BERT-of-Theseus: Compressing BERT by Progressive Module Replacing

Canwen Xu'; Wangchunshu Zhou?*, Tao Ge?, Furu Wei®, Ming Zhou®
! University of California, San Diego ? Beihang University * Microsoft Research Asia
! cxu@uesd.edu ? zhouwangchunshu@buaa.edu.cn
3 {tage, fuwei, mingzhou}@microsoft.com

Abstract

In this paper, we propose a novel model
compression approach to effectively compress
BERT by progressive module replacing. Our
approach first divides the original BERT into
several modules and builds their compact sub-
stitutes. Then, we randomly replace the origi-
nal modules with their substitutes to train the
compact modules to mimic the behavior of
the original modules. We progressively in-
crease the probability of replacement through
the training. In this way, our approach brings
a deeper level of interaction between the orig-
inal and compact models. Compared to the
previous knowledge distillation approaches for
BERT compression, our approach does not in-
troduce any additional loss function. Our ap-
proach outperforms existing knowledge distil-
lation approaches on GLUE benchmark, show-
ing a new perspective of model compression.'

1 Introduction

With the prevalence of deep learning, many huge
neural models have been proposed and achieve
state-of-the-art performance in various fields (He
et al., 2016; Vaswani et al., 2017). Specifically,
in Natural Language Processing (NLP), pretrain-
ing and fine-tuning have become the new norm
of most tasks. Transformer-based pretrained mod-
els (Devlin et al., 2019; Liu et al., 2019b; Yang
et al., 2019; Song et al., 2019; Dong et al., 2019)
have dominated the field of both Natural Language
Understanding (NLU) and Natural Language Gen-
eration (NLG). These models benefit from their
“overparameterized” nature (Nakkiran et al., 2020)
and contain millions or even billions of parameters,
making it computationally expensive and ineffi-
cient considering both memory consumption and

* Equal contribution. Work done during these two authors’
internship at Microsoft Research Asia.

'The code and pretrained model are available at https :
//github.com/JetRunner/BERT-of-Theseus

high latency. This drawback enormously hinders
the applications of these models in production.

To resolve this problem, many techniques have
been proposed to compress a neural network. Gen-
erally, these techniques can be categorized into
Quantization (Gong et al., 2014), Weights Prun-
ing (Han et al., 2016) and Knowledge Distillation
(KD) (Hinton et al., 2015). Among them, KD has
received much attention for compressing pretrained
language models. KD exploits a large teacher
model to “teach” a compact student model to mimic
the teacher’s behavior. In this way, the knowledge
embedded in the teacher model can be transferred
into the smaller model. However, the retained per-
formance of the student model relies on a well-
designed distillation loss function which forces the
student model to behave as the teacher. Recent
studies on KD (Sun et al., 2019; Jiao et al., 2019)
even leverage more sophisticated model-specific
distillation loss functions for better performance.

Different from previous KD studies which ex-
plicitly exploit a distillation loss to minimize the
distance between the teacher model and the student
model, we propose a new genre of model compres-
sion. Inspired by the famous thought experiment
“Ship of Theseus™? in Philosophy, where all com-
ponents of a ship are gradually replaced by new
ones until no original component exists, we pro-
pose Theseus Compression for BERT (BERT-of-
Theseus), which progressively substitutes modules
of BERT with modules of fewer parameters. We
call the original model and compressed model pre-
decessor and successor, in correspondence to the
concepts of tfeacher and student in KD, respectively.
As shown in Figure 1, we first specify a substitute
(successor module) for each predecessor module
(i.e., modules in the predecessor model). Then, we
randomly replace each predecessor module with its

https://en.wikipedia.org/wiki/Ship_
of_Theseus

7859

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 7859-7869,
November 16-20, 2020. (©)2020 Association for Computational Linguistics

https://github.com/JetRunner/BERT-of-Theseus
https://github.com/JetRunner/BERT-of-Theseus
https://en.wikipedia.org/wiki/Ship_of_Theseus
https://en.wikipedia.org/wiki/Ship_of_Theseus

corresponding successor module by a probability
and make them work together in the training phase.
After convergence, we combine all successor mod-
ules to be the successor model for inference. In
this way, the large predecessor model can be com-
pressed into a compact successor model.

Theseus Compression shares a similar idea with
KD, which encourages the compressed model to
behave like the original, but holds many merits.
First, we only use the task-specific loss function
in the compression process. However, KD-based
methods use task-specific loss, together with one
or multiple distillation losses as its optimization
objective. Also, selecting various loss functions
and balancing the weights of each loss for differ-
ent tasks and datasets can be laborious (Sun et al.,
2019; Sanh et al., 2019). Second, different from
recent work (Jiao et al., 2019), Theseus Compres-
sion does not use Transformer-specific features for
compression thus is potential to compress a wide
spectrum of models. Third, instead of using the
original model only for inference in KD, our ap-
proach allows the predecessor model to work in as-
sociation with the compressed successor model, en-
abling a possible gradient-level interaction. More-
over, the different module permutations mixing
both predecessor and successor modules may add
extra regularization, similar to Dropout (Srivastava
et al., 2014). With a Curriculum Learning (Bengio
et al., 2009) driven replacement scheduler, our ap-
proach achieves promising performance compress-
ing BERT (Devlin et al., 2019), a large pretrained
Transformer model.

