vzhong@cs.washington.edu

Grounded Adaptation for Zero-shot Executable Semantic Parsing

Victor Zhong Mike Lewis
University of Washington Facebook Al Research
Seattle, WA Seattle, WA

mikelewis@fb.com

Abstract

We propose Grounded Adaptation for Zero-
shot Executable Semantic Parsing (GAZP)
to adapt an existing semantic parser to new
environments (e.g. new database schemas).
GAZP combines a forward semantic parser
with a backward utterance generator to syn-
thesize data (e.g. utterances and SQL queries)
in the new environment, then selects cycle-
consistent examples to adapt the parser. Un-
like data-augmentation, which typically syn-
thesizes unverified examples in the train-
ing environment, GAZP synthesizes exam-
ples in the new environment whose input-
output consistency are verified. On the Spider,
Sparc, and CoSQL zero-shot semantic parsing
tasks, GAZP improves logical form and exe-
cution accuracy of the baseline parser. Our
analyses show that GAZP outperforms data-
augmentation in the training environment, per-
formance increases with the amount of GAZP-
synthesized data, and cycle-consistency is cen-
tral to successful adaptation.

1 Introduction

Semantic parsers (Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Liang et al., 2011) build
executable meaning representations for a range of
tasks such as question-answering (Yih et al., 2014),
robotic control (Matuszek et al., 2013), and in-
telligent tutoring systems (Graesser et al., 2005).
However, they are usually engineered for each ap-
plication environment. For example, a language-
to-SQL parser trained on an university manage-
ment database struggles when deployed to a sales
database. How do we adapt a semantic parser to
new environments where no training data exists?
We propose Grounded Adaptation for Zero-shot
Executable Semantic Parsing, which adapts exist-
ing semantic parsers to new environments by syn-
thesizing new, cycle-consistent data. In the previ-
ous example, GAZP synthesizes high-quality sales

6869

Sida I. Wang Luke Zettlemoyer
Facebook Al Research University of Washington
Seattle, WA Facebook AI Research
sidawang@fb.com Seattle, WA

lsz@cs.washington.edu

questions and SQL queries using the new sales
database, then adapts the parser using the synthe-
sized data. This procedure is shown in Figure 1.
GAZP is complementary to prior modeling work
in that it can be applied to any model architec-
ture, in any domain where one can enforce cycle-
consistency by evaluating equivalence between
logical forms. Compared to data-augmentation,
which typically synthesizes unverified data in the
training environment, GAZP instead synthesizes
consistency-verified data in the new environment.

GAZP synthesizes data for consistency-verified
adaptation using a forward semantic parser and a
backward utterance generator. Given a new envi-
ronment (e.g. new database), we first sample log-
ical forms with respect to a grammar (e.g. SQL
grammar conditioned on new database schema).
Next, we generate utterances corresponding to
these logical forms using the generator. Then,
we parse the generated utterances using the parser,
keeping those whose parses are equivalent to the
original sampled logical form (more in Section 2.4).
Finally, we adapt the parser to the new environment
by training on the combination of the original data
and the synthesized cycle-consistent data.

We evaluate GAZP on the Spider, Sparc, and
CoSQL (Yu et al., 2018b, 2019a,b) language-to-
SQL zero-shot semantic parsing tasks which test
on unseen databases. GAZP improves logical form
and execution accuracy of the baseline parser on
all tasks, successfully adapting the existing parser
to new environments. In further analyses, we show
that GAZP outperforms data augmentation in the
training environment. Moreover, adaptation per-
formance increases with the amount of GAZP-
synthesized data. Finally, we show that cycle-
consistency is critical to synthesizing high-quality
examples in the new environment, which in turn
allows for successful adaptation and performance

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 6869—-6882,
November 16-20, 2020. (©)2020 Association for Computational Linguistics

Train Environment

grammar

Figure 1: Grounded Adaptation for Zero-shot Executable Semantic Parsing.

environments. Data and models for training and inference

Sampled Backward :
logical utterance Synthesized
utterances

forms generator

Train model
Table: students Data
[id [school | vyear [...] |
Table: schools Cyole= \ . . model Adapted
[id | name [city | | consistent > semantic
Y e adaptation
data parser
New Inference Environment
Cycle Synthesized Forward
Table: sales > consistency logical <«——— semantic
[comp id | prod_id | amount | checker forms parser
Table: companies
[comp_id[name [location | || sample wrt

GAZP adapts a parser to new inference
environments are respectively shown in blue and purple.

Output is shown in red. First, we train a parser and a utterance generator using training data. We then sample logical
forms in the inference environment and generate corresponding utterances. We parse the generated utterances and
check for cycle-consistency between the parse and the sampled logical form (see Section 2.4). Consistent pairs of
utterance and logical form are used to adapt the parser to the inference environment.

improvement.!

2 Grounded Adaptation for Zero-shot
Executable Semantic Parsing

Semantic parsing involves producing a logical
form ¢ that corresponds to an input utterance u,
such that executing ¢ in the environment e pro-
duces the desired denotation EXE(q,e). In the
context of language-to-SQL parsing, g and e corre-
spond to SQL queries and databases.

