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Abstract
We propose to solve the natural language in-

ference problem without any supervision from

the inference labels via task-agnostic multi-

modal pretraining. Although recent studies of

multimodal self-supervised learning also rep-

resent the linguistic and visual context, their

encoders for different modalities are coupled.

Thus they cannot incorporate visual informa-

tion when encoding plain text alone. In

this paper, we propose Multimodal Aligned

Contrastive Decoupled learning (MACD) net-

work. MACD forces the decoupled text en-

coder to represent the visual information vi-

a contrastive learning. Therefore, it embed-

s visual knowledge even for plain text infer-

ence. We conducted comprehensive experi-

ments over plain text inference datasets (i.e.

SNLI and STS-B). The unsupervised MACD

even outperforms the fully-supervised BiLST-

M and BiLSTM+ELMO on STS-B.

1 Introduction

Humans are not supervised by the natural language

inference (NLI). Supervision is necessary for appli-

cations in human-defined domains. For example,

humans need the supervision of what is a noun

before they do POS tagging, or what is a tiger in

Wordnet before they classify an image of tiger in

ImageNet. However, for NLI, people are able to

entail that a© A man plays a piano contra-

dicts b© A man plays the clarinet for
his family without any supervision from the

NLI labels. In this paper, we define such inference

as a more general process of establishing associ-

ations and inferences between texts, rather than

strictly classifying whether two sentences entail or

contradict each other. Inspired by this, we raise the

core problem in this paper: Given a pair of natural
language sentences, can machines entail their re-
lationship without any supervision from inference
labels?

In his highly acclaimed paper, neuroscientist

Moshe Bar claims that “predictions rely on the
existing scripts in memory, which are the result
of real as well as of previously imagined experi-
ences” (Bar, 2009). The exemplar theory argues

that humans use similarity to recognize different

objects and make decisions (Tversky and Kahne-

man, 1973; Homa et al., 1981).

Analogy helps humans understand a novel object

by linking it to a similar representation existing in

memory (Bar, 2007). Such linking is facilitated by

the object itself and its context (Bar, 2004). Con-

text information has been widely applied in self-

supervision learning (SSL) (Devlin et al., 2018;

de Sa, 1994; He et al., 2020). Adapting context to

NLI is even more straightforward. A simple idea

of constant conjunction is that A causes B if they

are constantly conjoined. Although constant con-

junction contradicts “correlation is not causation”,

modern neuroscience has confirmed that humans

use it for reasoning in their mental world (Levy

and Steward, 1983). For example, they found an

increase in synaptic efficacy arises from a presy-

naptic cell’s repeated and persistent stimulation of

a postsynaptic cell in Hebbian theory (Hebb, 2005).

As to the natural language, the object and its contex-

t can be naturally used to determine the inference.

For example, a© contradicts b© because they cannot

happen simultaneously in the same context.
The context representation learned by SSL (e.g.

BERT (Devlin et al., 2018)) has already achieved

big success in NLP. From the perspective of con-

text, these models (Devlin et al., 2018; Liu et al.,

2019) learn the sentence level contextual informa-

tion (i.e. by next sentence prediction task) and the

word level contextual information (i.e. by masked

language model task).

Besides linguistic contexts, humans also link oth-

er modalities (e.g. visions, voices) to novel input-

s (Bar, 2009). Even if the goal is to reason about
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plain texts, other modalities still help (although

they are not provided as inputs) (Kiela et al., 2018).

For example, if only textual information is used,

it is difficult to entail the contradiction between

a© and b©. We need the commonsense that a man

only has two arms, which cannot play the piano

and clarinet simultaneously. This commonsense is

hard to obtain from the text. However, if we link

the sentences to their visual scenes, the contradic-

tion is much clearer because the two scenes cannot

happen in the same visual context. We think it is

necessary to incorporate other modalities for the

unsupervised natural language inference.

