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Abstract

Numerical reasoning over texts, such as ad-
dition, subtraction, sorting and counting, is a
challenging machine reading comprehension
task, since it requires both natural language un-
derstanding and arithmetic computation. To
address this challenge, we propose a heteroge-
neous graph representation for the context of
the passage and question needed for such rea-
soning, and design a question directed graph
attention network to drive multi-step numerical
reasoning over this context graph. Our model,
which combines deep learning and graph rea-
soning, achieves remarkable results in bench-
mark datasets such as DROP !

1 Introduction

Machine reading comprehension (MRC) aims to de-
velop Al models that can answer questions for text doc-
uments. Recently, the performance of MRC in public
datasets has been improved dramatically due to the ad-
vanced pre-trained models, such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019) and ALBERT (Lan
etal., 2019).

However, pre-trained models are not explicitly aware
of the concepts of numerical reasoning since numer-
acy supervision signals are rarely available during pre-
training. The representations from these pre-trained
models fall short in their ability to support downstream
numerical reasoning. Yet such ability is critical for the
comprehension of financial news and scientific articles,
since basic numerical operations, such as addition, sub-
traction, sorting and counting, need to be conducted to
extract the essential information (Dua et al., 2019).

Recently, Dua et al. (2019) proposed a numerically-
aware QANet (NAQANet), which treats the span ex-
tractions, counting, and numerical addition/subtraction
separately. However, this work is preliminary in the
sense that the model neglects the relative magnitude
between numbers. To improve this method, Ran et al.

*Corresponding author
'https://leaderboard.allenai.org/drop/submissions/public.
As of September 08, 2020, our models are ranked first in the
case of fair comparison using the identical pre-training model.

(2019) proposed NumNet, which constructs a number
comparison graph that encodes the relative magnitude
information between numbers on directed edges. Al-
though NumNet achieves superior performance than
other numerically-aware models (Hu et al., 2019a; An-
dor et al., 2019; Geva et al., 2020; Chen et al., 2020), we
argue that NumNet is insufficient for sophisticated nu-
merical reasoning, since it lacks two critical ingredients
for numerical reasoning:

1. Number Type and Entity Mention. The number
comparison graph in NumNet is not able to identify
different number types, and lacks the information of
entities mentioned in the document that connect the
number nodes.

2. Direct Interaction with Question. The graph rea-
soning module in NumNet leaves out the direct ques-
tion representation, which may encounter difficulties
in locating important numbers directed by the ques-
tion as the pivot for numerical reasoning.

The number type and entity information play essen-
tial roles in numerical comprehension and reasoning.
As per the study in the cognitive system - “this abstract,
notation-independent appreciation of numbers develops
gradually over the first several years of life ... human in-
fants appreciate numerical quantities at a non-symbolic
level: They know approximately how many objects they
see before them even though they do not understand
number words or Arabic numerals.”, the concept of
discrete number is gradually developed through the real-
life experience (Cantlon et al., 2009). The association
among the numbers and entities is a strong regulariza-
tion for learning the numerical reasoning model: the
comparison and addition/subtraction between numbers
are typically applied to those with the same type or re-
ferring to the same entity. To illustrate it, we show two
concrete examples of numerical reasoning over texts in
Table 1. In the first example, a question related to the
“population” is being asked. There are 5 “people count-
ing” numbers and 3 “date” numbers. When the type
of number is given, the reasoning difficulty is largely
reduced if the model learns to extract the “people count-
ing” numbers conditioned on this “population” question.
In addition, the entities in the graph provide explicit
information on the correlation between the passage and
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Table 1: Two MRC cases requiring numerical reasoning are illustrated. There are entities and numbers of different

types. Both are emphasized by different colors:

, number, percentage, date, ordinal. We explicitly encode the

type information into our model and leverage the question representation to conduct the reasoning process.

Question Passage

Answer

At the battle of
how many and
were injured or

.. In 1754 and
and
the rebels,
were killed and 152 taken prisoner, while 4

killed?

military forces were dispatched to force the
Hostilities resumed in 1756 when an army of 3,000

was sent to subdue the
, was killed in a skirmish with

to leave the area ... 34
, and native auxiliary soldiers under
rebels. On February 7, 1756 the leader of

and troops. ... 1,511

and were killed and about 30 were wounded...