We propose GAZP for zero-shot semantic pars-
ing, where inference environments have not been
observed during training (e.g. producing SQL
queries in new databases). GAZP consists of a
forward semantic parser F'(u,e) — ¢, which
produces a logical form ¢ given an utterance u in
environment e, and a backward utterance gener-
ator G(q, e) — u. The models F' and G condition
on the environment by reading an environment de-
scription w, which consists of a set of documents
d. In the context of SQL parsing, the description
is the database schema, which consists of a set of
table schemas (i.e. documents).

We assume that the logical form consists of three
types of tokens: syntax candidates c; from a fixed
syntax vocabulary (e.g. SQL syntax), environ-
ment candidates c. from the environment descrip-
tion (e.g. table names from database schema), and

"We will open-source our code.

6870

utterance candidates c, from the utterance (e.g.
values in SQL query). Finally, ¢, tokens have cor-
responding spans in the description d. For example,
a SQL query ¢ consists of columns c, that directly
map to related column schema (e.g. table, name,
type) in the database schema w.

In GAZP , we first train the forward semantic
parser F' and a backward utterance generator G in
the training environment e. Given a new inference
environment ¢’, we sample logical forms ¢ from
€' using a grammar. For each ¢, we generate a
corresponding utterance v’ = G(q,¢’). We then
parse the generated utterance into a logical form
¢ = F(v,¢e'). We combine cycle-consistent ex-
amples from the new environment, for which ¢'is
equivalent to ¢, with the original labeled data to
retrain and adapt the parser. Figure 1 illustrates the
components of GAZP. We now detail the sampling
procedure, forward parser, backward generator, and
cycle-consistency.

2.1 Query sampling

To synthesize data for adaptation, we first sample
logical forms ¢ with respect to a grammar. We
begin by building an empirical distribution over
g using the training data. For language-to-SQL
parsing, we preprocess queries similar to Zhang
et al. (2019) and further replace mentions of
columns and values with typed slots to form coarse

Algorithm 1 Query sampling procedure.

d < UNIFORMSAMPLE(AIIDBs)
Z 0
for z € CoarseTemplates do
if d.CANFILL(z) then Z.ADD(z) end if
end for
2" + SAMPLE(Py)
d' < d.RANDASSIGNCOLSTOSLOTS()
for s € 2.COLSLOTS() do
¢+ d .GETCOL(s)
2'.REPLSLOTWITHCOL(s, ¢)
: end for
: for s € 2/.VALSLOTS() do
¢« d'.GETCOL(s)
v < ¢.UNIFORMSAMPLEVALS()
2" . REPLSLOTWITHVAL(s, v)
: end for

R AU R S

> Return 2’

templates Z. For example, the query SELECT

Tl.id, T2.name FROM Students AS Tl JOIN
Schools AS T2 WHERE Tl.school = T2.id
AND T2.name = ’Highland Secondary’, after

processing, becomes SELECT keyl, textl
WHERE text2 = val. Note that we remove JOINS
which are later filled back deterministically after
sampling the columns. Next, we build an empirical
distribution Pz over these coarse templates by
counting occurrences in the training data. The
sampling procedure is shown in Algorithm 1 for
the language-to-SQL example. Invalid queries and
those that execute to the empty set are discarded.
Given some coarse template z SELECT
keyl, textl WHERE text2 = val, the function
d.CANFILL(z) returns whether the database d
contains sufficient numbers of columns. In
this case, at the minimum, d should have a
key column and two text columns. The func-
tion d.RANDASSIGNCOLSTOSLOTS() returns a
database copy d’ such that each of its columns is
mapped to some identifier text1, key1 etc.
Appendix A.1 quantifies query coverage of the
sampling procedure on the Spider task, and shows
how to extend Algorithm 1 to multi-turn queries.

2.2 Forward semantic parser

The forward semantic parser F' produces a logical
form ¢ = F(u,e) for an utterance v in the envi-
ronment e. We begin by cross-encoding u with the
environment description w to model coreferences.
Since w may be very long (e.g. entire database
schema), we instead cross-encode u with each doc-
ument d; in the description (e.g. each table schema)
similar to Zhang et al. (2019). We then combine
each environment candidate c. ; across documents

6871

(e.g. table columns) using RNNss, such that the final
representations capture dependencies between c,
from different documents. To produce the logical
form ¢, we first generate a logical form template
G whose utterance candidates ¢, (e.g. SQL values)
are replaced by slots. We generate ¢ with a pointer-
decoder that selects among syntax candidates cg
(e.g. SQL keywords) and environment candidate
ce (e.g. table columns). Then, we fill in slots in §
with a separate decoder that selects among ¢, in
the utterance to form ¢. Note that logical form tem-
plate ¢ is distinct from coarse templates z described
in sampling (Section 2.1). Figure 2 describes the
forward semantic parser.

Let u denote words in the utterance, and d; de-
note words in the 7th document in the environment
description. Let [a; b] denote the concatenation of a
and b. First, we cross-encode the utterance and the
document using BERT (Devlin et al., 2019), which
has led to improvements on a number of NLP tasks.

B =BERT, ([u;di]) ()

Next, we extract environment candidates in docu-
ment ¢ using self-attention. Let s, e denote the start
and end positions of the jth environment candidate
in the ith document. We compute an intermediate
representation x;; for each environment candidate:

a =

Softmax(W[ﬁis; ...ﬁie] +b) @
Z akﬁik
k=s

For ease of exposition, we abbreviate the above
self-attention function as z;; = selfattn(ﬁi [s:€])
Because x;; do not model dependencies between
different documents, we further process x with
bidirectional LSTMs (Hochreiter and Schmidhu-
ber, 1997). We use one LSTM followed by self-
attention to summarize each ith document:

1)

We use another LSTM to build representations for
each environment candidate c. ;

3

.iCZ'j

_>
h enc,i — selfattn(BiLSTM([xﬂ; Ti25 .- (4)

Ce — BiLSTM([QTH;le;...xgl;xgg...}) (5)
We do not share weights between different LSTMs
and between different self-attentions.