To summarize, our contribution is two-fold: (1)
We propose a novel approach, Theseus Compres-
sion, revealing a new pathway to model compres-
sion, with no additional loss function. (2) Our
compressed BERT model is 1.94 x faster while re-
taining more than 98% performance of the original
model, outperforming other KD-based compres-
sion baselines.

2 Related Work

Model Compression Model compression aims
to reduce the size and computational cost of a large
model while retaining as much performance as
possible. Conventional explanations (Denil et al.,
2013; Zhai et al., 2016) claim that the large num-
ber of weights is necessary for the training of deep
neural network but a high degree of redundancy
exists after training. Recent work (Frankle and

Carbin, 2019) proposes The Lottery Ticket Hypoth-
esis claiming that dense, randomly initialized and
feed-forward networks contain subnetworks that
can be recognized and trained to get a comparable
test accuracy to the original network. Quantiza-
tion (Gong et al., 2014) reduces the number of bits
used to represent a number in a model. Weights
Pruning (Han et al., 2016; He et al., 2017) conducts
a binary classification to decide which weights to
be trimmed from the model. Knowledge Distil-
lation (KD) (Hinton et al., 2015) aims to train a
compact model which behaves like the original
one. FitNets (Romero et al., 2015) demonstrates
that “hints” learned by the large model can ben-
efit the distillation process. Born-Again Neural
Network (Furlanello et al., 2018) reveals that en-
sembling multiple identical-parameterized students
can outperform a teacher model. LIT (Koratana
et al., 2019) introduces block-wise intermediate
representation training. Liu et al. (2019a) distilled
knowledge from ensemble models to improve the
performance of a single model on NLU tasks. Tan
et al. (2019) exploited KD for multi-lingual ma-
chine translation. Different from KD-based meth-
ods, our proposed Theseus Compression is the first
approach to mix the original model and compact
model for training. Also, no additional loss is
used throughout the whole compression procedure,
which simplifies the implementation.

Faster BERT Very recently, many attempts have
been made to speed up a large pretrained language
model (e.g., BERT (Devlin et al., 2019)). Michel
et al. (2019) reduced the parameters of a BERT
model by pruning unnecessary heads in the Trans-
former. Shen et al. (2020) quantized BERT to
2-bit using Hessian information. Also, substan-
tial modification has been made to Transformer
architecture. Fan et al. (2020) exploited a structure
dropping mechanism to train a BERT-like model
which is resilient to pruning. ALBERT (Lan et al.,
2020) leverages matrix decomposition and param-
eter sharing. However, these models cannot ex-
ploit ready-made model weights and require a full
retraining. Tang et al. (2019) used a BiLSTM ar-
chitecture to extract task-specific knowledge from
BERT. DistilBERT (Sanh et al., 2019) applies a
naive Knowledge Distillation on the same corpus
used to pretrain BERT. Patient Knowledge Distilla-
tion (PKD) (Sun et al., 2019) designs multiple dis-
tillation losses between the module hidden states of
the teacher and student models. Pretrained Distilla-

7860

prds E:‘;{ —
f o

prds |:| ::_7‘2
f o

i | =270 | =

(a) Compression Training

Figure 1: The workflow of BERT-of-Theseus.
{prds, ...

sces

scey

scey

,prds} to a 3-layer successor S = {sccy, ..

Output

sces

sceo

sceq

00D

Input

(b) Successor Fine-
tuning and Inference

In this example, we compress a 6-layer predecessor P =
.,sces}. prd; and sce; contain two and one layer, re-

spectively. (a) During module replacing training, each predecessor module prd; is replaced with corresponding
successor module scc; by the probability of p. (b) During successor fine-tuning and inference, all successor mod-

ules scc . 3 are combined for calculation.

tion (Turc et al., 2019) pretrains the student model
with a self-supervised masked LM objective on a
large corpus first, then performs a standard KD on
supervised tasks. TinyBERT (Jiao et al., 2019) con-
ducts the Knowledge Distillation twice with data
augmentation. MobileBERT (Sun et al., 2020) de-
vises a more computationally efficient architecture
and applies knowledge distillation with a bottom-to-
top layer training procedure. PABEE (Zhou et al.,
2020b) exploits early exiting to dynamically accel-
erate the inference of BERT.

3 BERT-of-Theseus

In this section, we introduce module replacing, the
technique proposed for BERT-of-Theseus. Further,
we introduce a Curriculum Learning driven sched-
uler to obtain better performance. The workflow is
shown in Figure 1.