In which quarter did  The
kick  yard touchdown pass to running back
his shortest field goal of the ~ followed by kicker

climb as
and 24-yard field goal. In the fourth quarter,

game?

struggles continued in the second quarter as quarterback

’s 38-yard field goal. In the third quarter,
completed a 76-yard touchdown pass to wide receiver

completed a 15-  third
and an | 1-yard touchdown pass to wide receiver s

’s deficit continued to
, followed by ’s 35-

concluded its domination with ’s 30-yard

I Question:At the battle of Caiboaté, how many

and were injured or killed? I

[

‘ -

February 7,1756

Figure 1: The constructed heterogeneous typed graph of the example in Table 1 is illustrated on the left. The red
(dark blue) nodes are the numbers (dates) and the others are entities. The edges encode the relations among the
numbers and entities: (1) The numbers with the same number type, e.g., date, are wired together. (2) The graph
connects the numbers and the entities that are in the same sentence to indicate their co-occurrence. In the first

round, the model pays attention to a sub-graph that contains the

and entities since they are

mentioned in the question. In the update, the model learns to distinguish between the numbers and the dates and
extracts the numbers related to the question. In the second round, the representations of the numbers are updated by
the messages from the entities as well as the question to conduct the reasoning.

the question. The entities in the question may occur in
several sentences in the passage, indicating how each
number is related to each other through these bridging
entities, which helps the QA model better collect and
aggregate the information for numerical reasoning. We
also observe that when the question entities co-occur
in a single sentence (the last sentence in this exam-
ple), this could be a hint that the answer can be derived
from that sentence. The second example illustrates the
case in span extraction. Similarly, the model is bene-
fited when the correlations between the numbers and
“Stephen Gostkowski” are explicitly provided.

To explicitly integrate the type and entity information
into the model, we construct a heterogeneous directed
graph where the nodes consist of entities and different
types of numbers, and the edges can encode different
types of relations. The corresponding graph of the ex-
ample in Table 1 is illustrated in Figure 1. The graph
nodes are composed of entities and numbers from both
the question and the passage. The numbers of the same
type are densely connected with each other. The co-
occurred numbers and entities within a sentence are also
connected with each other.

Based on this heterogeneous graph, we propose a
question directed graph attention network (QDGAT)

for the task of numerical MRC. As the answer-related
numbers can be directed by the question, QDGAT in-
corporates the contextual encoding of the question in
the graph reasoning process. More specifically, QDGAT
employs a contextual encoder, such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019), to ex-
tract the representations of the numbers and entities
in both the question and the passage, serving as the
initial embeddings of each node in the graph. With
the heterogeneous graph, QDGAT learns to collect in-
formation from the graph conditioned on the question
for numerical reasoning. Each node is also described
by a context-aware representation conditioned on the
question, and the representations are updated through a
message-passing iteration. After multiple iterations of
message passing with graph neural networks, QDGAT
gradually aggregates the node information to answer the
question. In this sense, QDGAT abstracts the represen-
tation of passage and question in a way more consis-
tent with human perception and reasoning, making the
model produces a more interpretable reasoning pattern.

We evaluate QDGAT on two benchmark datasets: the
DROP dataset (Dua et al., 2019) which requires Discrete
Reasoning Over the content of Paragraph, and a subset
of the RACE dataset (Lai et al., 2017) that contains the
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number-related questions. Experimental results indicate
that QDGAT achieves remarkable performance on the
DROP dataset, currently ranked as top 1 for all released
models. And also rank first compared with other models
that use the identical pre-training model.

2 Related Work

Machine Reading Comprehension. Benefit from re-
cent improvements of pre-trained deep language models
like BERT (Devlin et al., 2019), XLNet (Yang et al.,
2019), a considerable progress of MRC have been made
on the annotated datasets such as SQuUAD (Rajpurkar
et al., 2016), RACE (Lai et al., 2017), TriviaQA (Joshi
et al., 2017) and so on. To answer complex questions of
MRC, a number of neural architectures have been pro-
posed such as Attentive Reader (Hermann et al., 2015),
BiDAF (Seo et al., 2017), Gated Attention Reader (Dhin-
graetal., 2017), R-NET (Wang et al., 2017), QANet (Yu
et al., 2018), which achieved excellent results on exist-
ing datasets. Some recent works (LCGN (Hu et al.,,
2019b), NMNs (Gupta et al., 2020), NumNet (Ran et al.,
2019)) attaching reasoning capabilities to models shows
a promising direction. LCGN uses graph neural net-
works (GNN) conditioned on the input questions to sup-
port rational reasoning. NMNs parse the questions into
one of several programs, each of which is responsible
for specific reasoning ability.