Next, we use a pointer-decoder (Vinyals et al.,
2015) to produce the output logical form template

Template pointer decoder |
Y

| Output logical form

Cs

]

Fixed syntax vocabulary Candidate phrase
SELECT, FROM, WHERE, >, < .. BiLSTM ?
1 enc
BERT input Phrases
[CLS] How many ... [TABLE] students §1 students.id ?1,1
[SEP] key tid [SEP] key : school [SEP] > students.school 7112 >
number: year [SEP] ... Template Env
BERT desc Value
[CLS] How many ... [TABLE] schools 32 ph;;‘se schools.id 7' BILETM > dpeoéggeerr
[SEP] Key : id [SEP] text : name [SEP] *| SelfAttn schools.name 722 " SelfAttn
key : city [SEP] ...

t

l

l Cy

Environment description w
Document d2

Table: schools
[[id [name [city [...]

Document @1

Table: students
[lid [school [year]...]

User utterance u

Value
BERT

How many students attended Highland
Secondary?

Figure 2: Forward semantic parser. Model components are shown in purple, inputs in blue, and outputs in red. First,
we cross-encode each environment description text and the utterance using BERT. We then extract document-level
phrase representations for candidate phrases in each text, which we subsequently encode using LSTMs to form
input and environment-level candidate phrase representations. A pointer-decoder attends over the input and selects

among candidates to produce the output logical form.

q by selecting among a set of candidates that cor-
responds to the union of environment candidates
ce and syntax candidates cs. Here, we represent a
syntax token using its BERT word embedding. The
representation for all candidate representations ¢
is then obtained as

_>
¢ = [Ce,13Ce 2} --Cs,15 Cs 25 -] (6)

At each step t of the decoder, we first update the
states of the decoder LSTM:

haeet = LSTM(@4, 1, Pdect—1))

Finally, we attend over the document representa-
tions given the current decoder state using dot-
product attention (Bahdanau et al., 2015):

&t = SOftmaX(hdec,tﬁlnc) (8)

N
> i Menc, ©)
%

V¢ =

The score for the ith candidate 71 is

or = Wlhdees;vi] + b (10)
Sti = 0, ¢ (1)
G = argmax(s;) (12)

Value-generation. The pervious template de-
coder produces logical form template ¢, which is

6872

not executable because it does not include utter-
ance candidates c,. To generate full-specified ex-
ecutable logical forms ¢, we use a separate value
pointer-decoder that selects among utterance to-
kens. The attention input for this decoder is iden-
tical to that of the template decoder. The pointer
candidates ¢, are obtained by running a separate
BERT encoder on the utterance u. The produced
values are inserted into each slot in ¢ to form q.

Both template and value decoders are trained
using cross-entropy loss with respect to the ground-
truth sequence of candidates.

2.3 Backward utterance generator

The utterance generator G produces an utterance
u = G(q, e) for the logical form ¢ in the environ-
ment e. The alignment problem between ¢ and
the environment description w is simpler than that
between v and w because environment candidates
e (e.g. column names) in g are described by cor-
responding spans in w (e.g. column schemas in
database schema). To leverage this deterministic
alignment, we augment ¢, in ¢ with relevant spans
from w, and encode this augmented logical form q.
The pointer-decoder selects among words ¢, from
a fixed vocabulary (e.g. when, where, who) and
words cg from . Figure 3 illustrates the backward
utterance generator.

Fixed vocabulary
How, what, many, ..

Pointer decoder

ch I
. Logical
BERT input fc?rlm Output

[CLS] select count students.” where BiLSTM 2 utterance
(key : students.school) = (key : > BERT b e
schools.id) and (text : school.name) §
= “Highland Secondary ” Encoder

BiLSTM

[}

[

1

Environment description w

Document d1 Document @2

Table: schools
[id | name [city [...]

Table: students
[id [school [year]...]

Logical form 4
SELECT COUNT (*) FROM STUDENTS
as tl JOIN SCHOOLS as t2 ON
tl.school t2.id WHERE t2.name
“Highland Secondary”

Figure 3: Backward utterance generator. Model components are shown in purple, inputs in blue, and outputs
in red. First, we encode the input logical form along with environment description for each of its symbols. we
subsequently encode using LSTMs to form the input and environment-level candidate token representations. A
pointer-decoder attends over the input and selects among candidate representations to produce the output utterance.

First, we encode the logical form using BERT.

B = BERT. (9) (13)

Next, we apply a bidirectional LSTM to obtain
the input encoding h ¢y, and another bidirectional
LSTM to obtain representations of tokens in the
augmented logical form cj.

BiLSTM(B)
BiLSTM(B)

(14)
(15)

To represent c¢,, we use word embeddings from
BERT . Fingly, we apply a pointer-decoder that
attends over h o, and selects among candidates

‘¢ = [cg; ¢ to obtain the predicted utterance.