3.1 Module Replacing

The basic idea of Theseus Compression is very sim-
ilar to KD. We want the successor model to act like
a predecessor model. KD explicitly defines a loss
to measure the similarity of the teacher and student.
However, the performance vastly relies on the de-
sign of the loss function (Hinton et al., 2015; Sun
et al., 2019; Jiao et al., 2019). This loss function
needs to be combined with task-specific loss (Sun
et al., 2019; Koratana et al., 2019). Different from
KD, Theseus Compression only requires one task-

specific loss function (e.g., Cross Entropy), which
closely resembles a fine-tuning procedure. Inspired
by Dropout (Srivastava et al., 2014), we propose
module replacing, a novel technique for model com-
pression. We call the original model and the tar-
get model predecessor and successor, respectively.
First, we specify a successor module for each mod-
ule in the predecessor. For example, in the con-
text of BERT compression, we let one Transformer
layer be the successor module for two Transformer
layers. Consider a predecessor model P which has
n modules and a successor model S which has n
predefined modules. Let P = {prdy,...,prd,}
denote the predecessor model, prd; and scc; denote
the the predecessor modules and their correspond-
ing substitutes, respectively. The output vectors of
the i-th module is denoted as y;. Thus, the forward
operation can be described in the form of:

Vi1 = prd;(y;) (1)

During compression, we apply module replacing.
First, for (¢ 4 1)-th module, 7;41 is an independent
Bernoulli random variable which has probability p
tobe 1 and 1 — pto be 0.

ri+1 ~ Bernoulli(p) 2)

Then, the output of the (i 4+ 1)-th model is calcu-
lated as:

Yir1 = Tip1*5cci(yi)+(1=ri1)xprdi(yi) (3)

7861

where * denotes the element-wise multiplication,
ri+1 € {0,1}. In this way, the predecessor mod-
ules and successor modules work together in the
training. Since the permutation of the hybrid model
is random, it adds extra noises as a regulariza-
tion for the training of the successor, similar to
Dropout (Srivastava et al., 2014).

During training, similar to a fine-tuning process,
we optimize a regular task-specific loss, e.g., Cross
Entropy:

Lo Y Y1l = o P (s = ch)

jE€|X| cel
“4)

where x; € X is the i-th training sample; z; is its
corresponding ground-truth label; ¢ and C' denote
a class label and the set of class labels, respectively.
For back-propagation, the weights of all predeces-
sor modules are frozen. For both the embedding
layer and output layer of the predecessor model
are weight-frozen and directly adopted for the suc-
cessor model in this training phase. In this way,
the gradient can be calculated across both the pre-
decessor and successor modules, allowing deeper
interaction.

3.2 Successor Fine-tuning and Inference

To make the training and inference processes as
close as possible, we further carry out a post-
replacement fine-tuning phase to allow all succes-
sor modules to work together. After the replacing
compression converges, we collect all successor
modules and combine them to be the successor
model S:

S = {sccy, ..

Yit1 = scci(yi)

., 8¢}

)

Since each scc; is smaller than prd; in size, the pre-
decessor model P is in essence compressed into a
smaller model S. Then, we fine-tune the successor
model by optimizing the same loss of Equation 4.
The whole procedure including module replacing
and successor fine-tuning is illustrated in Figure
2(a). Finally, we use the fine-tuned successor for
inference as Equation 5.

3.3 Curriculum Replacement

Although setting a constant replacement rate p can
meet the need for compressing a model, we further
highlight a Curriculum Learning (Bengio et al.,
2009) driven replacement scheduler, which coordi-
nates the progressive replacement of the modules.

(a) Constant p=0.5 (b) Linear Replace Scheduler

=
=)

1.0

o
©

0.8

4
o

0.6

4
IS

0.4

1 2 | . 1 2

0.0

0 10000 20000 30000 40000 0
Training Steps

Replacing Rate

°
N

o
=)

10000 20000 30000 40000
Training Steps

Figure 2: The replacing curves of a constant module
replace rate and a replacement scheduler. We use dif-
ferent shades of gray to mark the two phases of The-
seus Compression: (1) Module replacing. (2) Succes-
sor fine-tuning.

Similar to (Morerio et al., 2017; Zhou et al., 2020a),
we devise a replacement scheduler to dynamically
tune the replacement rate p.

Here, we leverage a simple linear scheduler 6(t)
to output the dynamic replacement rate py for step
t.

pq = min(1,60(t)) = min(1,kt +b) (6)

where k > 0 is the coefficient and b is the basic
replacement rate. The replacing rate curve with a
replacement scheduler is illustrated in Figure 2(b).

In this way, we unify the two previously sepa-
rated training stages and encourage an end-to-end
easy-to-hard learning process. First, with more
predecessor modules present, the model would
more likely to correctly predict thus have a rel-
atively small cross-entropy loss, which is helpful
for smoothing the learning process. Then, at a later
time of compression, more modules can be present
together, encouraging the model to gradually learn
to predict with less guidance from the predeces-
sor and steadily transit to the successor fine-tuning
stage.

Second, at the beginning of the compression,
when 0(t) < 1, considering the average learning
rate for all n successor modules, the expected num-
ber of replaced modules is n - pg and the expected
average learning rate is:

Ir" = (npg/n)lr = (kt + b)lr (7)

where [r is the constant learning rate set for the
compression and [r’ is the equivalent learning rate
considering all successor modules. Thus, when ap-
plying a replacement scheduler, a warm-up mecha-
nism (Popel and Bojar, 2018) is essentially adopted
at the same time, which helps the training of a
Transformer.