Numerical Reasoning in MRC. Numerical reason-
ing has been studied when solving arithmetic word
problems (AWP). However, existing AWP models only
worked on small datasets, and the arithmetic expression
must be clearly given. Numerical reasoning in MRC is
more challenging since the numbers and reasoning rules
are extracted from raw text, which requires a more so-
phisticated model. NAQANet improved the output layer
of QANet to predict the answers from the arithmetic
computation over numbers. In addition to NAQANet,
GenBERT (Geva et al., 2020) injects numerical skills
into BERT by generating numerical data. (Chen et al.,
2020) provides a semantic parser that points to loca-
tions in the text that can be used in further numerical
operations. BERT-Calculator (Andor et al., 2019) de-
fines a set of executable programs and learns to choose
one to derive numerical answers. NumNet (Ran et al.,
2019) uses a numerically-aware graph neural network
to encode numbers, which made further progress on the
DROP dataset. However, the graph in NumNet contains
only numbers and ignores their types and context infor-
mation which play a key point in numerical reasoning.
Our model differs from NumNet in two aspects: (1) We
use a heterogeneous graph containing entities and dif-
ferent types of numbers to encode the relations among
the entities and numbers, rather than the relations from
numerical comparison; (2) We use the question embed-
ding to modulate the attention over graph neighbors and
update the representation to achieve reasoning.

3 Method

In this section, we first introduce the machine read-
ing comprehension task requiring numerical reasoning.
Then the framework of our model is provided, followed
by detailed descriptions about its components.

3.1 Problem Definition

In the MRC task, each data sample consists of a passage
P and a related question (). The goal of an MRC model
is to answer the question according to P. Besides pre-
dicting the text spans as in the standard MRC tasks, the
answer A in the case of numerical reasoning can also be
a number derived from arithmetic computations, such
as sorting, counting, addition and subtraction.

3.2 Overall Framework

The framework of the proposed model is briefly de-
picted in Figure 2. The model is composed of three
main components, i.e., a representation extractor mod-
ule, a reasoning module, and a prediction module. The
representation extractor is responsible for semantic com-
prehension. Upon the extractor, a heterogeneous graph
with typed numbers and related entities is constructed.
To aggregate the information between the numbers and
entities, we propose a question directed graph atten-
tion network (QDGAT) to make sophisticated reasoning.
This graph attention network directly employs the ques-
tion () to manage the message passing over the typed
graph.

Word Representation Extractor. We employ
RoBERTa (Liu et al., 2019) as the base architecture
for the representation of textual inputs. The module
takes the passage P and the question () as input and
outputs representation vectors for each token:

Q,P = RoBERTa(Q, P), 1)

where RoBERTa denotes the transformer encoder initial-
ized with RoBERTa parameters, P (Q) denotes the list
of the token vectors of size dj, in the passage (question).
It takes the concatenation of [CLS], @, [SEP], P and
[SEP] as input, and outputs representations of Q and
P as Q and P.

Graph Construction. This module builds the het-
erogeneously typed graph from text data. The graph
G = (V,E) contains numbers N and entities T as the
nodes V = {N, T}, and its edges E encode the infor-
mation of the number type and the relationship between
the numbers and the entities. The details will be clarified
in Section 3.3.

Numerical Reasoning Module. The numerical rea-
soning module, i.e., QDGAT, is built upon the rep-
resentation and graph extractor. Based on the graph
G = (V,E), the QDGAT network can be formulated as
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Figure 2: The framework of our model. It consists of a representation extractor (left), a reasoning module (middle)
and a prediction module (right). The reasoning module reasons over a heterogeneous directed graph whose nodes
are the numbers and the entities. Two kinds of relations are encoded: (1) the numbers of the same type are connected
with each other by the type-specific edges, (2) the entities and the numbers are connected when they co-occur in
a sentence. The reasoning is conditioned on the question explicitly to guide the message propagation over the
graph. In each iteration, each node selectively receives the messages from the neighboring nodes with the question
representation to update its representation. The derived representations of these nodes are then combined with the
RoBERTa output for the final prediction module. The dashed circle means zero vector.

follows:
M® =wW"Q, ©)
M?” = wWMp 3)
c = WMEAN(Q), )
U = QDGAT(G; MF M€, ¢c), (5)

where WM ¢ R *dn ig a shared projection matrix to
obtain the input of QDGAT, MEAN denotes the mean
pooling, W¢ € R *dr projects the averaged vector
of the representations in the question to derive c. ¢
is the question language embedding used to direct the
reasoning in QDGAT. QDGAT then reasons over the
representations (M”’, M?) and the graph G conditioned
on the question command c.