2.4 Synthesizing cycle-consistent examples

Having trained a forward semantic parser F' and
a backward utterance generator G in environment
e, we can synthesize new examples with which to
adapt the parser in the new environment e’. First,
we sample a logical form ¢ using a grammar (Al-
gorithm 1 in Section 2.1). Next, we predict an
utterance v’ = G(q,€’). Because G was trained
only on e, many of its outputs are low-quality or do
not correspond to its input ¢. On their own, these
examples (v, q) do not facilitate parser adaptation
(see Section 3.1 for analyses).

To filter out low-quality examples, we addition-
ally predict a logical form ¢’ = F'(u/, ¢’), and keep
only examples that are cycle consistent — the syn-
thesized logical form ¢’ is equivalent to the orig-
inally sampled logical form ¢ in €. In the case
of SQL parsing, the example is cycle-consistent if

6873

executing the synthesized query EXE(¢/, €’) results
in the same denotation (i.e. same set of database
records) as executing the original sampled query
EXE(q, ¢'). Finally, we combine cycle-consistent
examples synthesized in e’ with the original train-
ing data in e to retrain and adapt the parser.

3 Experiments

We evaluate performance on the Spider (Yu et al.,
2018b), Sparc (Yu et al., 2019b), and CoSQL (Yu
et al., 2019a) zero-shot semantic parsing tasks. Ta-
ble 1 shows dataset statistics. Figure 4 shows exam-
ples from each dataset. For all three datasets, we
use preprocessing steps from Zhang et al. (2019)
to preprocess SQL logical forms. Evaluation con-
sists of exact match over logical form templates
(EM) in which values are stripped out, as well
as execution accuracy (EX). Official evaluations
also recently incorporated fuzz-test accuracy (FX)
as tighter variant of execution accuracy. In fuzz-
testing, the query is executed over randomized
database content numerous times. Compared to
an execution match, a fuzz-test execution match is
less likely to be spurious (e.g. the predicted query
coincidentally executes to the correct result). FX
implementation is not public as of writing, hence
we only report test FX.

Spider. Spider is a collection of database-
utterance-SQL query triplets. The task involves
producing the SQL query given the utterance and
the database. Figure 2 and 3 show preprocessed
input for the parser and generator.

Sparc. In Sparc, the user repeatedly asks
questions that must be converted to SQL queries

Context

Output

Logical form
SELECT T2.name, COUNT(*) FROM concert AS T1 JOIN

Utterance
For each stadium, how many concerts are there?

stadium AS T2 ON Tl.stadium_id = T2.stadium_ id GROUP
BY Tl.stadium_id

(a) Example from Spider.
Context Output
Logical form

Prev utterance
How many dorms have a TV Lounge?

SELECT SUM(T1l.student_capacity) FROM dorm as T1 JOIN
has_amenity AS T2 ON Tl.dormid = T2.dormid JOIN
dorm_amenity AS T3 on T2.amenid = T3.amenid WHERE

Prev logical form

SELECT COUNT(*) FROM dorm as Tl JOIN has_amenity AS T2 ON
Tl.dormid = T2.dormid JOIN dorm amenity AS T3 on T2.amenid
= T3.amenid WHERE T3.amenity_name = ‘TV Lounge’

T3.amenity name = ‘TV Lounge’

User dialogue act
INFORM_SQL

Utterance
What is the total capacity of these dorms?

Response
This shows the total capacity of each dorm.
<result table with many entries>

(b) Example from CoSQL.
Figure 4: Examples from (a) Spider and (b) CoSQL. Context and output are respectively shown in purple and blue.

We do not show Sparc because its data format is similar

to CoSQL, but without user dialogue act prediction and

without response generation. For our experiments, we produce the output logical form given the data, utterance,
and the previous logical form if applicable. During evaluation, the previous logical form is the output of the model
during the previous turn (i.e. no teacher forcing on ground-truth previous output).

Spider Sparc CoSQL
database 200 200 200
tables 1020 1020 1020
utterances 10,181 4298 3007
logical forms 5,693 12,726 15,598
multi-turn no yes yes

Table 1: Dataset statistics.

by the system. Compared to Spider, Sparc
additionally contains prior interactions from the
same user session (e.g. database-utterance-query-
previous query quadruplets). For Sparc evaluation,
we concatenate the previous system-produced
query (if present) to each utterance. For exam-
ple, suppose the system was previously asked
“where is Tesla born?” and is now asked “how
many people are born there?”’, we produce the
utterance [PREV] SELECT birth place FROM
[UTT]
many people are born there ? For training
and data synthesis, the ground-truth previous query
is used as generation context for forward parsing
and backward utterance generation.

"Tesla’ how

people WHERE name

CoSQL. CoSQL is combines task-oriented dia-
logue and semantic parsing. It consists of a num-
ber of tasks, such as response generation, user act
prediction, and state-tracking. We focus on state-
tracking, in which the user intent is mapped to a
SQL query. Similar to Zhang et al. (2019), we re-
strict the context to be the previous query and the
current utterance. Hence, the input utterance and
environment description are obtained in the same

6874

way as that used for Sparc.

3.1 Results

We primarily compare GAZP with the baseline
forward semantic parser, because prior systems
produce queries without values which are not ex-
ecutable. We include one such non-executable
model, EditSQL (Zhang et al., 2019), one of the
top parsers on Spider at the time of writing, for
reference. However, EditSQL EM is not directly
comparable because of different outputs.