7862

4 Experiments

In this section, we introduce the experiments of
Theseus Compression for BERT (Devlin et al.,
2019) compression. We compare BERT-of-
Theseus with other compression methods and fur-
ther conduct experiments to analyze the results.

4.1 Datasets

We evaluate our proposed approach on the GLUE
benchmark (Wang et al., 2019; Dolan and Brock-
ett, 2005; Conneau and Kiela, 2018; Socher et al.,
2013; Williams et al., 2018; Rajpurkar et al., 2016;
Warstadt et al., 2019). Note that we exclude
WNLI (Levesque, 2011) following the original
BERT paper (Devlin et al., 2019).

The accuracy is used as the metric for SST-2,
MNLI-m, MNLI-mm, QNLI and RTE. The F1 and
accuracy are used for MRPC and QQP. The Pearson
correlation and Spearman correlation are used for
STS-B. Matthew’s correlation is used for CoLA.
The results reported for the test set of GLUE are
in the same format as on the official leaderboard.
For the sake of comparison with (Sanh et al., 2019),
on the development set of GLUE, the result of
MNLI is an average on MNLI-m and MNLI-mm;
the results on MRPC and QQP are reported with the
average of F1 and accuracy; the result reported on
STS-B is the average of the Pearson and Spearman
correlation.

4.2 Experimental Settings

We test our approach under a task-specific com-
pression setting (Sun et al., 2019; Turc et al., 2019)
instead of a pretraining compression setting (Sanh
etal., 2019; Sun et al., 2020). That is to say, we use
no external unlabeled corpus but only the train-
ing set of each task in GLUE to compress the
model. The reason behind this decision is that
we intend to straightforwardly verify the effective-
ness of our generic compression approach. The
fast training process of task-specific compression
(e.g., no longer than 20 GPU hours for any task
of GLUE) computationally enables us to conduct
more analytical experiments. For comparison, Dis-
tilBERT (Sanh et al., 2019) takes 720 GPU hours
to train. Plus, in real-world applications, this set-
ting provides with more flexibility when select-
ing from different pretrained LMs (e.g., BERT,
RoBERTa (Liu et al., 2019b)) for various down-
stream tasks and it is easy to adopt a newly released
model, without a time-consuming pretraining com-

pression. We will also discuss the possibility to
use an MNLI model for a general purpose with in-
termediate transfer learning (Pruksachatkun et al.,
2020).

Formally, we define the task of compression as
trying to retain as much performance as possible
when compressing the officially released BERT-
base (uncased)? to a 6-layer compact model with
the same hidden size, following the settings in
(Sanh et al., 2019; Sun et al., 2019; Turc et al.,
2019). Under this setting, the compressed model
has 24M parameters for the token embedding (iden-
tical to the original model) and 42M parameters
for the Transformer layers and obtains a 1.94x
speed-up for inference.

4.3 Training Details

We fine-tune BERT-base as the predecessor model
for each task with the batch size of 32, the learning
rate of 2 x 107°, and the number of epochs as 4. As
a result, we are able to obtain a predecessor model
with comparable performance with that reported
in previous studies (Sanh et al., 2019; Sun et al.,
2019; Jiao et al., 2019).

Afterward, for training successor models, fol-
lowing (Sanh et al., 2019; Sun et al., 2019), we
use the first 6 layers of BERT-base to initialize the
successor model since the over-parameterized na-
ture of Transformer (Vaswani et al., 2017) could
cause the model unable to converge while training
on small datasets. During module replacing, We
fix the batch size as 32 for all evaluated tasks to re-
duce the search space. All r variables only sample
once for a training batch. The maximum sequence
length is set to 256 on QNLI and 128 for the other
tasks. We perform grid search over the sets of learn-
ing rate Ir as {1e-5, 2e-5}, the basic replacing rate
b as {0.1, 0.3}, the scheduler coefficient & making
the dynamic replacing rate increase to 1 within the
first {1000, 5000, 10000, 30000} training steps.
We apply an early stopping mechanism and select
the model with the best performance on the de-
velopment set. We conduct our experiments on a
single Nvidia V100 16GB GPU. The peak memory
usage is approximately identical to fine-tuning a
BERT-base, since there would be at most 12 layers
training at the same time. The training time for
each task varies depending on the different sizes
of training sets. For example, it takes 20 hours to

*https://github.com/google-research/
bert

7863

https://github.com/google-research/bert
https://github.com/google-research/bert

Method #Layer #Param. Loss Function External Data Used? Model-Agnostic?
BERT-base (2019) 12 110M CEwmim + CEnsp -

Fine-tuning 6 66M CErask X v

Vanilla KD (2015) 6 66M CExp + CEmask X v

BERT-PKD (2019) 6 66M CEkp + PTkp + CEtask X v

DistilBERT (2019) 6 66M CEkp + Coskp + CEmim v (unlabeled) v

PD-BERT (2019) 6 66M CEwmLm + CEkp + CEtask v (unlabeled) v

TinyBERT (2019) 4 ISM MSE.n + MSEqian + MSEemba + CExkp v/ (unlabeled + labeled) X

