Precise Task Formalization Matters in Winograd Schema Evaluations

Haokun Liu'* William Huang?* Dhara A. Mungra! Samuel R. Bowman'?

3

!Center for Data Science, New York University
2Courant Institute of Mathematical Sciences, New York University
3Department of Linguistics, New York University
{haokunliu, wh629, dam797, bowman}@nyu.edu

Abstract

Performance on the Winograd Schema Chal-
lenge (WSC), a respected English common-
sense reasoning benchmark, recently rocketed
from chance accuracy to 89% on the Super-
GLUE leaderboard, with relatively little cor-
roborating evidence of a correspondingly large
improvement in reasoning ability. We hypoth-
esize that much of this improvement comes
from recent changes in task formalization—
the combination of input specification, loss
function, and reuse of pretrained parameters—
by users of the dataset, rather than improve-
ments in the pretrained model’s reasoning abil-
ity. We perform an ablation on two Winograd
Schema datasets that interpolates between the
formalizations used before and after this surge,
and find (i) framing the task as multiple choice
improves performance by 2-6 points and (ii)
several additional techniques, including the
reuse of a pretrained language modeling head,
can mitigate the model’s extreme sensitivity to
hyperparameters. We urge future benchmark
creators to impose additional structure to mini-
mize the impact of formalization decisions on
reported results.

1 Introduction

Over the last couple of years, large pretrained mod-
els have achieved human performance on a large
share of established natural language understand-
ing benchmark datasets (Devlin et al., 2019). Re-
cent results report a surge in performance to near-
human levels on the Winograd Schema Challenge
(WSC; Levesque, 2011) in particular(Liu et al.,
2019). However, variations in task formulation
across papers and evaluations makes it hard to un-
derstand the true degree of recent progress.

The WSC is an English commonsense reason-
ing evaluation that requires a model to resolve

*Equal contribution.

carefully-constructed ambiguous pronouns. For
example, in the sentence “Jim yelled at Kevin be-
cause he was so upset.” the reader will likely have
to consider the motivation of the query noun phrase
(NP) to recognize whether the pronoun ke refers to
Jim.

The accuracy of WSC has seen an abrupt in-
crease from 64% to 89% on the SuperGLUE
(Wang et al., 2019) leaderboard upon the release
of RoBERTa (Liu et al., 2019). While many works
(Kocijan et al., 2019; Liu et al., 2019; Raffel et al.,
2020) attribute such improvements to improved pre-
training and the use of auxiliary training datasets,
the impact of the task formalization—the combi-
nation of input specification, task specific layer de-
sign, and loss function—has not yet been seriously
studied.

The SuperGLUE WSC baseline with BERT
(64%) resolves pronoun references for individual
examples by concatenating the pronoun and query
NP embeddings and making a binary prediction for
the NP span. Meanwhile, RoOBERTa (89%) uses
a pretrained masked language modeling (MLM)
head as part of the output layer and treats the task
as a multiple-choice (MC) decision between candi-
date NPs. We refer to these two task formalizations
as pointwise span (P-Span) and multiple choice
masked language modeling (MC-MLM).

In our work, we interpolate between P-Span and
MC-MLM using both BERT and RoBERTa to un-
derstand tasks’ sensitivity to formalization and the
components contributing to MC-MLM’s improve-
ment. We find MC-MLM outperforms P-Span and
reduces sensitivity to hyperparameters and random
restarts. We also see large variances of scores span-
ning random guessing to state-of-the-art (SotA)
performance. The biggest gain comes from includ-
ing MC inference. Further, paired training with
query and candidate NPs, using a softmax over
candidates, and using a pretrained MLM head all
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Table 1: Overview of the formalizations. When MC (multiple choice) is v/, the model predicts positive if the query
NP P(-) is highest among all candidates; when MC is X, the model predicts positive if P(-) > 0.5. Emb indicates
which RoBERTa output layer embeddings are used. In the loss function, y is the index of the correct input when
Label is Index and 0 or 1 when Label is Binary. s is a sequence of input tokens, we use subscript to indicate
multiple input sequences. J, ; is 1 when y = i i.e. the i-th input is correct and 0 otherwise. In the MC-MLM input
example, the underline marks NPs to predict. For P-Span, the underline marks the NP and PRON spans.

lead to reductions in variance. We show that these
formalization choices impact performance differ-
ences between the BERT and RoBERTa approaches
on SuperGLUE WSC, with validation accuracy in-
creasing between P-Span and MC-MLM by 21.1%
using ROBERTa and 10.5% using BERT.