Prediction Module The prediction module takes the
output of graph reasoning network U for final prediction.
At present, the types of answers are generally divided
into three categories in NAQANet and NumNet+: (a)
span extraction, (b) count, (c) arithmetic expression. We
implemented separate modules for these answer types
and all of them take the output of graph network U and
question embedding c as input. They are specified as
follows:

e Span extraction: There are three span extraction
tasks, i.e., single passage span, multiple passage
spans, single question span. The probability for
single span extraction is derived by the product
of the probabilities of the start and end positions
in either question or passage. For multiple spans
extraction, the probability is constructed referring
to (Efrat et al., 2019).

e Count: This problem is regarded as a 10-class clas-
sification problem (0-9), which covers about 97%
counting problems in the DROP dataset.

o Arithmetic expression: The answer is derived by an

arithmetic computation. In the DROP dataset, only
addition and subtraction operations are involved.
We achieved this by classifying each number into
one of (—1,0,+1), which is then used as the coef-
ficient of the number in the numerical expression
to arrive at the final answer.

We used a unique classification network to classify the
data sample into one of five fine-grained types (7"). And
each type solver employs a unique output layer to calcu-
late the conditional answer probability p(A|T).

3.3 Graph Construction with Typed Number and
Entities

Here, we illustrate how to construct the heterogeneous
graph G = (V, E) in our model. NumNet solely con-
cerns the numerical comparisons between numbers by
using the directed edges. The graph used in our model
differs from NumNet significantly: Rather than mod-
eling the numerical comparison, our graph instead ex-
ploits two sources of information, i.e., the type of num-
bers and the related entities. As illustrated in Figure 2,
the nodes of graph V consists of both entities T and
numbers N, both of which are recognized by an external
name entity recognition (NER) system .

Specifically, the NER software labels each token in
the text into one of 21 pre-defined categories. The to-
kens labeled as NUMBER, PERCENT, MONEY, TIME,
DATE, DURATION, ORDINAL are regarded as the num-
bers. Since DROP dataset contains a lot of samples re-
lated to American football games, we also used heuris-
tic rules to extract the numbers of YARD type in the
data samples. Besides, we leveraged a number ex-
tractor, i.e., word2num 3, to extract the remaining

“We used Standford CoreNLP toolkit (Manning et al.,
2014).

*https://pypi.org/project/word2number/
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numbers, which are labeled as NUMBER. All these to-
kens construct the number set N with 8 number types
(Vn = (NUMBER, PERCENT, MONEY, TIME, DATE,
DURATION, ORDINAL, YARD)). As for other recog-
nized tokens, we map them into the label ENTITY to
build the entity set T whose type set Vr is ENTITY.
In the following, we use t(v) € Vy U Vr to indicate
the type of the node. The type information can directly
inform the model to find the numbers related to the
question and thus reduces the reasoning difficulty.

The edges E encode the relationship among the num-
bers and the entities, which correspond to two situations.

o The edge between the numbers: An edge e; ; exists
between two numbers v; and v; if and only if these
two numbers are of the same type in V. And its
relation 7; ; = r; ; corresponds to the number type.

o The edge between the entity and the number: An edge
e; j exists between an entity v; and a number v; if and
only if v; and v; co-occur in the same sentence. In
this situation, the relation r; ; = r;; is ENT+DIGIT.

The edges in the first situation cluster the same typed
numbers together, which provides an evident clue to
help to reason over the numbers. In the second situa-
tion, we assume that an entity is relevant to a number
when they appear closely. This kind of edges roughly
indicates the correlations between the numbers and the
entities in most cases. On the other hand, the relative
magnitude relations in Numnet+ are not considered in
our graph since early experiments with these relations
did not improve results. Overall, the graph has 9 rela-
tions R, i.e., 8 relations for number types and 1 relation
for ENT+DIGIT.

