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Abstract

Cherokee is a highly endangered Native Amer-
ican language spoken by the Cherokee peo-
ple. The Cherokee culture is deeply embed-
ded in its language. However, there are ap-
proximately only 2,000 fluent first language
Cherokee speakers remaining in the world, and
the number is declining every year. To help
save this endangered language, we introduce
ChrEn, a Cherokee-English parallel dataset, to
facilitate machine translation research between
Cherokee and English. Compared to some pop-
ular machine translation language pairs, ChrEn
is extremely low-resource, only containing 14k
sentence pairs in total. We split our paral-
lel data in ways that facilitate both in-domain
and out-of-domain evaluation. We also col-
lect 5k Cherokee monolingual data to en-
able semi-supervised learning. Besides these
datasets, we propose several Cherokee-English
and English-Cherokee machine translation sys-
tems. We compare SMT (phrase-based) ver-
susNMT (RNN-based and Transformer-based)
systems; supervised versus semi-supervised
(via language model, back-translation, and
BERT/Multilingual-BERT) methods; as well
as transfer learning versus multilingual joint
training with 4 other languages. Our best re-
sults are 15.8/12.7 BLEU for in-domain and
6.5/5.0 BLEU for out-of-domain Chr-En/En-
Chr translations, respectively, and we hope
that our dataset and systems will encourage fu-
ture work by the community for Cherokee lan-
guage revitalization.1

1 Introduction

The Cherokee people are one of the indigenous
peoples of the United States. Before the 1600s,
they lived in what is now the southeastern United
States (Peake Raymond, 2008). Today, there are
three federally recognized nations of Cherokee

1Our data, code, and demo will be publicly available at
https://github.com/ZhangShiyue/ChrEn.

Src. ᎥᏝ ᎡᎶᎯ ᎠᏁᎯ ᏱᎩ, ᎾᏍᎩᏯ ᎠᏴ ᎡᎶᎯ ᎨᎢ ᏂᎨᏒᎾ ᏥᎩ.
Ref. They are not of the world, even as I am not of the

world.
SMT It was not the things upon the earth, even as I am

not of the world.
NMT I am not the world, even as I am not of the world.

Table 1: An example from the development set of
ChrEn. NMT denotes our RNN-NMT model.

people: the Eastern Band of Cherokee Indians
(EBCI), the United Keetoowah Band of Cherokee
Indians (UKB), and the Cherokee Nation (CN).
The Cherokee language, the language spoken by
the Cherokee people, contributed to the survival
of the Cherokee people and was historically the ba-
sic medium of transmission of arts, literature, tradi-
tions, and values (Nation, 2001; Peake Raymond,
2008). However, according to the Tri-Council Res.
No. 02-2019, there are only 2,000 fluent first lan-
guage Cherokee speakers left, and each Cherokee
tribe is losing fluent speakers at faster rates than
new speakers are developed. UNESCO has identi-
fied the dialect of Cherokee in Oklahoma is “defi-
nitely endangered”, and the one in North Carolina
is “severely endangered”. Language loss is the
loss of culture. CN started a 10-year language re-
vitalization plan (Nation, 2001) in 2008, and the
Tri-Council of Cherokee tribes declared a state of
emergency in 2019 to save this dying language.
To revitalize Cherokee, language immersion

programs are provided in elementary schools, and
second language programs are offered in universi-
ties. However, students have difficulty finding ex-
posure to this language beyond school hours (Al-
bee, 2017). This motivates us to build up English
(En) to Cherokee (Chr) machine translation sys-
tems so that we could automatically translate or
aid human translators to translate English materi-
als to Cherokee. Chr-to-En is also highly meaning-
ful in helping spread Cherokee history and culture.
Therefore, in this paper, we contribute our effort

https://github.com/ZhangShiyue/ChrEn
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Figure 1: Language family trees.