MobileBERT (2020) 24 25M FMT+AT+PKT+CEkp+CEmim v (unlabeled) X
BERT-of-Theseus (Ours) 6 66M CErask X v

Table 1: Comparison of different BERT compression approaches. “CE” and “MSE” stand for Cross Entropy and
Mean Square Error, respectively. “KD” indicates the loss is for Knowledge Distillation. “CErask”, “CEmim”
and “CEngsp” indicate Cross Entropy calculated on downstream tasks, Masked LM pretraining and Next Sentence
Prediction, respectively. Other loss functions are described in their corresponding papers.

train on MNLI but less than 30 minutes on MRPC.

4.4 Baselines

As shown in Table 1, we compare the layer num-
bers, parameter numbers, loss function, external
data usage and model agnosticism of our proposed
approach to existing methods. We set up a baseline
of vanilla Knowledge Distillation (Hinton et al.,
2015) as in (Sun et al., 2019). Additionally, we
directly fine-tune a truncated 6-layer BERT model
(the bottom 6 layers of the original BERT)* on
GLUE tasks to obtain a natural fine-tuning base-
line. Under the setting of compressing 12-layer
BERT-base to a 6-layer compact model, we choose
BERT-PKD (Sun et al., 2019), PD-BERT (Turc
et al., 2019), and DistilBERT (Sanh et al., 2019) as
strong baselines. Note that DistilBERT (Sanh et al.,
2019) is not directly comparable here since it uses
a pretraining compression setting. Both PD-BERT
and DistilBERT use external unlabeled corpus. Ad-
ditionally, we use LayerDrop (Fan et al., 2020) on
BERT weights to prune the model on downstream
tasks. We do not include TinyBERT (Jiao et al.,
2019) since it conducts distillation twice and lever-
ages extra augmented data for GLUE tasks. We
also exclude MobileBERT (Sun et al., 2020), due
to its redesigned Transformer block and different
model size. Besides, in these two studies, the loss
functions are not architecture-agnostic thus limit
their applications on other types of models.

4.5 Experimental Results

We report the experimental results on the devel-
opment set of GLUE in Table 2 and submit our
predictions to the GLUE test server and obtain the

*We also tried the top 6 layers and interleaving 6 layers
but both perform worse than the bottom 6 layers.

results from the official leaderboard as shown in
Table 3. Note that DistiIBERT does not report on
the test set. The BERT-base performance reported
on GLUE development set is the predecessor fine-
tuned by us. The results of BERT-PKD on the
development set are reproduced by us using the
official implementation. In the original paper of
BERT-PKD, the results of CoLA and STS-B on
the test set are not reported, thus we reproduce
these two results. Fine-tuning and Vanilla KD base-
lines are both implemented by us. All other results
are from the original papers.’ The macro scores
here are calculated in the same way as the official
leaderboard but are not directly comparable with
GLUE leaderboard since we exclude WNLI from
the calculation.

Overall, our BERT-of-Theseus retains 98.4%
and 98.3% of the BERT-base performance on
GLUE development set and test set, respectively.
On every task of GLUE, our model dramatically
outperforms the fine-tuning baseline, indicating
that with the same loss function, our proposed ap-
proach can effectively transfer knowledge from
the predecessor to the successor. Also, our model
obviously outperforms the vanilla KD (Hinton
et al., 2015) and Patient Knowledge Distillation
(PKD) (Sun et al., 2019), showing its supremacy
over the KD-based compression approaches. On
MNLI, our model performs better than BERT-PKD
but slightly lower than PD-BERT (Turc et al., 2019).
However, PD-BERT exploits an additional corpus
which provides much more samples for knowledge
transferring. Also, we would like to highlight that

SPlease note that the reported results of DistilBERT are
different across various versions on arXiv. The results here are
from v3, which was the newest version when we composed
this paper.

7864

https://arxiv.org/pdf/1910.01108v3.pdf

Method CoLA MNLI MRPC QNLI QQP RTE SST2 STS-B | Macro
(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K) | Score
BERT-base (2019) | 54.3 83.5 89.5 91.2 89.8 711 915 889 | 825
DistilBERT (2019) | 43.6 79.0 87.5 85.3 84.9 599 907 812 | 765
PD-BERT (2019) . 83.0 87.2 89.0 89.1 66.7 91.1 - .
Fine-tuning 434 80.1 86.0 86.9 87.8 62.1 896 819 | 772
Vanilla KD (2015) | 45.1 80.1 86.2 88.0 88.1 649 905 849 | 785
BERT-PKD (2019) | 455 81.3 85.7 88.4 88.4 66.5 913 862 | 79.2
LayerDrop (2020) | 45.4 80.7 85.9 88.4 88.3 652 907 857 | 78.8
BERT-of -Theseus | 51.1 82.3 89.0 89.5 89.6 682 915 887 | 812

Table 2: Experimental results (median of 5 runs) on the development set of GLUE. The numbers under each dataset
indicate the number of training samples. All models listed above (except BERT-base) have 66M parameters, 6

layers and 1.94 x speed-up.