3.4 Question Directed Graph Attention Network

Here, we present the details of the QDGAT function.
Based on the heterogeneous graph G, our QDGAT
makes context-aware numerical reasoning conditioned
on the question, which collects the relational informa-
tion through multiple iterations of message passing be-
tween the numbers and the entities. It dynamically deter-
mines which objects to interact with through the edges
in the graph, and sends messages through the graph to
propagate the relational information. To achieve this, we
augment the reasoning module with the contextualized
question representation. For instance in the example
in Table 1, the task is to find how many Spanish and
Portuguese were injured or killed. The entities and the
numbers are explicitly marked and are modeled in a het-
erogeneous graph, as shown in Figure 1. Our model is
able to extract the related entities, i.e., the Spanish and
Portuguese, conditioned on c. Among the numbers re-
lated to these two entities, a number of them are of date
type, while the others are about people. However, only
the numbers related to people should be concerned as
requested by the question. Then the model reasons over
these numbers to derive the expression for the answer
calculation.

Module Input. The graph neural network takes the
representations from the extractor as the input. Each
node is represented by the corresponding vector in M”
and M%. Formally, when v; is in the passage, the input
of node v; is the v; = M [I” (v;)], where I returns
the index of v; in MI¥ 4. The collected vectors from the
question and the passage construct the input of reason-
ing module v°.

Question Directed Node Embedding Update. At
each iteration t € {1,...T'}, a question directed layer in-
tegrates the question information with the current node
embedding representations. This step is to mimic the
reasoning step of detecting relevant nodes. More specif-
ically, the question, represented by c, is used to direct
the information propagation between the nodes (i.e.,
the numbers and the entities). Each node collects the
information from the neighbors with the question com-
mand. The role of numbers and entities is not only
dependent on the input itself, but also the neighbors and
the relations between them. Therefore, we adopt the
self-attention layer (Vaswani et al., 2017) to dynami-
cally aggregate the information. The representation is
first converted into three spaces denoting the query, key
and value, conditioned on c:

m’ = W.g(Wjcc), ©®)
xfl =W, [vi: VO] ® chmt , @)
xt = Wy, [vl : v?] © Wiem! | )
xt =W, vl : v & W,m', ©)

where m? denotes the command vector extracted dy-
namically from the ¢ with WZC and Wy, € Rnx2dn
g denotes the ELU activation function (Clevert et al.,
2016), W, Wy, and W, are of size dj, X 2dj,, W 4,
Wy and W, are of size dj, x dp, [a : b] means the
concatenation of a and b, and ® means the element-wise
multiplication. These equations include the input v to
maintain the original information.

Directed Graph Attention. At each iteration, this
graph attention layer for each node aggregates infor-
mation from the neighbors of the node. This step is to
mimic the reasoning step of selecting the relevant rela-
tions to operate on. More specifically, we compute the
relatedness between the node ¢ and j, which is measured
by summarizing all relations:

af; = F( Y Wik, :xi ),

TGRi,j

(10)

where R; ; means the relations between the two nodes,
a; ; denotes the attention score of the node 4 for the node
4, Wk is the vector to map the representations into a
scalar for the relation r and f denotes the leakyReLLU
activation function (Xu et al., 2015).

This attention score is used in the message propa-
gation to collect the right amount of information from
each neighboring node. In the propagation function, the

“When v; corresponds to several tokens, the average of
these vectors is used.
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calculation of the node interaction is as follows:

t
ol — exp(a; ;)

(1)

Y en, exp(al )
X =Y aix, (12)
JEN;
vitl = w,[vl;x!], (13)

where N contains the adjacent nodes of the node 7 in
the G and W, is in R%*24  With the weight o ;
obtained, the values of neighboring nodes are summa-
rized to derive a new representation X. Finally, the new
representation of v is computed by mapping the con-
catenation of v* and x.

We denote the node embedding update and the graph
attention layers as a function:

vitt = ODGAT-single(G,vi,c).  (14)

From the process of this reasoning step, we can see that
the module receives the information from the question,
which directly manages the message propagation among
the numbers and the entities.

Module Output We perform T iterations of the rea-
soning step of ODGAT-single to perform QDGAT in
Equation 5. The output of the last layer v7 is obtained
for the numbers and entities in U. For other tokens, the
representation vectors from the extractor are used. For-
mally, the calculation of the output U is implemented
as follows:

U — {Mz +vI,, ifi-thtoken € V

M, >

otherwise

where J(i) denotes the index of token ¢ in the graph
nodes, M denotes the combination of M¥ and M€ for
simplicity. U is then used in the prediction module for
the five answer types mentioned above.