The effect of task formalization may incentivize
gains from supplemental MC options and aggres-
sive hyperparameter tuning. To avoid this, we
suggest future benchmarks impose more structure,
such as in this case either explicitly distributing
gold candidate NPs or enforcing rules against their
use. For system developers, this result highlights
the value of fine-tuning pretrained language mod-
eling heads to target tasks in low-resource settings
(Raffel et al., 2020), at least where the task format
makes this an option.

2 Related Work

WSC Datasets Levesque et al. (2012) launch the
WSC with 108 handbuilt question-answer pairs,
which has since grown to 273 examples, often
called WSC273. Since then, several similar or de-
rived datasets have emerged (Kocijan et al., 2020).
The SuperGLUE version of the task recasts exam-

ples from WSC273 and the Pronoun Disambigua-
tion Problems dataset (Morgenstern et al., 2016)
into 554 training and 104 validation binary classi-
fication problems. 146 test examples are derived
from fiction books and handcrafted by the original
WSC authors. Sakaguchi et al. (2020) collect a
larger dataset of fill-in-the-blank-format problems,
called WinoGrande, via crowdsourcing with adver-
sarial filtering. The dataset has five training sets,
ranging from 160 to 41k examples, and shared val-
idation and test sets with 1.3k and 1.8k examples,
respectively.

Approaches Trinh and Le (2018) generate inputs
for their recurrent neural network language model
by replacing the PRON with either the query or
candidate NP and compare the probability of the
two sentences, yielding 64% accuracy on WSC273.
Radford et al. (2019) use this method with a trans-
former language model, boosting accuracy to 71%.
Ruan et al. (2019) fine-tune BERT in a similar way,
reaching 71% as well. Kocijan et al. (2019) also
use BERT, but include additional Winograd-like
training data and use the model’s pretrained MLM
head to achieve 74% accuracy. In another style
of approach, Klein and Nabi (2019) experiment
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with BERT pretrained attention weights without
fine-tuning, and achieve an accuracy of 60%.

For SuperGLUE WSC, the official baseline uses
BERT and a linear classifier on BERT’s output em-
beddings for the [CLS] token, pronoun token, and
query NP span representations but fail to exceed the
majority-class baseline, only matching it at 64%.
Liu et al. (2019) use the newer ROBERTa and adapt
the Kocijan et al. (2019) approach with cross en-
tropy loss to raise this accuracy to 89%. T5 (Raffel
et al., 2020) marks the pronoun in the input and
fine-tune a transformer encoder-decoder model to
generate the target NP, achieving the current state
of the art at 94%.

Looking to WinoGrande, Sakaguchi et al. (2020)
adapt Ruan et al. (2019)’s method with RoBERTa
as the baseline model, achieving 68% accuracy on
WinoGrande-Medium and 79% accuracy on the
full test set.

3 Methods under Study

We evaluate six formalizations—three existing
ones and three that we introduce—to interpolate
between P-Span and MC-MLM. These all use an
output layer on top of an MLM pretrained trans-
former model, but differ in the input specification,
loss function, prediction method, contextual em-
beddings used by the output layer, and label type.
Table 1 presents an overview.

MC-MLM This approach follows that of Liu
et al. (2019) in the introduction of ROBERTa. Here,
the pronoun in the input is replaced by [MASK].
The model then uses its pretrained MLM head
to evaluate the probability NP; should replace
[MASK] and uses a softmax over the log proba-
bilities. For multi-token NPs the model compares
the geometric mean of these probabilities.