to Cherokee revitalization by constructing a clean
Cherokee-English parallel dataset,ChrEn, which
results in 14,151 pairs of sentences with around
313K English tokens and 206K Cherokee tokens.
We also collect 5,210 Cherokee monolingual sen-
tences with 93K Cherokee tokens. Both datasets
are derived from bilingual or monolingual materi-
als that are translated or written by first-language
Cherokee speakers, then we manually aligned and
cleaned the raw data.2 Our datasets contain texts
of two Cherokee dialects (Oklahoma and North
Carolina), and diverse text types (e.g., sacred text,
news). To facilitate the development of machine
translation systems, we split our parallel data into
five subsets: Train/Dev/Test/Out-dev/Out-test, in
which Dev/Test and Out-dev/Out-test are for in-
domain and out-of-domain evaluation respectively.
See an example from ChrEn in Table 1 and the de-
tailed dataset description in Section 3.
The translation between Cherokee and English

is not easy because the two languages are genealog-
ically disparate. As shown in Figure 1, Cherokee
is the sole member of the southern branch of the
Iroquoian language family and is unintelligible to
other Iroquoian languages, while English is from
the West Germanic branch of the Indo-European
language family. Cherokee uses a unique 85-
character syllabary invented by Sequoyah in the
early 1820s, which is highly different from En-
glish’s alphabetic writing system. Cherokee is a
polysynthetic language, meaning that words are
composed of many morphemes that each have in-
dependent meanings. A single Cherokee word can
express the meaning of several English words, e.g.,
ᏫᏓᏥᏁᎩᏏ (widatsinegisi), or I am going off at a
distance to get a liquid object. Since the seman-
tics are often conveyed by the rich morphology,
the word orders of Cherokee sentences are vari-

2Our co-author, Prof. Benjamin Frey, is a proficient
second-language Cherokee speaker and a citizen of the East-
ern Band of Cherokee Indians.

able. There is no “basic word order” in Cherokee,
and most word orders are possible (Montgomery-
Anderson, 2008), while English generally follows
the Subject-Verb-Object (SVO) word order. Plus,
verbs comprise 75% of Cherokee, which is only
25% for English (Feeling, 1975, 1994).

Hence, to develop translation systems for this
low-resource and distant language pair, we in-
vestigate various machine translation paradigms
and propose phrase-based (Koehn et al., 2003)
Statistical Machine Translation (SMT) and RNN-
based (Luong et al., 2015) or Transformer-based
(Vaswani et al., 2017) Neural Machine Transla-
tion (NMT) systems for both Chr-En and En-
Chr translations, as important starting points for
future works. We apply three semi-supervised
methods: using additional monolingual data
to train the language model for SMT (Koehn
and Knowles, 2017); incorporating BERT (or
Multilingual-BERT) (Devlin et al., 2019) represen-
tations for NMT (Zhu et al., 2020), where we in-
troduce four different ways to use BERT; and the
back-translation method for both SMT and NMT
(Bertoldi and Federico, 2009; Lambert et al., 2011;
Sennrich et al., 2016b). Moreover, we explore the
use of existingX-En parallel datasets of 4 other lan-
guages (X = Czech/German/Russian/Chinese) to
improve Chr-En/En-Chr performance via transfer
learning (Kocmi and Bojar, 2018) or multilingual
joint training (Johnson et al., 2017).

Empirically, NMT is better than SMT for
in-domain evaluation, while SMT is signifi-
cantly better under the out-of-domain condi-
tion. RNN-NMT consistently performs better
than Transformer-NMT. Semi-supervised learn-
ing improves supervised baselines in some cases
(e.g., back-translation improves out-of-domain
Chr-En NMT by 0.9 BLEU). Even though Chero-
kee is not related to any of the 4 languages
(Czech/German/Russian/Chinese) in terms of their
language family trees, surprisingly, we find that
both transfer learning and multilingual joint train-
ing can improve Chr-En/En-Chr performance in
most cases. Especially, transferring from Chinese-
English achieves the best in-domain Chr-En perfor-
mance, and joint learningwith English-German ob-
tains the best in-domain En-Chr performance. The
best results are 15.8/12.7 BLEU for in-domain Chr-
En/En-Chr translations; and 6.5/5.0 BLEU for out-
of-domain Chr-En/En-Chr translations. Finally,
we conduct a 50-example human (expert) evalua-
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tion; however, the human judgment does not cor-
relate with BLEU for the En-Chr translation, indi-
cating that BLEU is possibly not very suitable for
Cherokee evaluation. Overall, we hope that our
datasets and strong initial baselines will encourage
future works to contribute to the revitalization of
this endangered language.