The idea of adapting multimodal in SSL is not

new. According to (Su et al., 2020), we briefly

divide previous multimodal SSL approaches into

two categories based on their encoder infrastruc-

tures. As shown in Fig. 1a, the first category uses

one joint encoder to represent the multimodal in-

puts (Sun et al., 2019; Alberti et al., 2019; Li et al.,

2019, 2020; Su et al., 2020). Obviously, if the

downstream task is only for plain text, we cannot

extract the representation of text separately from

the joint encoder. So the first category is infeasible

for the natural language inference. The second cat-

egory (Lu et al., 2019; Tan and Bansal, 2019; Sun

et al., 2019) first encodes the text and the image

separately by two encoders. Then it represents the

multimodal information via a joint encoder over

the lower layer encoders. This is shown in Fig. 1b.

Although the textual representation can be extract-

ed from the text encoder in the lower layer, such

representation does not go through the joint learn-

ing module and contains little visual knowledge.

In summary, the encoders in previous multimodal

SSL approaches are coupled. If only textual inputs

are given, they cannot effectively incorporate visu-

al knowledge in their representations. Thus their

help for entailing the contradiction between a© and

b© is limited.

In order to benefit from multimodal data in plain

text inference, we propose the Multimodal Aligned

Contrastive Decoupled learning (MACD) network.

This is shown in Fig. 1c. Its text encoder is de-

coupled, which only takes the plain text as inputs.

Thus it can be directly adapted to downstream NLI

tasks. Besides, we use multimodal contrastive loss

between the text encoder and the image encoder,

thereby forcing the text representation to align with

the corresponding image. Therefore even if the text

encoder in MACD only takes the plain text as input,

text image

Joint encoder

SSL loss

(a) Multimodal SSL with one
joint encoder.

Text 
encoder

text

Image 
encoder

image

Joint encoder

SSL loss

(b) Multimodal SSL with two
single-modal encoders and
one joint encoder.

Text 
encoder

text image

Joint encoder 
for Image

Multimodal NCE loss
Downstream NLI tasks

(c) Our proposed multimodal aligned contrastive decoupled
network. When adapting to downstream NLI tasks, we
directly leverage the representation by the text encoder
through the red lines, which only requires text as input.

Figure 1: Comparison of different multimodal SSL ap-

proaches.

it still represents visual knowledge. In the down-

stream plain text inference tasks, without taking

images as input, the text encoder of MACD still im-

plicitly incorporating the visual knowledge learned

by the multimodal contrastive loss. Note that we

do not need a decoupled image encoder in the SSL.

So the image encoder in Fig. 1c in MACD takes

texts as inputs to provides a more precise image

encoder. We will elaborate this in section 2.1.

2 Problem Formulation

We outline the general decoupled SSL process of

MACD in section 2.1, and the downstream unsu-

pervised NLI task in section 2.2.

2.1 Decoupled Multimodal SSL

For pretraining MACD, we use the multimodal

training data Dt2i = {xi, yi}Ni=1 with N samples.

Each sample {xi, yi} consists of a pair of text xi
and image yi, which describe the same context. It is

straightforward to extend our method to modalities

other than texts and images.

MACD learns from Dt2i. Since text2image

is many-to-many, we use energy-based model-

s to represent their correlations. We first en-

code xi and yj into one pretext-invariant rep-

resentation space (Misra and van der Maaten,

2020). The encoders are denoted by f(xi; θf ) and

g(xi, yi; θg), respectively. We define the energy
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function σ(xi, yi) : X × Y → R as

σ(xi, yi) = d(f(xi; θf ), g(xi, yi; θg)) (1)

where f(xi; θf ) denotes the text encoder and

g(xi, yi; θg) denotes the image encoder. d is a non-

parametric distance metric (e.g. cosine). In the rest

of this paper, we will use f(x) and g(x, y) instead

of f(x; θf ) and g(x, y; θg) for convenience.

Note that the text encoder f(x) only takes the

text as input, while the image encoder g(x, y) takes

both the image and the text as input. The higher

the value of the energy function σ(), the higher the

probability that x and y are in the same context,

and vice versa. The forms of the encoders have the

following advantages:

• The text encoder f(x) and the image input

y are decoupled. Therefore we represent x
separately without knowing y. This allows

us to use f(x) in the downstream plain text

inference.