MC-Sent This approach follows the Wino-
Grande baselines. Here, we specify the inputs by
replacing the pronoun with an NP candidate and
marking it with an additional [SEP] token. The
output head feeds each option’s [CLS] embedding
into a linear layer and applies a softmax over the
outputs. MC-Sent trains a linear layer from scratch,
while MC-MLM may take advantage of the embed-
ding model’s MLLM pretraining.

MC-Sent-NoSoftmax MC-Sent-NoSoftmax

only differs from MC-Sent by replacing the
final softmax with a sigmoid and computes the
probabilities of whether each input sequence is

correct. Without softmax, MC-Sent-NoSoftmax
is unable to provide larger gradients for examples
with smaller margins between candidates. We refer
to this as softmax scaling.

MC-Sent-NoPairLoss MC-Sent-NoPairLoss
and MC-Sent-NoSoftmax differ by loss function,
where MC-Sent-NoPairLoss only considers the
query input. MC-Sent-NoPairLoss is unable to use
gradients from multiple candidates to neutralize
signals from shared words and focus on NP
options. We refer to this as paired training.

P-Sent In P-Sent, we further remove MC evalua-
tion by restricting the model to a single binary clas-
sification question. This forces P-Sent to resolve
pronoun references without implicitly learning to
detect and eliminate NPs.

P-Span Instead of replacing PRON with NPs to
determine the validity of the input sentence, P-
Span follows the SuperGLUE baseline to deter-
mine whether the NP reference is correct. It first
averages over the representations from the PRON
and NP spans to create span representations. The
span representations are then concatenated with the
[CLS] token embedding and used by a logistic
regression classifier.

4 Experiments

Implementation Our code' builds on Hugging-
face Transformers (Wolf et al., 2019) and fairseq
(Ott et al., 2019). All our experiments use either
pretrained RoBERTa-large or BERT-large-cased
models. We evaluate on the validation set every
epoch with early stopping. We conduct a random
hyperparameter search of 60 trials over the space
of learning rate {1e-5, 2e-5, 3e-5}, epoch limit {10,
20, 40}, batch size {8, 16, 32, 64}, and random
seed.

Datasets We run experiments on SuperGLUE
WSC and WinoGrande-Medium. We do not cover
larger WinoGrande sizes due to computation con-
straints. Each WSC example includes a sentence,
a PRON span, and a single marked NP span. Fol-
lowing Liu et al., for MC-based formalizations, we
mine candidate NPs with spaCy? and only keep
one example from the group of examples that only
differ by query NP to avoid redundancy.

"https://github.com/nyu-mll/
wsc—formalizations/tree/code_release
https://spacy.io/
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Figure 1: Plots of validation accuracy from 60 runs on each corpus. The orange line marks the median number and

label marks 75" percentiles.

WSC WinoGrande
Formalization Test Std Kurt Std Kurt
MC-MLM 86 2 3 3 13
MC-Sent 77 7 -1 5 4
MC-Sent-NoSoftmax 77 8 -1 4
MC-Sent-NoPairLoss 86 6 5 1 1
P-Sent 67 5 24 2 28
P-Span 80 4 0 7 -2

Table 2: Validation accuracy standard deviation (Std)
and excess kurtosis (Kurt) for WSC and WinoGrande
and test accuracy for WSC using RoBERTa. Test re-
sults are from an ensemble of the top five models.

For WinoGrande, each example provides a sen-
tence with two marked NP spans and a fill-in-the-
blank to represent the PRON. When using asymmet-
ric formalizations like P-Sent, we duplicate each
example, making one option the query and the other
the candidate. For P-Span, we use the first appear-
ance of query or candidate NP in the sentence as
the NP span and use the blank as PRON span.

RoBERTa Results Figures la and 1c and Ta-
ble 2 show the distribution over validation accu-
racies from 60 runs with each formalization using
RoBERTa. We do not report WinoGrande test re-
sults since submissions require test set predictions
from all five training sets and we only train us-

ing WinoGrande-Medium. We also include the
majority-class baseline and human performance.
From the WSC test results, we find MC-MLM out-
performs P-Span. The 6% gain between P-Sent
and MC-Sent-NoPairLoss indicates MC evaluation
alone may improve accuracy. However, we also
find most formalizations are sensitive to hyperpa-
rameter choices and random seeds. Given the small
size of the SuperGLUE WSC test set at 146 exam-
ples, we find it more informative to focus on the
distribution of validation results.