2 Related Works

Cherokee Language Revitalization. In 2008,
the Cherokee Nation launched the 10-year lan-
guage preservation plan (Nation, 2001), which
aims to have 80% or more of the Cherokee peo-
ple be fluent in this language in 50 years. Af-
ter that, a lot of revitalization works were pro-
posed. Cherokee Nation and the EBCI have es-
tablished language immersion programs and k-12
language curricula. Several universities, including
the University of Oklahoma, Stanford University,
etc., have begun offering Cherokee as a second lan-
guage. However, given Cherokee has been rated at
the highest level of learning difficulty (Peake Ray-
mond, 2008), it is hard to be mastered without fre-
quent language exposure. As mentioned by Crys-
tal (2014), an endangered language will progress
if its speakers can make use of electronic technol-
ogy. Currently, the language is included among
existing Unicode-compatible fonts, is supported
by Gmail, and has a Wikipedia page. To revital-
ize Cherokee, a few Cherokee pedagogical books
have been published (Holmes and Smith, 1976;
Joyner, 2014), as well as several online learning
platforms.3 Feeling (2018) provided detailed En-
glish translations and linguistic analysis of a num-
ber of Cherokee stories. A Digital Archive for
American Indian Languages Preservation and Per-
severance (DAILP) has been developed for tran-
scribing, translating, and contextualizing histori-
cal Cherokee language documents (Bourns, 2019;
Cushman, 2019).4 However, the translation be-
tween Cherokee and English still can only be done
by human translators. Given that only 2,000 flu-
ent first-language speakers are left, and the major-
ity of them are elders, it is important and urgent
to have a machine translation system that could as-
sist themwith translation. Therefore, we introduce
a clean Cherokee-English parallel dataset to facili-
tate machine translation development and propose

3mangolanguages.com/available-languages/
learn-cherokee/, yourgrandmotherscherokee.com

4https://dailp.northeastern.edu/

multiple translation systems as starting points of fu-
ture works. We hope our work could attract more
attention from the NLP community in helping to
save and revitalize this endangered language. An
initial version of our data and its implications was
introduced in (Frey, 2020). Note that we are not
the first to propose a Cherokee-English parallel
dataset. There is Chr-En parallel data available on
OPUS (Tiedemann, 2012).5 The main difference
is that our parallel data contains 99% of their data
and has 6K more examples from diverse domains.

Low-Resource Machine Translation. Even
though machine translation has been studied for
several decades, the majority of the initial research
effort was on high-resource translation pairs, e.g.,
French-English, that have large-scale parallel
datasets available. However, most of the language
pairs in the world lack large-scale parallel data. In
the last five years, there is an increasing research
interest in these low-resource translation settings.
The DARPA’s LORELEI language packs contain
the monolingual and parallel texts of three dozen
languages that are considered as low-resource
(Strassel and Tracey, 2016). Riza et al. (2016) pro-
posed several low-resource Asian language pairs.
Lakew et al. (2020) and Duh et al. (2020) pro-
posed benchmarks for five and two low-resource
African languages, respectively. Guzmán et al.
(2019) introduced two low-resource translation
evaluation benchmarks: Nepali–English and
Sinhala–English. Besides, most low-resource
languages rely on the existing parallel translations
of the Bible (Christodouloupoulos and Steed-
man, 2015). Because not many low-resource
parallel datasets were publicly available, some
low-resource machine translation research was
done by sub-sampling high-resource language
pairs (Johnson et al., 2017; Lample et al., 2018),
but it may downplay the fact that low-resource
translation pairs are usually distant languages.
Our ChrEn dataset can not only be another
open resource of low-resource MT research but
also challenge MT methods with an extremely
morphology rich language and a distant language
pair. Two methods have been largely explored by
existing works to improve low-resource MT. One
is semi-supervised learning to use monolingual
data (Gulcehre et al., 2015; Sennrich et al., 2016b).
The other is cross-lingual transfer learning or
multilingual joint learning (Kocmi and Bojar,