• g(x, y) represents the one-to-many relation-

ship via implicitly introducing the “predic-

tive sparse coding” (Gregor and LeCun, 2010).

One image has multiple corresponding texts.

To use energy-based models to represent the

one-to-many relationship, one common ap-

proach is to introduce a noise vector z to allow

multiple predictions through one image (Bo-

janowski et al., 2018). Note that such z can

be quickly estimated by the given text x and

image y (Gregor and LeCun, 2010). In our

proposed image encoder g(x, y), although z is

not explicitly introduced, the encoder allows

multiple predictions for one image via taking

different images as input. Besides, it allows

the image to interact with the text in the inner

computation, which is an implicit alternative

for the predictive z.

2.2 Downstream Unsupervised NLI
We use the representation from the pre-trained mul-

timodal SSL to predict the relations of natural lan-

guage sentence pairs under the unsupervised learn-

ing scenario. The testing data can be formulated

as Dtest = {xTi , zi}Mi=1, each xTi = (x1i , x
2
i ) is

composed of a sentence pair x1i and x2i . zi indi-

cates the relation between x1i and x2i . Under the

unsupervised setting, we predict zi for given xTi
by the similarity of f(x1i ) and f(x2i ) (e.g. cosine

similarity).

3 Methods

This section elaborates our major methodology. In

section 3.1, we show how we maximize the cross-

modal mutual information (MI) for the decoupled

representation learning. In section 3.2, we show

how we incorporate the mutual information (MI)

of local structures. We elaborate the encoders in

section 3.3. In Section 3.4, in order to solve the

catastrophic forgetting problem, we use lifelong

learning regularization to anchor the text.

3.1 Decoupled Representation Learning by
Cross-Modal Mutual Information
Maximization

As discussed in section 1, the query object and its

context determine the inference. NLI depends on

whether the two sentences are in the same context.

In this paper, we consider context from different

modalities (e.g. text or images).

Mutual information maximization has become

a trend for SSL (Tian et al., 2019; Hjelm et al.,

2019). For cross-modal SSL, we also leverage

mutual information I(X,Y ) to represent the cor-

respondence between the text and the image. Intu-

itively, high mutual information means that the text

and the image are well-matched. More formally,

the goal of multimodal representation learning is

to maximize their mutual information:

I(X,Y ) =
∑

x,y

P (x, y) log
P (x|y)
P (x)

(2)

Eqn. (2) is intractable and thereby hard to com-

pute. To approximate and maximize I(X,Y ), we

use Noise-Contrastive Estimation (NCE) (Gutman-

n and Hyvärinen, 2010; Oord et al., 2018). First,

we use the function σ(x, y) to represent the term
P (x|y)
P (x) in Eqn. (2):

σglobal(x, y) ∝
P (x|y)
P (x)

(3)

where σglobal(x, y) : X × Y → R is not a real

probability and can be unnormalized. Here we

use the notation “global” for the representation

learning of a complete text or a complete image to

distinguish from the local structures in section 3.2.

To compute the cross-modal mutual information,

we first encode x and y to fglobal(x) and gglobal(y),
respectively. Then we use the similarities of their

encodings to model
P (x|y)
P (x) . Note that gglobal(y) is

a specific form of g(x, y) in Eqn. (1). So fglobal(x)
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and gglobal(y) satisfy the form of f and g in E-

qn. (1). We will show how to incorporate the lin-

guistic input when designing the encoder of local

visual structures in section 3.3. We follow (Misra

and van der Maaten, 2020) to compute the pretext-

invariant energy function by the exponential func-

tion of their cosine similarity:

σglobal(x, y) = d(fglobal(x), gglobal(y))

= exp(
cosine(fglobal(x), gglobal(y))

τσ
)

(4)

where τσ is a hyper-parameter of temperature.

