
international conference on computer vision (ICCV),
pages 19–27.

https://blog.openai.com/better-language-models/
https://blog.openai.com/better-language-models/
https://doi.org/10.18653/v1/D19-6601


233

strategy best parameters

top-k k= 2
top-p p= 0.4
BS beam size= 15

GROUPBS
groups= 2

penalty= 0.2
SIBLINGBS penalty= 0.1

DELAYEDBS
top-k= 100

beam size= 6;
L= 1

BSb
beam size= 15

blocking order= 20

Table 3: Best parameters per decoding strategy.

8 Appendix

8.1 Hyperparameters

We conduct a parameter sweep on the small trans-
former model on the validation set. The following
table shows the configuration for each decoding
strategy that leds to the highest USPG score.

8.2 Generation Examples

We reported some examples generated with differ-
ent strategies in table 5.

8.3 Other metrics

We explored how decoding strategy affects other
dimensions of the generated text. Results are re-
ported in table 4. We measure several statistics
ovtaer the generated text:

• The average number of distinct sentences for
each generated text;

• The average number of named entities in each
sentence;

• The average number of tokens in each sen-
tence;

• The average number of conjunctions in the
dependency tree of each sentence;

To compute the above metrics, we used spaCy.
In particular we used its tokenizer to split tokens
and sentences, its named entity recognition capa-
bility to identify named entities and its dependency
parser to count the number of conjunctions.

Furthermore, we analyzed the grammatical cor-
rectness of the generated text, counting the success

Figure 5: Ablation study over delay length. We re-
port on the x-axis the delay length and on the y-axis
the number of distinct supported sentences obtained
for each delay length. Horizontal lines represent the
value obtained on the validation set using top-k decod-
ing strategy. All the generations were performed on
the validation set using the small transformer trained
on CCNEWS.

rate of the link-gram parser 5 over the sentences in
the generated text.

We also measure the relevance of the generated
text against the Wikipedia page that contains the
prefix used for the generation. For this purposes,
we compute the tf-idf score of the generated text
and the related Wikipedia page.

8.4 Ablation study over delay length
We perform an ablation study to measure how the
number of supported sentences generated with DE-
LAYEDBS is affected by the delay length. We gen-
erated text using the prefixes in the validation set
using DELAYEDBS with top-k as sampling strategy
and with different delay length. Our hypothesis is
that using larger delay length the number of sup-
ported sentences in the generated text will become
close to the one obtained for top-k. We report the
results in figure 5. From the figure it is clear that
with larger delay length the number of supported
sentences is very close to the one obtained with
top-k. Moreover, as expected, a short delay length
seems to produce a larger number of supported
sentences.

5https://github.com/opencog/link-grammar
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strategy param
distinct

sentences
#entities #tokens #conj

% success
link-gram

tf-idf
score

greedy 1 2.44 2.02 18.68 1.18 81.30 255.04

beam
search

6 2.20 2.79 22.71 1.32 74.76 510.17
12 2.13 3.13 23.72 1.39 71.92 565.97
15 2.14 3.13 23.51 1.40 72.41 568.96

top-k
2 4.63 2.43 21.92 1.26 83.58 259.75

10 4.95 2.70 25.22 1.33 78.73 246.18
100 4.98 2.72 27.29 1.36 74.91 203.19

top-p

0.1 2.57 2.02 18.93 1.17 81.10 251.27
0.3 3.88 2.19 19.41 1.19 85.06 238.72
0.7 4.90 2.59 23.76 1.27 79.90 215.68
1 4.97 2.81 28.55 1.38 70.40 162.95

delayed
beam search

5-6-1 3.74 3.01 23.39 1.22 77.23 401.76
10-6-1 3.95 3.04 23.95 1.23 77.00 406.03
100-6-1 4.22 3.04 24.10 1.22 76.36 399.91
1000-6-1 4.30 3.03 24.62 1.21 76.27 397.27

Table 4: Analysis of the generated text among different dimensions. We used the prefix in the validation set and
the small transformer model trained on CCNEWS to generate the text. Under the column params we report hyper
parameters for the decoding strategy considered. For DELAYEDBS we we have varied only the parameter for top-k
sampling and we used beam size equal to 6 and delay length of 1.
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Princess Margaret, Countess of Snowdon. Princess
Margaret, Countess of Snowdon, (Margaret Rose 21 Au-
gust 1930 - 9 February 2002) was the younger daughter of
King George VI and Queen Elizabeth The Queen Mother
and the only sibling of Queen Elizabeth II.