5http://opus.nlpl.eu/

mangolanguages.com/available-languages/learn-cherokee/
mangolanguages.com/available-languages/learn-cherokee/
yourgrandmotherscherokee.com
https://dailp.northeastern.edu/
http://opus.nlpl.eu/
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Statistics Parallel Monolingual
Train Dev Test Out-dev Out-test Total Total

Sentences (or Sentence pairs) 11,639 1,000 1,000 256 256 14,151 5,210

English tokens 257,460 21,686 22,154 5,867 6,020 313,187 -
Unique English tokens 11,606 3,322 3,322 1,605 1,665 13,621 -
% Unseen unique English tokens - 13.3 13.2 42.1 43.3 - -
Average English sentence length 22.1 21.7 22.2 22.9 23.5 22.1 -

Cherokee tokens 168,389 14,367 14,373 4,324 4,370 205,823 92,897
Unique Cherokee tokens 32,419 5,182 5,244 1,857 1,881 38,494 19,597
% Unseen unique Cherokee tokens - 37.7 37.3 67.5 68.0 - 73.7
Average Cherokee sentence length 14.5 14.4 14.3 16.9 17.1 14.5 17.8

Table 2: The key statistics of our parallel and monolingual data. Note that “% Unseen unique English tokens” is in
terms of the Train split, for example, 13.3% of unique English tokens in Dev are unseen in Train.

2018; Johnson et al., 2017). We explore both of
them to improve Chr-En/En-Chr translations.

3 Data Description

It is not easy to collect substantial data for endan-
gered Cherokee. We obtain our data from bilingual
or monolingual books and newspaper articles that
are translated or written by first-language Chero-
kee speakers. In the following, we will introduce
the data sources and the cleaning procedure and
give detailed descriptions of our data statistics.

3.1 Parallel Data

Fifty-six percent of our parallel data is derived
from the Cherokee New Testament. Other texts
are novels, children’s books, newspaper articles,
etc. These texts vary widely in dates of publica-
tion, the oldest being dated to 1860. Addition-
ally, our data encompasses both existing dialects
of Cherokee: the Overhill dialect, mostly spoken
in Oklahoma (OK), and the Middle dialect, mostly
used in North Carolina (NC). These two dialects
are mainly phonologically different and only have
a few lexical differences (Uchihara, 2016). In this
work, we do not explicitly distinguish them during
translation. The left pie chart of Figure 2 shows
the parallel data distributions over text types and
dialects, and the complete information is in Ta-
ble 14 of Appendix A.1. Many of these texts were
translations of Englishmaterials, whichmeans that
the Cherokee structures may not be 100% natural
in terms of what a speaker might spontaneously
produce. But each text was translated by people
who speak Cherokee as the first language, which
means there is a high probability of grammatical-
ity. These data were originally available in PDF
version. We apply the Optical Character Recog-
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Figure 2: The distributions of our parallel (Para.) and
monolingual (Mono.) data over text types and dialects.

nition (OCR) via Tesseract OCR engine6 to ex-
tract the Cherokee and English text. Then our
co-author, a proficient second-language speaker
of Cherokee, manually aligned the sentences and
fixed the errors introduced by OCR. This process
is time-consuming and took several months.
The resulting dataset consists of 14,151 sen-

tence pairs. After tokenization,7 there are around
313K English tokens and 206K Cherokee tokens
in total with 14K unique English tokens and 38K
unique Cherokee tokens. Notably, the Cherokee
vocabulary is much larger than English because
of its morphological complexity. This casts a big
challenge to machine translation systems because
a lot of Cherokee tokens are infrequent. To facil-
itate machine translation system development, we
split this data into training, development, and test-
ing sets. As our data stems from limited sources,
we find that if we randomly split the data, some
phrases/sub-sentences are repeated in training and
evaluation sets, so the trained models will over-

6https://github.com/tesseract-ocr/
7We tokenize both English and Cherokee by Moses tok-

enizer (Koehn et al., 2007). For Cherokee, it is equivalent
to tokenize by whitespace and punctuation, confirmed to be
good enough by our Cherokee-speaker coauthor.