4 Experiments

4.1 Dataset and Evaluation Metrics

We performed experiments on the DROP dataset (Dua
et al., 2019), which was recently released for research
on numerical machine reading comprehension (MRC).
DROP is constructed by crowd-sourcing question-
answer pairs on passages from Wikipedia, which con-
tains 77,409 / 9,536 / 9,622 samples in the original
training / development / testing split. Following the
previous work (Dua et al., 2019), we used Exact Match
(EM) and F1 score as the evaluation metrics.

4.2 Baselines

We choose publicly available methods (including non-
published ones on the dataset leaderboard) as our base-
lines:

e Semantic parsing models: Syn Dep, OpenlE and
SRL (Dua et al., 2019). All these models are en-
hanced versions of KDG (Krishnamurthy et al., 2017)
with different sentence representations.

e Traditional MRC models: (1) BiDAF, a model that
uses a bi-directional attention flow network to obtain
a query-aware context representation; (2) QANet, a
model that combines convolution and self-attention
models to answer the questions; (3) BERT (Devlin
etal.,2019), a pre-trained deep Transformer (Vaswani
et al., 2017) model that has improved results on many
NLP tasks.

e MRC models with numerical reasoning module:
(1) NAQANEet (Dua et al., 2019), a model that adapts
the output layer of QANet to numeric reasoning; (2)
ALBERT-Calculator (Andor et al., 2019), a model
based on ALBERT-xxlarge (Lan et al., 2020) that
picks one of executable programs from a predefined
set to derive numerical answers. (3) NumNet, a model
that embeds numerical properties into the distributed
representation by using a GNN on the number graph;
(4) NumNet+ °, an enhanced version of NumNet,
which uses a pre-trained RoOBERTa model and sup-
ports multi-span answers.

4.3 Experiment Settings

We use the large ROBERTa model as the contextual
encoder, with 24 layers, 16 attention heads, and 1024
embedding dimensions. This indicates that the hidden
size dj, is 1024. The model was trained end-to-end for
5 epochs using Adam optimizer (Kingma and Ba, 2015)
with a batch size of 16. For the hyperparameters of
RoBERTa, the learning rate is Se-5 and the L2 weight
decay is le-6. For the other parts, the learning rate is le-
4 and the L2 weight decay is 5e-5. We perform T = 4
iterations of the graph reasoning step, which performs
best in our experiments. We adopt the standard data pre-
processing following previous work (Ran et al., 2019).

4.4 Main Results

The overall experimental results are reported in Table 2,
where the performance of baseline methods is obtained
from previous work (Dua et al., 2019; Seo et al., 2017;
Ran et al., 2019; Andor et al., 2019) and the public
leaderboard.®

The first three methods in Table 2 are based on ei-
ther semantic parsing or information extraction, and
perform poorly on the numerical MRC task. Tradi-
tional MRC methods BiDAF and QANet, which has
no numerical reasoning modules, achieve slightly bet-
ter performance but still far from satisfying. Methods
that are customized for numerical reasoning, including
NAQANet and NumNet, have achieved significantly bet-
ter performance in terms of EM and F1 score. Compared
to traditional MRC methods, these methods can handle
different answer types, e.g., span extraction, counting,
and addition/subtraction of numbers.

Our method QDGAT outperforms all the existing
methods, achieving 86.38 F1 score and 83.23 EM on

Shttps://github.com/llamazing/numnet_plus
Shttps://leaderboard.allenai.org/drop/submissions/public
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Table 2: Overall results on the development and test set
of DROP. For QDGAT,, we used more careful data pre-
processing and a RoBERTa pre-trained on the SQuaD
dataset. T denotes that the result is taken from the public
leaderboard. Better results are in bold.

Table 3: Ablation study results on the development
set of DROP. QDGAT g removes the number type and
entity from the graph, and QDGATy(, removes question
direction from QDGAT. Better results are in bold.