Due to high variance from small datasets, we
tune the forward parser and backward generator
using cross-validation. We then retrain the model
with early stopping on the development set using
hyperparameters found via cross-validation. For
each task, we synthesize 100k examples, of which
~40k are kept after checking for cycle-consistency.
The adapted parser is trained using the same hyper-
parameters as the baseline. Please see appendix A.2
for hyperparameter settings. Appendix A.3 shows
examples of synthesized adaptation examples and
compares them to real examples.

Table 2 shows that adaptation by GAZP results
in consistent performance improvement across Spi-
der, Sparc, and CoSQL in terms of EM, EX,
and FX. We also examine the performance break-
down across query classes and turns (details in
appendix A.4). First, we divide queries into diffi-
culty classes based on the number of SQL com-
ponents, selections, and conditions (Yu et al.,
2018b). For example, queries that contain more
components such as GROUP, ORDER, INTERSECT,

Spider

Sparc CoSQL

Model

dev test dev

test dev test

EM EX EM EX FX EM

EX EM

EX FX EM EX EM EX FX

EditSQL 57.6 n/a 534 n/a n/a 47.2 n/a

479 n/a n/a 399 n/a 40.8 n/a n/a

Baseline 56.8 554 52.1
GAZP 59.1 59.2 53.3

49.8
53.5

51.1
51.7

46.4
48.9

44.0 459
47.8

349 33.8
359 36.3

435 42.8 393
44.6 439 42.0

36.6 37.2

45.9 38.8 39.7

Table 2: Development set evaluation results on Spider, Sparc, and CoSQL. EM is exact match accuracy of logical
form templates without values. EX is execution accuracy of fully-specified logical forms with values. FX is exe-
cution accuracy from fuzz-testing with randomized databases. Baseline is the forward parser without adaptation.
EditSQL is a state-of-the-art language-to-SQL parser that produces logical form templates that are not executable.

Model Spider Sparc CoSQL

EM EX #syn EM EX #syn EM EX #syn
Baseline 56.8 554 40557 46.4 440 45221 393 36.6 33559
GAZP 59.1 59.2 40557 489 47.8 45221 42.0 38.8 33559
nocycle 55.6 523 97655 41.1 40.0 81623 30.7 30.8 78428
syntrain 54.8 52.1 39721 474 452 44294 38.7 343 318%4
EM consistency 61.6 569 35501 484 459 43521 419 377 31137

Table 3: Ablation performance on development sets. For each one, 100,000 examples are synthesized, out of which
queries that do not execute or execute to the empty set are discarded. “nocycle” uses adaptation without cycle-
consistency. ‘“‘syntrain” uses data-augmentation on training environments. “EM consistency” enforces logical

form instead of execution consistency.

nested subqueries, column selections, and aggre-
gators, etc are considered to be harder. Sec-
ond, we divide multi-turn queries into how many
turns into the interaction they occur for Sparc and
CoSQL (Yu et al., 2019b,a). We observe that the
gains in GAZP are generally more pronounced in
more difficult queries and in turns later in the inter-
action. Finally, we answer the following questions
regarding the effectiveness of cycle-consistency
and grounded adaptation.

Does adaptation on inference environment out-
perform data-augmentation on training envi-
ronment? For this experiment, we synthesize
data on training environments instead of inference
environments. The resulting data is similar to data
augmentation with verification. As shown in the
“syntrain” row of Table 3, retraining the model on
the combination of this data and the supervised data
leads to overfitting in the training environments. A
method related to data-augmentation is jointly su-
pervising the model using the training data in the
reverse direction, for example by generating ut-
terance from query (Fried et al., 2018; Cao et al.,
2019). For Spider, we find that this dual objective
(57.2 EM) underperforms GAZP adaptation (59.1

6875

EM). Our results indicate that adaptation to the new
environment significantly outperforms augmenta-
tion in the training environment.

How important is cycle-consistency? For this
experiment, we do not check for cycle-consistency
and instead keep all synthesized queries in the in-
ference environments. As shown in the “nocycle”
row of Table 3, the inclusion of cycle-consistency
effectively prunes ~60% of synthesized examples,
which otherwise significantly degrade performance.
This shows that enforcing cycle-consistency is cru-
cial to successful adaptation.

In another experiment, we keep examples that
have consistent logical forms, as deemed by string
match (e.g. ¢ == ¢'), instead of consistent de-
notation from execution. The “EM consistency”
row of Table 3 shows that this variant of cycle-
consistency also improves performance. In particu-
lar, EM consistency performs similarly to execution
consistency, albeit typically with lower execution
accuracy.

How much GAZP synthesized data should one
use for grounded adaptation? For this experi-
ment, we vary the amount of cycle-consistent syn-

(2]
o

o—o7§—__§

(TRRREN?

(%3]
(&
X

Task
Spider
Sparc
CoSQL
Metric
EM

EX

(o))
o

accuracy
N
a

/.
.,._.._—-—0

%
/

x
—
x

N
o

35
0 10000 20000 30000
adaptation examples

40000

Figure 5: Effect of amount of synthesized data on adap-
tation performance on the development set. EM and
EX denote template exact match and logical form ex-
ecution accuracy, respectively. The z-axis shows the
number of cycle-consistent examples synthesized in the
inference environments (e.g. all databases in the devel-
opment set).

thesized data used for adaptation. Figure 5 shows
that that adaptation performance generally in-
creases with the amount of synthesized data in the
inference environment, with diminishing return af-
ter 30-40k examples.