Whitey Bulger. James Joseph Whitey Bulger Jr. ( Septem-
ber 3, 1929 - October 30, 2018) was an Irish-American or-
ganized crime boss and FBI informant who led the Winter
Hill Gang in the Winter Hill neighborhood of Somerville,
Massachusetts, a city directly northwest of Boston.

to
p-

k

She is the only surviving member from the Royal Family
who was born in the same year as the Queen Mother.
Princess Margaret, Countess of Snowdon, (Margaret Rose
21 August 1930 - 9 February 2002) was a British princess
who married into the British Royal Family in 1939.
She is a cousin to the Queen, Prince Philip, Prince Charles,
Prince William, Prince Harry and Prince Edward.
Princess Margaret, Countess of Snowdon, (Margaret Rose
21 August 1930 - 9 February 2002) is the younger daugh-
ter of King George VI and Queen Elizabeth.
She is the only survivor from the Royal Family who was
born in the same year as Queen Elizabeth.

He was a fugitive for 16 years before his arrest in 2011.
He was sentenced in 2013 to two life terms plus five years
for his role in 11 murders and was released in 2014.
Bulger was found dead in his cell at the U.S. penitentiary
in West Virginia.
He was 89.
He was serving the life sentences for his role in the infa-
mous Boston crime family.

B
S

Princess Margaret, Countess of Snowdon, (Margaret Rose
21 August 1930 - 9 February 2002) was the younger
daughter of King George VI and Queen Elizabeth The
Queen Mother and the only sibling of Queen Elizabeth II.
Princess Margaret, Countess of Snowdon, (Margaret Rose
21 August 1930 - 9 February 2002) was the younger
daughter of King George VI and Queen Elizabeth The
Queen Mother and the only sibling of Queen Elizabeth II.
Princess Margaret, Countess of Snowdon, (Margaret Rose
21 August 1930 - 9 February 2002) was the younger
daughter of King George VI and Queen Elizabeth The
Queen Mother and the only sibling of Queen Elizabeth II.
...

Bulger was one of the FBI’s most wanted fugitives for 16
years until he was captured in Santa Monica, California,
in 2011.
He was convicted in 2013 of a litany of crimes, including
racketeering, extortion, money-laundering, and murder.
He was sentenced to two consecutive life sentences plus
five years.
He died in federal prison in West Virginia on Tuesday at
the age of 89.
Bulger was one of the FBI’s most wanted fugitives for 16
years until he was captured in Santa Monica, California,
in 2011.

D
B

S

She married Antony Armstrong-Jones, a photographer, in
1960.
It was the first marriage for the Queen and the first for
Prince Philip, Duke of Edinburgh.
After divorcing Armstrong-Jones in 1978, she married
Group Captain Peter Townsend in June that same year.
She died at the age of 71 on 9 February 2002.
Why did Princess Margaret marry Antony Armstrong-
Jones?

He was one of the FBI’s most wanted fugitives for 16
years until his capture in 2011.
Born in Boston, Whitey Bulger was the son of Irish immi-
grants.
After serving in the U.S. Navy during World War II,
Whitey Bulger joined the Irish-American mafia, the Winter
Hill Gang, in the early 1950s.
He quickly rose through the ranks of the gang, eventually
becoming its leader.
He was known as ”Whitey” because of his light brown
hair and blue eyes.

B
S b

Princess Margaret, Countess of Snowdon (Margaret Rose
21 August 1930 - 9 February 2002) was the eldest daugh-
ter of King George VI and Queen Elizabeth The Queen
Mother.
Princess Margaret (Margaret Rose 21 August 1930 - 9
February 2002) was the eldest child of King George VI
and Queen Elizabeth The Queen Mother.
Princess Margaret, Countess of Snowdon.
(Margaret Rose 21 August 1930 - 9 February 2002) was
the eldest daughter of Queen Elizabeth The Queen Mother.
(Margaret Rose 21 August 1930 - 9 February 2002) was
the oldest child of King George VI and Queen Elizabeth
The Queen Mother.

Bulger was one of the FBI’s most wanted fugitives for 16
years until he was captured in Santa Monica, California,
in 2011.
He was convicted in 2013 of a litany of crimes, including
racketeering, extortion, money-laundering, and murder.
He was sentenced to two consecutive life sentences plus
five years.
He died in federal prison in West Virginia on Tuesday at
the age of 89.
Bulger was one of the FBI’s most wanted fugitives for 16
years before he was captured in Santa Monica, California,
in 2011.

Table 5: Two examples of text generated with different strategies by the large transformer model. One the left a
cherry picked example (in terms of repetitive generation for BS) while on the right a random one. Sentence refuted
by the fact checker are highlighted in red, supported in green.