Method CoLA MNLLm/mm MRPC QNLI QQP RTE SST2 STS-B | Macro
(8.5K) (393K) (3JK) (105K) (364K) (2.5K) (67K) (5.7K) | Score
BERT-base (2019) | 52.1 84.6/83.4 889/848 905 712/89.2 664 935 87.1/858 | 80.0
PD-BERT (2019) | - 82.8/822 868/81.7 889 704/889 653 91.8 - | -
Fine-tuning 415 804/79.7 859/802 867 69.2/832 63.6 907 82.1/80.0 | 75.6
Vanilla KD (2015) | 42.9 80.2/79.8 86.2/80.6 883 70.1/83.8 647 91.5 82.1/803 | 764
BERT-PKD (2019) | 43.5 81.5/81.0 85.0/79.9 89.0 70.7/889 655 920 834/81.6| 77.0
BERT-of-Theseus | 47.8 824/82.1 87.6/832 896 71.6/893 662 922 85.6/84.1 | 78.6

Table 3: Experimental results on the test set from the GLUE server. All models listed above (except BERT-base)

have 66M parameters, 6 layers and 1.94 x speed-up.

on RTE, our model achieves nearly identical perfor-
mance to BERT-base and on QQP our model even
outperforms BERT-base. To analyze, a moderate
model size may help generalize and prevent overfit-
ting on downstream tasks. Notably, on both large
datasets with more than 350K samples (e.g., MNLI
and QQP) and small datasets with fewer than 4K
samples (e.g., MRPC and RTE), our model can
consistently achieve good performance, verifying
the robustness of our approach.

4.6 Intermediate-Task Transfer Learning

Although our approach achieves good performance
under a task-specific setting, it requires more
computational resources to fine-tune a full-size
predecessor than a compact BERT (e.g., Distil-
BERT (Sanh et al., 2019)). Pruksachatkun et al.
(2020) found that models trained on some datasets
can be used for a second-round fine-tuning. Thus,
we use MNLI as the intermediate task and release
our compressed model by conducting compres-
sion on MNLI to facilitate downstream applica-
tions. After compression, we fine-tune the succes-
sor model on other sentence classification tasks and
compare the results with DistilBERT (Sanh et al.,
2019) in Table 4. Our model achieves an identi-

cal performance on MRPC and outperforms Distil-
BERT on the other sentence-level tasks. Also, our
intermediate-task transfer results also outperform
PD-BERT (Turc et al., 2019) on three tasks, indicat-
ing that our task-specific model is also competitive
for a general purpose through the intermediate-task
transfer learning approach.

5 Analysis

In this section, we conduct extensive experiments
to analyze our BERT-of-Theseus.

5.1 Impact of Module Replacement

As pointed out in previous work (Fan et al., 2020),
different layers of a Transformer play imbalanced
roles for inference. To explore the effect of dif-
ferent module replacements, we iteratively use
one compressed successor module (constant replac-
ing rate, without successor fine-tuning) to replace
its corresponding predecessor module on QNLI,
MNLI and QQP, as shown in Table 5. Our results
show that the replacement of the last two modules
have limited influence on the overall performance
while the replacement of the first module signif-
icantly harms the performance. To analyze, the
linguistic features are mainly extracted by the first

7865

Method | MNLI

MRPC QNLI

QQP RTE SST2 STS-B

BERT-base (2019) | 835 89.5

912 898 71.1 915 88.9

DistiIBERT (2019) 790 875
PD-BERT (2019) 83.0 872

85.3 849 599 907 81.2
89.0 891 667 91.1 -

BERT-of-Theseus mnu1 | 82.1 87.5

88.8 88.8 701 918 87.8

Table 4: Experimental results of intermediate-task transfer learning on GLUE-dev.

Replacement | QNLI(A) MNLI(A) QQP(A)
Predecessor \ 91.87 84.54 89.48

prd; — scci | 88.50(-3.37) 81.89 (-2.65) 88.58 (-0.90)
prds — scca | 90.54 (-1.33) 83.33(-1.21) 88.43 (-1.05)
prds — sces | 90.76 (-1.11) 83.27 (-1.27) 88.86 (-0.62)
prds — scca | 9046 (-1.41) 83.34 (-1.20) 88.86 (-0.62)
prds — sces | 90.74 (-1.13) 84.16 (-0.38) 89.09 (-0.39)
prde — scce | 90.57 (-1.30) 84.09 (-0.45) 89.06 (-0.42)

Table 5: Impact of the replacement for different mod-
ules on GLUE-dev. prd; — scc; indicates the replace-
ment of the i-th module from the predecessor.

few layers. Therefore, the reduced representation
capability becomes the bottleneck for the following
layers.