To estimate σglobal(x, y) and maximize the mu-

tual information in Eqn. (2), the NCE loss (Oord

et al., 2018) provides a valid toolkit. By taking

the posterior probability P (y|x), the NCE loss is

defined as:

LNCE:P (y|x)(X,Y ) = −Ex,y∼P (y|x)P̃ (x){log σglobal(x, y)

− log
∑

y′∼P (y)

σglobal(x, y
′)}

(5)

where P̃ (x) denotes the real distribution of x,

P (y|x)P̃ (x) denotes the distribution of y for giv-

en x, and P (y) denotes the noise distribution of

y. Thus minimizing Eqn. (5) can be seen as iden-

tifying the positive image y ∼ P (y|x) for given x
from the noise image distribution y ∼ P (y).

It has been proved (Oord et al., 2018) that

LNCE:P (y|x)(X,Y ) provides the lower bound of

I(X,Y ):

I(X,Y ) ≥ logN ′ − LNCE:P (y|x)
(6)

where N ′ denotes the number of noise samples and

can be seen as a constant. So instead of maximizing

I(X,Y ) directly, we minimize LNCE:P (y|x)(X,Y )
instead to maximize its lower bound.

Symmetrically, we also compute the NCE loss

by taking the posterior probability P (x|y). We

define LNCE:P (x|y) as:

LNCE:P (x|y)(X,Y ) =− Ex,y∼P (x|y)P̃ (y){log σglobal(x, y)

− log
∑

x′∈P (x)

σglobal(x
′, y)}

(7)

Eqn. (7) can be seen as identifying the positive

text x ∼ P (x|y) for given y from the noise text

distribution x ∼ P (x).

By combining Eqn. (5) and Eqn. (7), we derive

the loss for global MI maximization

LNCE
global(X,Y ) =LNCE:P (x|y)(X,Y ) + LNCE:P (y|x)(X,Y )

(8)

Here we say the MI is global, because it is over the

complete text and the complete images, which are

contrary to the local structures in section 3.2.

Negative sampling In practice, to compute

LNCE:P (y|x)(X,Y ), we need to construct noise

samples for positive samples. We use all the

{xi, yi} pairs in the same minibatch from Dt2i as

X,Y . Each yi is the positive samples of xi (i.e.

P (yi|xi) = 1). For each xi ∈ X , the noise y′ in

Eqn. (5) are sampled from Y . Likewise, to com-

pute LNCE:P (x|y)(X,Y ) in Eqn. (7), we treat xi as

the positive sample for yi, and other texts from the

same minibatch as the noise samples.

3.2 MI Optimization for Local Structures
In this subsection, we incorporate the local informa-

tion in multimodal contrastive learning. As demon-

strated in DIM (Hjelm et al., 2019), local informa-

tion plays a greater role in self-supervised learning

than the global information.

We follow BERT (Devlin et al., 2018) and DIM

to use the words and patches as the local structures

for the text and the image, respectively. We maxi-

mize the MI between the cross-modal local/global

structures. We denote a sentence x with L words as

x(1) · · ·x(L), and an image y with M ×M patches

as y(1) · · · y(M2).

Similar to the objective of representation learn-

ing of global information, we use NCE as the ob-

jective of local information representation learning.

The difference is that we use the local structure-

based alignment to calculate the energy function,

while there is no such objective in the represen-

tation learning of global information. This objec-

tive allows representation learning to emphasize

the alignments of local structures between different

modalities, such as the alignment between the word

“piano” and the corresponding image patches.

Specifically, we use LNCE
local(X,Y ) to represent

the loss of local information representation learn-

ing. The computation of LNCE
local(X,Y ) follows E-

qn. (5)(7)(8), except that we replace σglobal with

σlocal based on the local information alignment.

We will elaborate on σlocal in section 3.3.

3.3 Alignment-based Local Energy Function
and Representation Learning

In this subsection, we show the details of the local

energy function σlocal and the encoders for local

structures.

Following the form of Eqn. (1), we denote

the encoders for the local structures of text as



5515

A man plays a  piano
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L

Patch-Word alignment
M

M
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“real” or “fake”?