https://github.com/tesseract-ocr/
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fit to these frequent patterns. Considering that
low-resource translation is usually accompanied
by out-of-domain generalization in real-world ap-
plications, we provide two groups of develop-
ment/testing sets. We separate all the sentence
pairs from newspaper articles, 512 pairs in total,
and randomly split them in half as out-of-domain
development and testing sets, denoted byOut-dev
and Out-test. The remaining sentence pairs are
randomly split into in-domain Train, Dev, and
Test. About 13.3% of unique English tokens and
37.7% of unique Cherokee tokens in Dev have not
appeared in Train, while the percentages are 42.1%
and 67.5% for Out-dev, which shows the difficulty
of the out-of-domain generalization. Table 2 con-
tains more detailed statistics; notably, the average
sentence length of Cherokee is much shorter than
English, which demonstrates that the semantics are
morphologically conveyed in Cherokee.
Note that Cherokee-English parallel data is also

available on OPUS (Tiedemann, 2012), which has
7.9K unique sentence pairs, 99% of which are the
Cherokee New Testament that are also included in
our parallel data, i.e., our data is bigger and has
6K more sentence pairs that are not sacred texts
(novels, news, etc.). The detailed comparison will
be discussed in A.2.

3.2 Monolingual Data
In addition to the parallel data, we also collect
a small amount of Cherokee monolingual data,
5,210 sentences in total. This data is also mostly
derived from Cherokee monolingual books.8 As
depicted by the right pie chart in Figure 2, the
majority of monolingual data are also sacred text,
which is Cherokee Old Testament, and it also con-
tains two-dialect Cherokee texts. Complete infor-
mation is in Table 15 of Appendix A.1. Similarly,
we applied OCR to extract these texts. However,
we only manually corrected the major errors intro-
duced byOCR. Thus our monolingual data is noisy
and contains some lexical errors. As shown in Ta-
ble 2, there are around 93K Cherokee tokens in to-
tal with 20K unique Cherokee tokens. This mono-
lingual data has a very small overlap with the paral-
lel data; about 72% of the unique Cherokee tokens
are unseen in the whole parallel data. Note that
most of our monolingual data have English trans-
lations, i.e., it could be converted to parallel data.

8We considered parsing CherokeeWikipedia. But, accord-
ing to our coauthor, who is a Cherokee speaker, its content is
mostly low-quality.

But it requires more effort fromCherokee speakers
and will be part of our future work. For now, we
show how to effectively use this monolingual data
for semi-supervised gains.

4 Models

In this section, we will introduce our Cherokee-
English and English-Cherokee translation systems.
Adopting best practices from low-resource ma-
chine translation works, we propose both Statis-
tical Machine Translation (SMT) and Neural Ma-
chine Translation (NMT) systems, and for NMT,
we test both RNN-based and Transformer-based
models. We apply three semi-supervised methods:
training language model with additional monolin-
gual data for SMT (Koehn and Knowles, 2017),
incorporating BERT or Multilingual-BERT rep-
resentations into NMT (Zhu et al., 2020), and
back-translation for both SMT and NMT (Bertoldi
and Federico, 2009; Sennrich et al., 2016b). Fur-
ther, we explore transfer learning (Kocmi and
Bojar, 2018) from and multilingual joint train-
ing (Johnson et al., 2017) with 4 other languages
(Czech/German/Russian/Chinese) for NMT.

4.1 SMT

Supervised SMT. SMT was the mainstream of
machine translation research before neural models
came out. Even if NMT has achieved state-of-the-
art performance on many translation tasks, SMT
is still very competitive under low-resource and
out-of-domain conditions (Koehn and Knowles,
2017). Phrase-based SMT is a dominant paradigm
of SMT (Koehn et al., 2003). It first learns a phrase
table from the parallel data that translates source
phrases to target. Then, a reordering model learns
to reorder the translated phrases. During decoding,
a scoring model scores candidate translations by
combining the weights from translation, reorder-
ing, and language models, and it is tuned by maxi-
mizing the translation performance on the develop-
ment set. A simple illustration of SMT is shown
in Figure 3. Note that, as Cherokee and English
have different word orders (English follows SVO;
Cherokee has variable word orders), one Cherokee
phrase could be translated into two English words
that are far apart in the sentence. This increases the
difficulty of SMT that relies on phrase correspon-
dence and is not good at distant word reordering
(Zhang et al., 2017). We implement our SMT sys-
tems by Moses (Koehn et al., 2007).
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 Ꮭ  ᎠᏏ   ᏗᎾᎦᎵᏍᎩ   ᏱᏙᎩᏏᎳᏕ   ᎣᎨᏅᏒ ᎦᎵᏦᏕ 