5.2 Impact of Replacing Rate

We attempt to adopt different replacing rates on
GLUE tasks. First, we fix the batch size to be 32
and learning rate /7 to be 2 x 10~° and conduct
compression on each task. On the other hand, as
we analyzed in Section 3.3, the equivalent learning
rate [’ is affected by the replacing rate. To further
eliminate the influence of the learning rate, we fix
the equivalent learning rate I to be 2 x 10~° and
adjust the learning rate [r for different replacing
rates by Ir = Ir'/p.

We illustrate the results with different replacing
rates on two representative tasks (MRPC and RTE)
in Figure 3. The trivial gap between two curves
in both figures indicate that the effect of different
replacing rates on equivalent learning rate is not
the main factor for the performance differences.
A replacing rate in the range between 0.5 and 0.7
can always lead to a satisfying performance on all
GLUE tasks. However, a significant performance
drop can be observed on all tasks if the replacing
rate is too small (e.g., p = 0.1). On the other hand,
the best replacing rate differs across tasks.

5.3 Impact of Replacement Scheduler

To study the impact of our curriculum replace-
ment strategy, we compare the results of BERT-

"o

—s.
\ 0.66
0.86

0.64
4 0.62

o}
g 0.60
0.58
0.56

—e— MRPC-LR
MRPC-ELR 0.54

4
@
2

Avg. Acc and F1
o
®
o

o
@
S

—e— RTE-LR
RTE-ELR

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Replacing Rate Replacing Rate

(a) MRPC (b) RTE

Figure 3: Performance of different replacing rate on
MRPC and RTE. “LR” and “ELR” denote that the
learning rate and equivalent learning rate are fixed, re-
spectively.

of-Theseus compressed with a constant replacing
rate and with a replacement scheduler. The con-
stant replacing rate for the baseline is searched
over {0.5, 0.7, 0.9}. Additionally, we implement
an “anti-curriculum” baseline, similar to the one
in (Morerio et al., 2017). For each task, we adopt
the same coefficient & and basic replacing rate b
to calculate the p, as Equation 6 for both curricu-
lum replacement and anti-curriculum. However,
we use 1 — pg as the dynamic replacing rate for
anti-curriculum baseline. Thus, we can determine
whether the improvement of curriculum replace-
ment is simply due to an inconstant replacing rate
or an easy-to-hard curriculum design.

As shown in Table 6, our model compressed
with curriculum scheduler consistently outperforms
a model compressed with a constant replacing
rate. In contrast, a substantial performance drop
is observed on the model compressed with an anti-
curriculum scheduler, which further verifies the
effectiveness and importance of the curriculum re-
placement strategy.

5.4 Impact of Predecessor Layers

We further replace different numbers of Trans-
former layers with one layer to verify the effec-
tiveness of Theseus Compression under different
settings. We replace 3/4 layers with one Trans-
former layer, resulting in a 4/3-layer BERT model.

7866

Strategy \ CoLA(A) MNLI(A) MRPC(A) QNLI(A) QQP(A) RTE(A) SST-2(A) STS-B(A)
Constant Rate \ 44 4 81.9 87.1 88.5 88.6 66.4 90.6 88.4

Anti-curriculum | 42.8 (-1.6) 79.8 (-2.1) 85.6(-1.5) 87.8(-0.7) 87.6(-1.0) 62.4(-4.0) 88.8(-1.8) 85.4(-3.0)
Curriculum 51.1 (+6.7) 82.3(+0.4) 89.0(+1.9) 89.5(+1.0) 89.6(+1.0) 68.2(+1.8) 91.5(+0.9) 88.7 (+0.3)

Table 6: Comparison of models compressed with a constant replacing rate, a curriculum replacement scheduler
and its corresponding anti-curriculum scheduler on GLUE-dev.

Method #Layer Speed- | CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B | Macro
up B.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K) | Score
BERT-base (2019) \ 12 1.00x \ 54.3 83.5 89.5 91.2 89.8 71.1 91.5 88.9 \ 82.5

Fine-tuning 6 1.94 % 434 80.1 86.0 86.9 87.8 62.1 89.6 81.9 71.2
BERT-of-Theseus 6 1.94 % 511 82.3 89.0 89.5 89.6 68.2 91.5 88.7 81.2
Fine-tuning 4 2.82x 339 78.4 86.0 82.3 87.1 58.2 87.2 78.4 73.9
BERT-of-Theseus 4 2.82x 41.3 80.0 87.5 86.1 88.7 61.9 89.1 82.5 77.2
Fine-tuning 3 3.66x 27.5 78.1 81.9 80.4 86.5 57.7 85.9 76.8 71.9
BERT-of-Theseus 3 3.66x 35.0 78.8 84.3 82.1 87.3 59.5 87.2 78.9 74.1

Table 7: Experimental results of replacing different numbers of layers with one layer on GLUE-dev. “#Layer”

indicates the number of layers in the compressed models.

The results are shown in Table 7. BERT-of-Theseus
consistently outperforms the fine-tuned truncated
BERT baselines, demonstrating its effectiveness
under different settings.

6 Discussion

In this paper, we propose Theseus Compression, a
novel model compression approach. We use this ap-
proach to compress BERT to a compact model that
outperforms other models compressed by Knowl-
edge Distillation. Our work highlights a new genre
of model compression and reveals a new path to-
wards model compression.