Joint encoder for local 
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MI optimization for 
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σlocal(x,y(i))

fword(x)

L
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glocal(x(i),y)L

dimmmm

glocal(x(i),y)

attn

attn’
gpatch(y)

Figure 2: MI maximization for local structures. The local structures for images are joint encoded with text.

fword(x
(i)). We denote the joint encoder for patch-

es as glocal(x, y
(i)), which represents the linguistic

information of patch y(i). Note that the encoder

fword(x
(i)) is still decoupled and represents the lo-

cal linguistic structures without taking image as

input. On the other hand, the encoder glocal(x, y
(i))

for the local visual structure explicitly incorporate

the linguistic information, which is more precise

due to the discussion in section 2.1.

For a sentence x with L words x(1) · · ·x(L),
we represent its local information by

encoding it into a local feature map

fword(x) = (fword(x
(1)) · · · fword(x

(L))) ∈ R
dim×L.

For an image y with M × M patches

y(1) . . . y(M
2), we represent its spatial lo-

cality by encoding it into a feature map

gpatch(y) =
(
gpatch(y

(1)) · · · gpatch(y
(M2))

)
.

The local information across modalities has ob-

vious correlation characteristics (Xu et al., 2018).

For example, a word is only related to some patch-

es of the image, but not to other patches. As shown

in Fig. 1c, our proposed image encoder is cou-

pled with the text representation. Therefore we

assign the local structures with different weights

to achieve a more precise image encoder. This is

achieved by the attention mechanism in the joint

encoder:

glocal(x, y
(i)) =

exp(attni,j/τc)∑
k exp(attnk,i/τc)

fword(x) (9)

where τc denotes the temperature, attni,j denotes

the attention of the i-th word to the j-th patch:

attni,j =
exp(fword(x

(i))�gpatch(y
(j)))

∑
k exp(fword(x

(i))�gpatch(y
(k)))

(10)

We compute the alignment score for the local

textual structures by:

σlocal(x, y
(i)) = d(gpatch(y

(i)), glocal(x, y
(i)))

(11)

Here we abuse the notation of σlocal since we will

use σlocal(x, y
(i)) to compute σlocal(x, y).

Symmetrically, we also compute the alignment

score for the local visual structures by

attn′
i,j =

exp(fword(x
(i))�gpatch(y

(j)))∑
k exp(fword(x(k))�gpatch(y(j)))

glocal(x
(i), y) =

exp(attn′
i,j/τc)∑

k exp(attn
′
i,k/τc)

gpatch(y)

σlocal(x
(i), y) = d(fword(x

(i)), glocal(x
(i), y))

(12)

We compute the energy function of x and y
based on local structure alignments by:

σlocal(x, y) = log
L∑
i=1

exp(σlocal(x
(i), y))

+ log

M2∑
i=1

exp(σlocal(x, y
(i)))

(13)

How the model uses the attention mechanism to

represent the interactions among local structures

and how the energy function is computed is shown

in Fig. 2.

3.4 Anchor Text via Lifelong Learning
In this subsection, we illustrate how to solve the

catastrophic forgetting problem by the lifelong

learning regularization.

If we only use the loss in Eqn. (8), the text en-

coder f(x; θf ) will tend to only learn vision-related

features for text. Since our downstream problem is

over the plain text, NLI still relies more on textual

features instead of visual features. Compared with

the single modality unsupervised natural language

representation learning (Devlin et al., 2018), the

multimodal model will even perform worse. Sim-

ilar phenomena called catastrophic forgetting or

negative transfer (Sun et al., 2020) often occurs in

multi-task learning.
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To avoid the catastrophic forgetting, we keep

the model’s representation for general text while

ensuring that it learns visual features. More gener-

ally, since there are only data of a certain modality

(i.e. plain text) in the downstream task, we anchor

this modality in the multimodal SSL phase. We

add lifelong learning regularization (Li and Hoiem,

2017) to achieve modality anchoring. For the text

encoder, we keep its original textual representation

(e.g. by masked language model (MLM) and next

sentence prediction in BERT) while learning new

visual knowledge. To do this, we follow (Li and

Hoiem, 2017) and introduce the distance from the

existing text encoder to the original text encoder as

the training loss.