4 Related work

Semantic parsing. Semantic parsers parse nat-
ural language utterances into executable logical
forms with respect to an environment (Zelle and
Mooney, 1996; Zettlemoyer and Collins, 2005;
Liang et al., 2011). In zero-shot semantic pars-
ing, the model is required to generalize to environ-
ments (e.g. new domains, new database schemas)
not seen during training (Pasupat and Liang, 2015;
Zhong et al., 2017; Yu et al., 2018b). For language-
to-SQL zero-shot semantic parsing, a variety of
methods have been proposed to generalize to new
databases by selecting from table schemas in the
new database (Zhang et al., 2019; Guo et al., 2019).
Our method is complementary to these work — the
synthesis, cycle-consistency, and adaptation steps
in GAZP can be applied to any parser, so long as
we can learn a backward utterance generator and
evaluate logical-form equivalence.

Data augmentation. Data augmentation trans-
forms original training data to synthesize artifi-
cial training data. Krizhevsky et al. (2017) crop
and rotate input images to improve object recogni-
tion. Dong et al. (2017) and Yu et al. (2018a) re-
spectively paraphrase and back-translate (Sennrich
et al., 2016; Edunov et al., 2018) questions and
documents to improve question-answering. Jia

6876

and Liang (2016) perform data-recombination in
the training domain to improve semantic parsing.
Hannun et al. (2014) superimpose noisy back-
ground tracks with input tracks to improve speech
recognition. Our method is distinct from data-
augmentation in the following ways. First, we syn-
thesize data on logical forms sampled from the new
environment instead of the original environment,
which allows for adaptation to the new environ-
ments. Second, we propose cycle-consistency to
prune low-quality data and keep high-quality data
for adaptation. Our analyses show that these core
differences from data-augmentation are central to
improving parsing performance.

Cycle-consistent generative adversarial models
(cycle-GANSs). In cycle-GAN (Zhu et al., 2017;
Hoffman et al., 2018), a generator forms images
that fools a discriminator while the discriminator
tries distinguish generated images from naturally
occurring images. The the adversarial objectives of
the generator and the discriminator are optimized
jointly. Our method is different from cycle-GANs
in that we do not use adversarial objectives and
instead rely on matching denotations from execut-
ing synthesized queries. This provides an exact
signal compared to potentially incorrect outputs
by the discriminator. Morevoer, cycle-GANs only
synthesize the input and verify whether the input
is synthesized (e.g. the utterance looks like a user
request). In contrast, GAZP synthesizes both the
input and the output, and verifies consistency be-
tween the input and the output (e.g. the utterance
matches the query).

5 Conclusion and Future work

We proposed GAZP to adapt an existing seman-
tic parser to new environments by synthesizing
cycle-consistent data. GAZP improved parsing per-
formance on three zero-shot parsing tasks. Our
analyses showed that GAZP outperforms data aug-
mentation, performance improvement scales with
the amount of GAZP-synthesized data, and cycle-
consistency is central to successful adaptation.

In principle, GAZP applies to any problems that
lack annotated data and differ between training and
inference environments. One such area is robotics,
where one trains in simulation because it is pro-
hibitively expensive to collect annotated trajecto-
ries in the real world. In future work, we will con-
sider how to interpret environment specifications to
facilitate grounded adaptation in these other areas.

Acknowledgement

This research was supported in part by the ARO
(WI11NF-16-1-0121) and the NSF (IIS-1252835,
IIS-1562364). We thank Julian Michael for helpful
discussions, and our reviewers for engaging and
constructive feedback. We also thank Bo Pang
and Tao Yu for helping us with running the official
evaluations.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. /CLR.

Ruisheng Cao, Su Zhu, Chen Liu, Jieyu Li, and Kai Yu.
2019. Semantic parsing with dual learning. In ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella
Lapata. 2017. Learning to paraphrase for question
answering. In EMNLP.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In EMNLP.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,
and Trevor Darrell. 2018. Speaker-follower models
for vision-and-language navigation. In NeurIPS.

Arthur C Graesser, Patrick Chipman, Brian C Haynes,
and Andrew Olney. 2005. AutoTutor: An intelli-
gent tutoring system with mixed-initiative dialogue.
IEEE Transactions on Education.

Jiagi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-SQL in cross-
domain database with intermediate representation.
In ACL.

Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catan-
zaro, Greg Diamos, Erich Elsen, Ryan Prenger, San-
jeev Satheesh, Shubho Sengupta, Adam Coates, and
Andrew Y. Ng. 2014. Deep Speech: Scaling up end-
to-end speech recognition. CoRR, abs/1412.5567.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei A. Efros, and
Trevor Darrell. 2018. CyCADA: Cycle consistent
adversarial domain adaptation. In ICML.

6877

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In ACL.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2017. Imagenet classification with deep con-
volutional neural networks. Communications of the
ACM.

Percy Liang, Michael I. Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. Computational Linguistics.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer,
and Dieter Fox. 2013. Learning to parse natural lan-
guage commands to a robot control system. Experi-
mental Robotics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
ACL.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In NeurIPS
Workshop on Energy Efficient Machine Learning
and Cognitive Computing.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In ACL.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In NIPS.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation question
answering. In ACL.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V
Le. 2018a. Qanet: Combining local convolution
with global self-attention for reading comprehen-
sion. In ICLR.

Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Wal-
ter Lasecki, and Dragomir Radev. 2019a. Cosql:
A conversational text-to-sql challenge towards cross-
domain natural language interfaces to databases. In
EMNLP.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018b. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-sql task. In
EMNLP.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. Sparc: Cross-domain se-
mantic parsing in context. In ACL.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In AAAI/IAAL

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In UAL

Rui Zhang, Tao Yu, He Yang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caiming
Xiong, Richard Socher, and Dragomir Radev. 2019.
Editing-based sql query generation for cross-domain
context-dependent questions. In EMNLP.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In
ICCV.

6878

A Appendix

A.1 Coverage and multi-turn sampling

When we build an empirical distribution over tem-
plates on the training set of Spider, we observe a
85% coverage of dev set templates. That is, 85%
of dev set examples have a query whose template
occurs in the training set. In other words, while this
simple template-filling sampling scheme doesn’t
provide full coverage over the dev set as a com-
plex grammar would, it covers a large portion of
examples.

For Sparc and CoSQL, the sampling procedure
is similar to Algorithm 1. However, because there
are two queries (one previous, one current), we
first sample a previous query 2§ from Piemp(2),
then sample the current query z5 from Premp (2]2]).
As before, the empirical template distributions are
obtained by counting templates in the training set.

A.2 Hyperparameters

Forward parser

Dropout location

Spider Sparc CoSQL
post-BERT 0.1 0.1 0.1
post-enc LSTMs 0.1 0.3 0.1
pre-dec scorer 0.1 0.1 0.3

Table 4: Dropout rates for the forward parser.

Backward generator
Spider CoSQL

post-BERT 0.1 0.3 0.1
post-enc LSTMs 0.1 0.1 0.1
pre-dec scorer 0.1 0.1 0.3

Dropout location

Sparc

Table 5: Dropout rates for the backward generator.

We use 300-dimensional LSTMs throughout
the model. The BERT model we use is Distil-
BERT (Sanh et al., 2020), which we optimize with
Adam (Kingma and Ba, 2015) with an initial learn-
ing rate of be — 5. We train for 50 epochs with a
batch size of 10 and gradient clipping with a norm
of 20. We use dropout after BERT, after encoder
LSTMs, and before the pointer scorer. The values
for these dropouts used by our leaderboard sub-
missions are shown in Table 4 and Table 5. For
each task, these rates are tuned using 3-fold cross-

6879

validation with a coarse grid-search over values
{0.1, 0.3} for each dropout with a fixed seed.

A single training run of the forward parser took
approximately 16 hours to run on a single NVIDIA
Titan X GPU. Each task required 3 folds in addi-
tion to the final official train/dev run. For each
fold, we grid-searched over dropout rates, which
amounts to 8 runs. In total, we conducted 27 runs
on a Slurm cluster. Including pretrained BERT
parameters, the final forward parser contains 142
million parameters. The final backward utterance
generator contains 73 million parameters.

list all the last name of owners
in alphabetical order .

select last._name from Owners order by last_name

how many friend are there ?

select count (=) from Friend

what is the id of the votes that
has been most distinct contes-
tants ?

"select T2.vote_id from CONTESTANTS as Tl join VOTES as
T2 on Tl.contestant_number =
by (T2.vote_.id)
) desc limit 1

T2.contestant_number group

order by count (Tl.contestant_number

what are the name of higher ?

select name from Highschooler

how many car makers has the
horsepower of 81 ?

select count (*)
as T2 on Tl.Id = T2.MakeId join model_list as T3 on
T2.Model =

from cars_.data as Tl join car_names

T3.Model join car-makers as T4 on T3.Maker =

T4.Id where Tl.Horsepower = ’'81’

what are the starts of hiring who

are located in the city of Bristol
?

select T2.Start_from from employee as Tl join hiring as
T2 on Tl.Employee_ID = T2.Employee_ID where Tl.City =

"Bristol’

find the name and district of the
employee that has the highest
evaluation bonus .

select T2.Name , T4.District from evaluation as T1

join employee as T2 on Tl.Employee.ID = T2.Employee_ID
join hiring as T3 on T2.Employee_ID =

T4.Shop-ID order by

T3.Employee_ID
join shop as T4 on T3.Shop-ID =

Tl.Bonus desc limit 1

what is the cell number of the
owners with the largest charges
amount ?

select Tl.cell number from Owners as Tl join Charges as

T2 order by T2.charge._amount desc limit 1

what is the minimum , average ,
and maximum grade of all high
schooler ?

select min (grade) , avg (grade) , max (grade)

from Highschooler

what is the age of the teacher
who has the most course ?

select Tl.Age from teacher as Tl join course._arrange
as T2 on Tl.Teacher ID = T2.Teacher_ID group by

T2.Teacher_ID order by sum (T2.Grade) desc limit

1

Table 6: Examples of synthesized queries

6880

A.3 Synthesized examples

In order to quantify the distribution of synthe-
sized examples, we classify synthesized queries
according to the difficulty criteria from Spider (Yu
et al., 2018b). Compared to the Spider develop-
ment set, GAZP-synthesized data has an average
of 0.60 vs. 0.47 joins, 1.21 vs. 1.37 conditions,
0.20 vs. 0.26 group by’s, 0.23 vs. 0.25 order
by’s, 0.07 vs. 0.04 intersections, and 1.25 vs.
1.32 selection columns per query. This suggests
that GAZP queries are similar to real data.