we did not have  electricity  in our house  yet

 Ꮭ  ᎠᏏ  ᏗᎾᎦᎵᏍᎩ  ᏱᏙᎩᏏᎳᏕ  ᎣᎨᏅᏒ  ᎦᎵᏦᏕ 
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Figure 3: A simple illustration of SMT and NMT.

Semi-Supervised SMT. Previous works have
shown that SMT can be improved by two semi-
supervised methods: (1) A big language model
(Koehn and Knowles, 2017), i.e., a language
model trained with big target-side monolingual
data; (2) Synthesizing bilingual data by back-
translating monolingual data (Bertoldi and Fed-
erico, 2009; Lambert et al., 2011). Using our
Cherokee monolingual data and the publicly avail-
able English monolingual data, we test these two
methods. For the first method, we use both par-
allel and monolingual data to train the language
model; for the second method, we back-translate
target-language monolingual data into the source
language and then combine them with the training
set to retrain a source-target SMT model.

4.2 NMT

Supervised NMT. NMT has mostly dominated
recent machine translation research. Especially
when a large amount of parallel data is available,
NMT surpasses SMT by a large margin; more-
over, NMT is good at generating fluent transla-
tions because of its auto-regressive generation na-
ture. Koehn and Knowles (2017) pointed out
the poor performance of NMT under low-resource
and out-of-domain conditions; however, recent
work from Sennrich and Zhang (2019) showed
that low-resource NMT can be better than SMT
by using proper training techniques and hyper-
parameters. NMT models usually follow encoder-
decoder architecture. The encoder encodes the
source sentence into hidden representations, then
the decoder generates the target sentence word by
word by “reading” these representations, as shown
in Figure 3. We investigate two paradigms of
NMT implementations: RNN-based model (Bah-
danau et al., 2015) and Transformer-based model
(Vaswani et al., 2017). We implement both of
them via OpenNMT (Klein et al., 2017). For RNN-

Encoder
(RNN or Transformer)

Attention

Decoder
(RNN or Transformer)

AttentionBERT

BERT

4

3

2

EmbeddingEmbeddingBERT

1

Figure 4: The four different ways we proposed to incor-
porate BERT representations into NMT models.

NMT, we follow the global attentional model with
general attention proposed by Luong et al. (2015).
For Transformer-NMT, we mainly follow the ar-
chitecture proposed by Vaswani et al. (2017) ex-
cept applying layer normalization before the self-
attention and FFN blocks instead of after, which is
more robust (Baevski and Auli, 2019).

Semi-Supervised NMT. NMT models can of-
ten be improved when more training data is avail-
able; therefore, a lot of works have studied semi-
supervised approaches that utilize monolingual
data to improve translation performance. Sim-
ilar to SMT, we mainly investigate two semi-
supervised methods. The first is to leverage pre-
trained language models. Early works proposed
shallow or deep fusion methods to rerank NMT
outputs or add the language model’s hidden states
to NMT decoder (Jean et al., 2015; Gulcehre et al.,
2015). Recently, the large-scale pre-trained lan-
guage model, BERT (Devlin et al., 2019), has
achieved impressive success in many NLP tasks.
Zhu et al. (2020) showed that incorporating the
contextualized BERT representations can signif-
icantly improve translation performances. Fol-
lowing but different from this work, we explore
four different ways to incorporate BERT represen-
tations into NMT models for English-Cherokee
translation only.9 As depicted in Figure 4, we ap-
ply BERT representations by: 1⃝ Initializing NMT
models’ word embedding matrix with BERT’s pre-
trainedword embeddingmatrix IB; 2⃝Concatenat-
ing NMT encoder’s input IE with BERT’s output
HB; 3⃝ Concatenating NMT encoder’s outputHE