For future work, we would like to explore the
possibility of applying Theseus Compression on
heterogeneous network modules. First, many
developed in-place substitutes (e.g., ShuffleNet
unit (Zhang et al., 2018) for ResBlock (He et al.,
2016), Reformer Layer (Kitaev et al., 2020) for
Transformer Layer (Vaswani et al., 2017)) are natu-
ral successor modules that can be directly adopted
in Theseus Compression. Also, it is possible to
use a feed-forward neural network to map features
between the hidden spaces of different sizes (Jiao
et al., 2019) to enable replacement between mod-
ules with different input and output sizes. Although
our model has achieved good performance com-
pressing BERT, it would be interesting to explore
its possible applications in other neural models. As
summarized in Table 1, our model does not rely
on any model-specific features to compress BERT.

Therefore, it is potential to apply Theseus Com-
pression to other large models (e.g., ResNet (He
et al., 2016) in Computer Vision). In addition, we
would like to conduct Theseus Compression on
more types of neural networks including Convo-
lutional Neural Networks and Graph Neural Net-
works. We will also investigate the combination of
our compression-based approach with recently pro-
posed dynamic acceleration method (Zhou et al.,
2020b) to further improve the efficiency of pre-
trained language models.

Acknowledgments

We are grateful for the insightful comments from
the anonymous reviewers. Tao Ge is the corre-
sponding author.

References

Yoshua Bengio, Jérome Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
ICML.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. In LREC.

Misha Denil, Babak Shakibi, Laurent Dinh,
Marc’Aurelio Ranzato, and Nando de Freitas.
2013. Predicting parameters in deep learning. In
NeurlPS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of

7867

deep bidirectional transformers for language under-
standing. In NAACL-HLT.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In IWP@IJCNLP.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation. In NeurIPS.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In ICLR.

Jonathan Frankle and Michael Carbin. 2019. The lot-
tery ticket hypothesis: Finding sparse, trainable neu-
ral networks. In ICLR.

Tommaso Furlanello, Zachary Chase Lipton, Michael
Tschannen, Laurent Itti, and Anima Anandkumar.
2018. Born-again neural networks. In ICML.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir
Bourdev. 2014. Compressing deep convolutional
networks using vector quantization. arXiv preprint
arXiv:1412.6115.

Song Han, Huizi Mao, and William J. Dally. 2016.
Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huff-
man coding. In ICLR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In CVPR.

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Chan-
nel pruning for accelerating very deep neural net-
works. In ICCV.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding. arXiv preprint arXiv:1909.10351.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In
ICLR.

Animesh Koratana, Daniel Kang, Peter Bailis, and
Matei Zaharia. 2019. LIT: Learned intermediate
representation training for model compression. In
ICML.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In ICLR.

Hector J. Levesque. 2011. The winograd schema chal-
lenge. In AAAI Spring Symposium: Logical Formal-
izations of Commonsense Reasoning.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and
Jianfeng Gao. 2019a. Improving multi-task deep
neural networks via knowledge distillation for
natural language understanding. arXiv preprint
arXiv:1904.09482.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In
NeurIPS.

Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, René
Vidal, and Vittorio Murino. 2017. Curriculum
dropout. In ICCV.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan
Yang, Boaz Barak, and Ilya Sutskever. 2020. Deep
double descent: Where bigger models and more data
hurt. In ICLR.

Martin Popel and Ondfej Bojar. 2018. Training tips
for the transformer model. The Prague Bulletin of
Mathematical Linguistics, 110(1):43-70.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R.
Bowman. 2020. Intermediate-task transfer learning
with pretrained language models: When and why
does it work? In ACL.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2015. Fitnets: Hints for thin deep nets. In
ICLR.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-BERT: hessian based ultra low
precision quantization of BERT. In AAAI

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP.

7868

https://doi.org/10.2478/pralin-2018-0002
https://doi.org/10.2478/pralin-2018-0002

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: masked sequence to se-
quence pre-training for language generation. In
ICML.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res.,
15(1):1929-1958.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In EMNLP-IJCNLP.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic BERT for resource-limited
devices. In ACL.

Xu Tan, Yi Ren, Di He, Tao Qin, Zhou Zhao, and Tie-
Yan Liu. 2019. Multilingual neural machine transla-
tion with knowledge distillation. In ICLR.

Raphael Tang, Yao Lu, Linging Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In /CLR.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
TACL, 7:625-641.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL-HLT.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In NeurIPS.

Shuangfei Zhai, Yu Cheng, Zhongfei (Mark) Zhang,
and Weining Lu. 2016. Doubly convolutional neu-
ral networks. In NeurIPS.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. 2018. Shufflenet: An extremely efficient con-
volutional neural network for mobile devices. In
CVPR.

Wangchunshu Zhou, Tao Ge, Ke Xu, Furu Wei, and
Ming Zhou. 2020a. Scheduled drophead: A reg-
ularization method for transformer models. arXiv
preprint arXiv:2004.13342.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020b. Bert loses
patience: Fast and robust inference with early exit.
In NeurlIPS.

7869