Specifically, we use BERT (Devlin et al., 2018)

to initialize our text encoder f(x). During mul-

timodal SSL, we keep the textual representation

consistent with the original BERT. According to

the ablation study in DistilBERT (Sanh et al., 2019),

we use the knowledge distillation loss (Hinton et al.,

2015) and cosine loss as regularization:

Lanchor(X) = Ex∼P̃ (x)[

− ε
dim∑
i=1

fi(x)
1/τ ′

∑
j fj(x)

1/τ ′ log
f ′i(x)

1/τ ′

∑
j f

′
j(x)

1/τ ′

− (1− ε)cosine(f(x), f ′(x))]

(14)

where f ′(x) denotes the textual representation by

the original BERT encoder, fi(x) denotes the i-th
dimension of f(x), and τ ′ is the temperature.

By combing the lifelong learning regularization,

we obtain the final loss for SSL:

θ̂x, θ̂y, θ̂α = argmax
θf ,θg

γLNCE
global(X,Y )

+ βLNCE
local(X,Y ) + (1− γ − β)Lanchor(X)

(15)

4 Experiments

4.1 Setup
All the experiments run over a computer with 4

Nvdia Tesla V100 GPUs.

Datasets We use Flickr30k (Young et al., 2014)

and COCO (Lin et al., 2014) as the text2image

dataset Dt2i for self-supervised learning. We use

STS-B (Cer et al., 2017) and SNLI (Bowman et al.)

as the downstream NLI tasks for evaluation. STS-

B is a collection of sentence pairs, each of which

has a human-annotated similarity score from 1 to

5. The task is to predict these scores. We follow

GLUE (Wang et al., 2018) and use Pearson and

Spearman correlation coefficients as metrics. SNLI

is a collection of human-written English sentence

pairs, with manually labeled categories entailment,
contradiction, and neutral. Note that for STS-B,

some sentence pairs drawn from image captions

overlap with Flickr30k. So in order to avoid the

potential information leak, we remove all sentence

pairs drawn from image captions in STS-B to con-

struct a new dataset STS-B-filter. Similarly, we

remove all sentence pairs in SNLI whose corre-

sponding images occur in the training split of Dt2i

to construct SNLI-filter.

The statistics of these datasets are shown in Ta-

ble 1. In addition, Flickr30k has 22248 images

for training, 9535 images for development. COCO

has 82783 images for training, 40504 images for

development.
Type #Text

Train Dev Test

Flickr30k Text2Image 111240 47675 -
COCO Text2Image 414113 202654 -
STS-B Text Similarity 5749 1500 1379
STS-B-filter Text Similarity 3749 875 754
SNLI NLI 549367 9842 9824
SNLI-filter NLI 157284 3321 3207

Table 1: Statistics of datasets.

4.2 Model Details

Encoder details We use BERT-base as the text en-

coder fglobal. The local information fword(x
(i)) is

the feature vector of the i-th word through BERT.

We use Resnet-50 as the image encoder gglobal. We

use the encoding before the final pooling layer as

the representations of M2 patches gpatch(y
(i)). To

guarantee that the image encoder and the text en-

coder are in the same space, we project the feature

vectors of the image encoder to the dimension of

768, which is the dimension of BERT.

Unsupervised NLI We compute the similarity

of two sentences via the cosine of their represen-

tations learned by MACD. For STS-B, such sim-

ilarities are directly used to compute the Pearson

and Spearman correlation coefficients. For SNLI,

we make inferences based on whether the similar-

ity reaches a certain threshold. More specifically,

if the similarity >= ψ1, we predict “entailment”.

If the similarity < ψ2, we predict “contradiction”.

Otherwise we predict “neutral”.

Competitors We compare MACD with the

single-modal pre-training model BERT, and mul-

timodal pre-training model LXMERT (Tan and

Bansal, 2019) and VilBert (Lu et al., 2019). Both

LXMERT and VilBert use the network architec-
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ture as in Fig. 1b. We extract the lower layer

text encoder for unsupervised representation and

fine-tuning. We also compare MACD with classi-

cal NLP models, including BiLSTM and BiLST-

M+ELMO (Peters et al., 2018).