In both datasets, we see three main changes.
First, including paired training with MC-Sent-
NoSoftmax increases performance variance by
adding more weight to the tail of higher scores. Sec-
ond, we see the weight of higher performances in-
crease even more with softmax scaling in MC-Sent.
In WSC, the higher scores become the body of the
distribution with smaller variance. In WinoGrande,
the distribution of MC-Sent has an increased ex-
cess kurtosis indicating the tail of higher scores
occur more frequently. Finally, the model achieves
higher scores with significantly lower variance us-
ing MLM in MC-MLM. This may be a result of
fine-tuning the pretrained MLM head rather than a
new initialization.

We see two main differences between WSC and
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WinoGrande results. First, P-Sent performs signif-
icantly worse than P-Span on WinoGrande. We
suspect this is due to WinoGrande’s adversarial fil-
tering removing examples that are easy to classify
from sentence representations. Second, MC-Sent-
NoPairLoss does not benefit WinoGrande and may
indicate the benefit from MC evaluation may not
extend to other Winograd like corpora.

BERT Results Figure 1b shows ablation results
using BERT and WSC. We find that RoBERTa
outperforms BERT with both models using the
same MC-MLM formalization, which is in line
with leaderboard performances. We also find simi-
lar trends across task formalizations in Figure 1a,
further highlighting the impact of formalization de-
cisions on performance gains. Most formalizations
are still sensitive to hyperparameter choices and
random seed, MC evaluation alone provides a ben-
efit over P-Span at the 75" percentile of roughly
6%, and incorporating MLM provides additional
benefits in performance.

However, we also find that using BERT’s pre-
trained MLM head does not provide the lower
variance displayed with RoOBERTa. Comparing
the performances of intermediate formalizations,
we see that BERT generally performs worse than
RoBERTa. This is consistent with the findings from
Tenney et al. (2019) that show BERT embeddings
encode information less suited for coreference res-
olution during pretraining. Consequently, BERT’s
pretrained MLM head would be less optimized
for a coreference resolution task like WSC than
RoBERTa’s and may not provide the same stability
benefits.

5 Conclusion

By only varying task formalization, we observe a
wide range of results among reasonable task for-
malizations on WSC and WinoGrande evaluations.
Having access to candidate NPs during inference
alone improves the performance on SuperGLUE
WSC. However, models with MC evaluation are
highly sensitive to hyperparameters and fail to per-
form better on WinoGrande. We find training with
paired inputs, using a softmax over candidates, and
reusing a pretrained MLM head all help to learn
commonsense reasoning and reduce this sensitivity.
While we find evidence that these formalization
choices can largely influence WSC performance,
we do not see obvious evidence of similar occur-
rences on other task comparisons with RoBERTa.

For MC formalizations, we follow Liu et al. for
WSC and use spaCy to mine candidate NPs. This
extrinsic preprocessing step yields dramatic gains
without significantly changing the reasoning ability
of the model. We view such gains as orthogonal to
the intent of the task and urge benchmark creators
to minimize the opportunity for these insubstantial
improvements by imposing as much structure as
is possible in the released data, for example, by
providing candidate NPs explicitly.

We also encourage future reports of system per-
formances to use the same task formalization when-
ever possible. At a minimum, greater emphasis
should be given to task formalization decisions
when they deviate from the prevailing standard.
We believe this will help disentangle gains due to
models’ reasoning abilities, especially in situations
where these decisions significantly impact perfor-
mance, such as in WSC.

Finally, we find that differences between rea-
sonable formalizations can have big impacts on
performance with our case study using WSC. For
example, using a pretrained MLM task head as the
basis for a downstream task classifier yields strong
results with very little hyperparameter sensitivity.
This echoes the strong results seen with T5 and
offers further motivation to explore these kinds of
design decisions in other tasks.
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