Method EM F1
Method Dev Test NumNet+ 81.07 84.42
EM F1 EM F1 QDGATNH 81.98 84.94
QDGATNqg 82.04 85.01
Syn Dep 9.38 11.64 8.51 10.84 QDGAT 82.74 85.85
OpenlE 8.80 11.31 8.53 10.77
SRL 9.28 11.72 8.98 1145 .
BiDAF 26.06 28.85 2475 27.49 Table 4: Decomposed performance on different answer
QANet 27.50 3044 2550 28.36 types in the development set of DROP. Better results are
BERT 30.10 3336 2945 3270 in bold.
NAQANet 4620 49.24 44.07 47.01
ALBERT-Calculator 80.22 8398 79.85 83.56
NumNet 6492 6831 6456 67.97 _ Nombor — Span
NumNet+ (RoBERTa) 81.077 84.427 81.52 84.84f etho - 0 T e o
NumNet+ (ensemble)  82.63" 85.597 83.147 86.167
NumNet+  82.89  83.13 5667 6391 8200 86.84
QDGAT (RoBERTa) 82.74 8585 83.23 86.38 QDGAT 86.00 8623 6027 67.48 84.05 88.53
QDGAT, (RoBERTa) 84.07 87.05 84.53 87.57
QDGAT), (ensemble) 85.31 88.10 85.46 88.38
Human 9409 96.42 ition that numbers with the same type or connected to

the test set, which narrows the human performance gap
to less than 11 points. NumNet+ is the most relevant
one to our method, which also leverages a graph neural
network as well as the RoBERTa contextual encoder.
Compared to NumNet+, QDGAT incorporates the num-
ber types and entity mentions into the graph attention
network, and directs the graph reasoning process with
the question. In this way, our method can better capture
the relations between numbers and entities, and also
reduce the learning difficulty due to the interaction with
the question during the graph reasoning. Experimental
results demonstrate the effectiveness of QDGAT, which
outperforms NumNet+ by 1.23 in terms of EM and 1.37
in terms of F1 score. Ensembling three of our models
with different random seeds and learning rates further
improves the performance.

4.5 Ablation Analysis

To examine the impact of different components of
QDGAT, we conduct ablation studies and compare the
performance in Table 3. QDGAT Ny removes the num-
ber type and entity from the graph, and QDGATy, re-
moves question direction from QDGAT and instead uses
a normal graph convolution message passing mecha-
nism. NumNet+ serves as a baseline for reference, since
it has no question attention, no entities and no number
types in the graph. We observe that QDGATyq, which
has no question directed attention, performs worse. This
justifies that the reasoning with graph neural network is
more effective when conditioned on the input question.
We also observe that QDGAT Ny performs significantly
worse, which demonstrates the importance of incorporat-
ing the information of number types and entity mentions
in the reasoning graph. This is consistent with our intu-

the same entity are more relevant to each other.

Table 4 decomposes the QA performance on differ-
ent answer types in the development set of DROP. As
reported in the table, QDGAT works better on the ques-
tions relating to numbers and dates, which requires more
specific numerical reasoning compared with the span ex-
traction. The remarkable improvement indicates that the
proposed method effectively benefits the reasoning mod-
ule to comprehend the numerical problems. Notably,
the performance in span extraction can still be improved
by our method. The span extraction in DROP heavily
relies on the ability to comprehend the relation between
the number and the entity (c.f. the second example in
Table 1).

4.6 Performance on RACENum

To investigate the generalization capability of QDGAT
in numerical reasoning, we examine whether the pre-
trained model on DROP is transferable. We com-
pare QDGAT with NumNet+ on RACE (Lai et al.,
2017), a dataset collected from the English exams
for middle and high school Chinese students. We ex-
tracted a special part of examples from RACE, where
the questions start with “how many”, referred to as
RACENum. RACENum is then divided into mid-
dle school exam (RACENum-M) and high school
exam (RACENum-H) categories. The RACENum-M
and RACENum-H datasets contain 633 and 611 ques-
tions accordingly. Since the original RACE dataset is in
the multiple-choice form, we converted them into the
DROP data format. The accuracy of NumNet+, QDGAT
and its ablation variants on RACENum are summarized
in Table 6, which is consistent with the performance
comparison on the DROP dataset.

The overall low scores are attributed to the lack
of training on the in-domain data. QDGAT achieves
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Table 5: The cases from the DROP dataset. The predictions from the QDGAT and NumNet+ are illustrated. The
differences between the output of these two models demonstrate the properties of the proposed model. The last two
columns indicate the arithmetic expression, obtained by assigning a sign (plus, minus or zero) for each extracted
numbers (we omitted the zero sign numbers). Then the answer was derived by summing up the signed numbers.