Hyper-parameters We list the hyper-

parameters below. For ψ1 and ψ2, we use

the best set of values chosen in the grid search

from range {−1,−0.95,−0.9, · · · , 1}. For τσ and

τc, we use the best set of values chosen in the grid

search from range {0.01, 0.1, 1}. For τ ′, ε, γ and

β, we follow their settings in DistilBert (Sanh

et al., 2019).

τσ τc τ ′ ε γ β
0.1 1 2 5/6 1/3 1/3

Batch Size lr Epochs Grad Acc ψ1 ψ2

64 1e-4 10 8 0.80 0.55

Table 2: Hyper-parameters for self-supervised learning.

“lr” means learning rate.

4.3 Main Results

We evaluate MACD by unsupervised NLI. Table 3

shows the results on STS-B. MACD achieves sig-

nificantly higher effectiveness than single-modal

pre-trained model BERT and multimodal pre-

trained model LXMERT and VilBert. Note that

LXMERT and VilBert use more text2image corpo-

ra for pre-training than MACD. This verifies that

the joint encoder in previous multimodal SSL can-

not represent visual knowledge well in their text

encoder. So their adaptations to the single-modal

problem are limited.

To our surprise, the unsupervised MACD even

outperforms fully-supervised models such as BiL-

STM and BiLSTM+ELMO. Here the results of

BiLSTM and BiLSTM+ELMO for STS-B are di-

rectly derived from GLUE (Wang et al., 2018).

This verifies the effectiveness of MACD.

STS-B STS-B-filter
P. S. P. S.

BiLSTM (sup.) 66.0 62.8 47.0 43.2
BiLSTM+ELMO (sup.) 64.0 60.2 33.3 30.7
BERT 1.7 6.4 5.5 12.5
LXMERT 42.7 47.2 35.9 40.0
VilBert 55.8 57.1 45.9 46.3
MACD + COCO 70.1 70.2 55.1 52.4
MACD + Flickr30k 71.5 72.1 55.8 54.8

Table 3: Effectiveness of unsupervised learning on STS.

Baselines with “(sup.)” mean they are trained by su-

pervised labels. Other methods are unsupervised. “P.”

and “S.” mean Pearson and Spearman correlation coef-

ficients, respectively.

SNLI SNLI-filter
Acc Acc

BERT 35.09 35.45
LXMERT 39.03 40.29
VilBert 43.13 43.83
MACD + COCO 52.63 53.15
MACD + Filckr30k 52.27 53.20

Table 4: Effectiveness on SNLI. All approaches are un-

supervised.

We also report the results of MACD on SNLI

under the unsupervised setting in Table 4. MACD

outperforms its competitors by a large margin. This

verifies the effectiveness of our approach for un-

supervised NLI. The experimental results suggest

that we achieve natural language inference via mul-
timodal self-supervised learning without any su-
pervised inference labels. Since MACD+Filckr30k

performs better than MACD+COCO in most cases,

we will only evaluate MACD+Filckr30k in the rest

experiments.

(a) BERT (b) LXMERT

(c) VilBert (d) MACD

Figure 3: Categorial distribution visualization.

We visualize the distribution of the cosine simi-

larities for samples of different labels in SNLI in

Fig. 3 by boxplot. We found obvious distribution

patterns by MACD. In contrast, the distributions of

other pre-training models have lower correlations

with NLI labels.

4.4 Fine-tuning
We also evaluated the effectiveness of MACD when

fine-tuned under the semi-supervised learning set-

ting. More specifically, we first initialize the pa-
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rameters of the text encoder as in MACD, then fine-

tune it by the supervised training samples of the

downstream tasks. The results are shown in Table 5.

MACD also outperforms other approaches. For

example, for SNLI-filter, the accuracy of MACD

increases by 0.97 compared to the best competitor

(i.e. BERT). Note that MACD is the only multi-

modal method that performs better than BERT. Oth-

er multimodal approaches (i.e. LXMERT and Vil-

Bert) perform even worse than the original BERT,

although they also initialize their text encoders by

BERT, and use more text2image data for SSL than

MACD. This verifies the effectiveness of the pro-

posed decoupled contrastive learning model.