Moreover, we example a random sample of 60
synthesized examples. Out of the 60, 51 are cor-
rect. Mistakes come from aggregation over wrong
columns (e.g. “has the most course” becomes
order by sum T2.grade) and underspecification
(e.g. “lowest of the stadium who has the lowest
age”). There are grammatical errors (e.g. “that has
the most” becomes “that has been most’), but most
questions are fluent and sensible (e.g. “find the
name and district of the employee that has the high-
est evaluation bonus™). A subset of these queries
are shown in Table 6.

A.4 Performance breakdown

easy medium hard extra all

count 470 857 463 357 2147
baseline EM 753 549 450 24.8 52.1
EX 60.3 527 475 326 498

FX 736 529 448 264 51.1

GAZP EM 73.1 587 47.2 233 533
EX 59.6 59.2 523 333 535

FX 719 553 461 245 517

Table 7: Difficulty breakdown for Spider test set.

easy medium hard extra all

count 993 845 399 261 2498
baseline EM 689 369 312 11.1 459
EX 619 356 306 18.8 435

FX 659 325 281 10.7 428

GAZP EM 665 39.6 384 142 459
EX 60.1 395 31.1 203 44.6

FX 653 368 263 12.6 439

Table 8: Difficulty breakdown for Sparc test set.

6881

easy medium hard extra all

count 730 607 358 209 1904
baseline EM 582 28.0 20.6 18.8 37.2
EX 47.1 272 268 28.2 349

FX 519 241 212 20.6 338

GAZP EM 60.0 338 231 139 39.7
EX 48.1 283 410 239 359

FX 551 269 257 16.7 36.3

Table 9: Difficulty breakdown for CoSQL test set.

turn 1 turn2 turn 3 turn 4+

count 842 841 613 202
baseline EM 699 418 289 164
EX 678 369 28.1 16.9
FX 702 357 248 134
GAZP EM 678 419 29.7 19.6
EX 663 401 29.0 198
FX 688 383 259 183

Table 10: Turn breakdown for Sparc test set

In addition to the main experiment results in
Table 2 of Section 3.1, we also examine the perfor-
mance breakdown across query classes and turns.

GAZP improves performance on harder
queries. First, we divide queries into difficulty
classes following the classification in Yu et al.
(2018b). These difficulty classes are based on
the number of SQL components, selections, and
conditions. For example, queries that contain
more SQL keywords such as GROUP BY, ORDER BY,
INTERSECT, nested subqueries, column selections,
and aggregators, etc are considered to be harder.
Yu et al. (2018b) shows examples of SQL queries
in the four hardness categories. Note that extra
is a catch-all category for queries that exceed
qualifications of hard, as a result it includes
artifacts (e.g. set exclusion operations) that may
introduce other confounding factors. Tables 7, 8,
and 9 respectively break down the performance
of models on Spider, Sparc, and CoSQL. We
observe that the gains in GAZP are generally more
pronounced in more difficult queries. This finding
is consistent across tasks (with some variance) and
across three evaluation metrics.

One potential explanation for this gain is that
the generalization problem is exacerbated in more

turn 1 turn 2 turn 3 turn 4+

count 548 533 372 351
baseline EM 47.3 365 323 28.5
EX 438 343 303 27.9
FX 462 319 294 234
GAZP EM 500 367 357 303
EX 464 323 322 30.2
FX 500 328 314 271

Table 11: Turn breakdown for CoSQL test set.

difficult queries. Consider the example of language-
to-SQL parsing, in which we have trained a parser
on an university database and are now evaluating
it on a sales database. While it is difficult to pro-
duce simple queries in the sales database due to ta
lack of training data, it is likely even more diffi-
cult to produce nested queries, queries with group-
ings, queries with multiple conditions, etc. Be-
cause GAZP synthesizes queries — including dif-
ficult ones — in the sales database, the adapted
parser learns to handle these cases. In contrast,
simpler queries are likely easier to learn, hence
adaptation does not help as much.

GAZP improves performance in longer inter-
actions. For Sparc and CoSQL, which include
multi-turn interactions between the user and the
system, we divide queries into how many turns into
the interaction they occur. This classification in
described in Yu et al. (2019b) and Yu et al. (2019a).
Tables 10 and 11 respectively break down the per-
formance of models on Sparc and CoSQL. We ob-
serve that the gains in GAZP are more pronounced
in turns later in the interaction. Against, this find-
ing is consistent not only across tasks, but across
the three evaluation metrics.

A possible reason for this gain is that the
conditional sampling procedure shown in Algo-
rithm 1 improves multi-turn parsing by synthesiz-
ing multi-turn examples. How much additional
variation should we expect in a multi-turn setting?
Suppose we discover T coarse-grain templates by
counting the training data, where each coarse-grain
template has S slots on average. For simplicity,
let us ignore value slots and only consider column
slots. Given a new database with /N columns, the
number of possible filled queries is on the order of

0] (T X (f,)) For K turns, the number of possi-

6882

K
ble queries sequences is then O <(T x (]‘3)) > i

This exponential increase in query variety may im-
prove parser performance on later-turn queries (e.g.
those with a previous interaction), which in turn
reduce cascading errors throughout the interaction.