Question & Answer Passage NumNet+ QDGAT
Q: How many less in age  The age distribution, in Aigle is; 933 children or 10.7% of the population are between 0 and 19-13.0- 14.3-
percentage in teenagers than 9 years old and 1,137 teenagers or 13.0% are between 10 and 19. Of the adult population,  10=-4 13.0
adult? 1,255 people or 14.3% of the population are between 20 and 29 years old... =13
A: 13
Q: How many yards did ... Carolina scored first in the second quarter with kicker hitting a 45-yard field — +45=45 45+49
kick? goal . The Falcons took the lead with QB Joey Harrington completing a 69-yard TD pass =94

to WR Roddy White . The Panthers followed up with QB Jake Delhomme completing a 13-
A: 94 yard TD pass to RB DeShaun Foster ... In the fourth quarter , the Panthers scored again , with

a 49-yard field goal . The Falcons > Andersen nailed a 25-yard field goal to

end the scoring ...

Q: How many months af- ... A sign that order had been restored among the Derg was the announcement of Count: 3 +4-2=2

ter
was made head of state did

close the U.S. mili-
tary mission and the communi-

cations centre?

as head of state on 02/1977. However, the country remained in chaos as the
military attempted to suppress its civilian opponents in a period known as the Red Terror
closed the U.S. military mission and the communications centre in 04/1977. In
06/1977, accused Somalia of infiltrating SNA soldiers into the Somali area to fight
alongside the WSLF. Despite considerable evidence to the contrary...

A:2

Table 6: The accuracy on the unsupervised RACENum
dataset.

Method RACE-M RACE-H Avg.
NumNet+ 46.98 31.59 39.29
QDGATNH 50.88 35.30 43.09
QDGATnNq 49.67 35.84 42.76
QDGAT 52.53 34.86 43.70

43.7 points on RACENum on average, which is ap-
proximately 4.5 points higher than NumNet+. Both
QDGATNq and QDGATy still outperform NumNet+
by a 2-3 points margin. We further confirmed that
ablating either the entity information or question atten-
tion from the heterogeneous graph weakens the power
of QDGAT to learn numeracy and the capability of
understanding numbers in either digits or word form.
Compared with QDGAT, ablating the question directed
attention, i.e., QDGATNq, leads to about a 1 point drop.
For QDGATNy; that removes the number type and en-
tity mentions from the graph, it performs consistently
worse than QDGAT, demonstrating the impact of the
heterogeneous graph for numerical reasoning.

4.7 Case Study

We show several examples to provide insights into how
our model works. Table 5 compares the different model
prediction results from NumNet+ and QDGAT:

o The first example shows the importance of number
types. NumNet+ treats all numbers as the same
type, which fails to capture that the question only
cares about percentage and incorrectly predicts “19”
(type age) as part of the result. In contrast, QDGAT
extracts the relevant numbers and derives the cor-
rect answer.

e The second example highlights the importance of
entity mentions. NumNet+ fails to extract “49-
yard”, but QDGAT easily captures this number
since “49-yard” and “45-yard” are connected to the
same entity “Kassy” on the heterogeneous graph
which is generated from the passage.

e The third example shows the importance of ques-
tion conditioning. Solving this example requires
to extract the two dates related to two events men-
tioned in the question. Without direct interaction
between the question, the model tends to recog-
nize this example as a counting problem since the
question starts with “how many”. However, when
combined with question directed attention, correct
numbers can be filtered out.

5 Conclusion

In this work, we propose a novel method named QDGAT
for numerical reasoning in the machine reading com-
prehension task. Our method not only builds a more
compact graph containing different types of numbers,
entities, and relations, which can be a general method
for other sophisticated reasoning tasks but also condi-
tions the reasoning directly on the question language
embedding, which modulates the attention over graph
neighbors and change messages being passed iteratively
to achieve reasoning. The experimental results verify
the effectiveness of our method. In the future, we plan
to extend our model to learn the heterogeneous graph
automatically, which assures more flexibility for numer-
ical reasoning. We would also explore to learn the types
of numbers and entities together the reasoning modules
using variational autoencoder techniques (Kingma and
Welling, 2014), which may help the NER system better
adapt to the numerical reasoning task.
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