STS-B STS-B-filter SNLI SNLI-filter
P. / S. P. / S. Acc Acc

BERT 85.0/83.6 75.8/74.6 89.37 87.15
LXMERT 63.3/59.2 37.3/28.3 87.80 83.57
VilBert 78.8/77.2 63.9/62.2 88.49 85.69
MACD 87.1/86.4 79.5/78.0 90.01 88.12

Table 5: Effectiveness of fine-tuning over STS-B and

SNLI. “P.” and “S.” mean Pearson and Spearman corre-

lation coefficients, respectively.

To further verify the natural language represen-

tation learned by the self-supervised learning and

get rid of the influence of its neural network archi-

tecture (i.e., BERT), Hjelm et al. (2019) suggest

training models directly over the features learned

by SSL. By following its settings (Hjelm et al.,

2019), we use a linear classifier (SVM) and a non-

linear classifier (a single layer perception neural

network, marked as SLP) over the features by SSL.

The results are shown in Table 6.

STS-B STS-B-filter SNLI SNLI-filter
P. / S. P. / S. Acc Acc

SVM+BERT 69.8 / 68.3 57.1 / 53.3 58.77 58.87
SVM+LXMERT 33.0 / 31.3 10.2 / 13.2 52.28 50.98
SVM+VilBert 52.4 / 50.0 36.7 / 35.9 55.93 55.22
SVM+MACD 70.0 / 68.4 62.2 / 59.3 61.64 62.58
SLP+BERT 56.2 / 53.5 47.3 / 42.0 55.07 54.19
SLP+LXMERT 36.5 / 33.4 16.1 / 12.3 52.41 50.42
SLP+VilBert 49.6 / 46.0 29.1 / 26.5 54.86 51.82
SLP+MACD 72.3 / 69.7 63.4 / 59.5 61.31 60.80

Table 6: Effectiveness of the learned representations.

MACD outperforms the competitors by a large

margin. Similar to the results in Table 5, although

MACD, LXMERT, and VilBert are all trained by

multimodal data, only MACD performs better than

the original text encoder (i.e. BERT).

4.5 Ablations
In addition to the decoupled contrastive learning

model, we propose two optimizations by adding the

local structures into account, and by regularizing

the model on the text mode via lifelong learning. In

order to verify the effectiveness of the two optimiza-

tions, we compare MACD with its ablations. The

results of unsupervised NLI are shown in Table 7.

The results show that the effectiveness decreases

when the proposed optimizations are removed.

STS-B STS-B-filter
P. / S. P. / S.

MACD 71.5 / 72.1 55.8 / 54.8
-local 71.0 / 70.9 55.0 / 52.6
-lifelong 70.7 / 70.8 54.9 / 52.3
-local -lifelong 69.6 / 69.7 53.0 / 52.0

Table 7: Ablations.

4.6 Case studies: Nearest-neighbor analysis
To give a deeper insight into the learned represen-

tation, we analyze the k nearest neighbors over the

representations. For the query sentence randomly

sampled from Flickr30k, we show the results of

the 3 nearest sentences according to their L1 dis-

tances in Table 8. The results of MACD are more

interpretable than BERT.

Query Someone is wearing a large white dress in
a crowd.

MACD No.1 Lady dressed in white on blanket in mid-
dle of crowd.

MACD No.2 Women in white robes, dancing with half
their face painted.

MACD No.3 A group of women dressed in white are
dancing in the street.

BERT No.1 A man is standing alone in a boat.

BERT No.2 A bald man is standing in a crowd.

BERT No.3 A woman is taking a picture of a man.

Table 8: Nearest-neighbor on the encoded text.

5 Conclusion

In this paper, we study the multimodal self-

supervised learning for unsupervised NLI. The ma-

jor flaw of previous multimodal SSL methods is

that they use a joint encoder for representing the

cross-modal correlations. This prevents us from

integrating visual knowledge into the text encoder.

We propose the multimodal aligned contrastive de-

coupled learning (MACD), which learns to repre-

sent visual knowledge while using only texts as

inputs. In the experiments, our proposed approach

steadily surpassed other methods by a large margin.
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