with BERT’s output HB; 4⃝ Using another atten-

9Because there is no Cherokee BERT.We tried to initialize
the decoder embeddings with BERT pre-trained embeddings
for Chr-En translation; however, it does not work well.
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tion to leverage BERT’s output HB into decoder.
Note that 3⃝ and 4⃝ will not be applied simultane-
ously, and all the combination of these four meth-
ods are treated as hyper-parameters, details are in
Appendix B.4. In general, we hope BERT rep-
resentations can help encoder understand English
sentences better and thus improve translation per-
formance. We also test Multilingual-BERT (De-
vlin et al., 2019) to see if a multilingual pre-trained
model can generalize better to a newly encountered
language. The second semi-supervised method we
try is again the back-translation method. Sennrich
et al. (2016b) has shown that applying this method
on NMT obtains larger improvement than apply-
ing it on SMT, and it works better than the shallow
or deep fusion methods.

Transferring & Multilingual NMT. Another
important line of research is to improve low-
resource translation performance by incorporating
knowledge from other language pairs. As men-
tioned in Section 1, Cherokee is the sole member
of the southern branch of the Iroquoian language
family, so it seems that Cherokee is not “genealog-
ically” related to any high-resource languages in
terms of their language family trees. However, it
is still interesting to see whether the translation
knowledge between other languages and English
can help with the translation between Cherokee
and English. Hence, in this paper, we will ex-
plore two ways of leveraging other language pairs:
Transfer learning and Multilingual joint training.
Kocmi and Bojar (2018) proposed a simple and
effective continual training strategy for the trans-
fer learning of translation models. This method
will first train a “parent” model using one lan-
guage pair until convergence; then continue the
training using another language pair, so as to trans-
fer the translation knowledge of the first language
pair to the second pair. Johnson et al. (2017)
introduced the “many-to-one” and “one-to-many”
methods for multilingual joint training of X-En
and En-X systems. They achieve this by simply
combining training data, except for the “one-to-
many” method, every English sentence needs to
start with a special token to specify the language
to be translated into. We test both the transferring
andmultilingual methods for Chr-En/En-Chr trans-
lations with 4 other X-En/En-X language pairs
(X=Czech/German/Russian/Chinese).

5 Results

5.1 Experimental Details

We randomly sample 5K-100K sentences (about
0.5-10 times the size of the parallel training
set) from News Crawl 201710 as our English
monolingual data. We randomly sample 12K-58K
examples (about 1-5 times the size of parallel
training set) for each of the 4 language pairs
(Czech/German/Russian/Chinese-English) from
News Commentary v13 ofWMT201811 and Bible-
uedin (Christodouloupoulos and Steedman, 2015)
on OPUS12. We apply tokenizer and truecaser
from Moses (Koehn et al., 2007). We also apply
the BPE tokonization (Sennrich et al., 2016c), but
instead of using it as default, we treat it as hyper-
parameter. For systems with BERT, we apply the
WordPiece tokenizer (Devlin et al., 2019). We
compute detokenized and case-sensitive BLEU
score (Papineni et al., 2002) using SacreBLEU
(Post, 2018).13

We implement our SMT systems via Moses
(Koehn et al., 2007). SMT denotes the base sys-
tem; SMT+bigLM represents the SMT system
that uses additional monolingual data to train its
language model; SMT with back-translation is de-
noted by SMT+BT. Our NMT systems are imple-
mented by OpenNMT toolkit (Klein et al., 2017).
Two baselines are RNN-NMT and Transformer-
NMT. For En-Chr, we also test adding BERT or
Multilingual-BERT representations (Devlin et al.,
2019), NMT+BERT or NMT+mBERT, and with
back-translation, NMT+BT. For Chr-En, we only
test NMT+BT, treating the English monolingual
data size as hyper-parameter. For both En-Chr
and Chr-En, we test Transfer learning from and
Multilingual joint training with 4 other languages
denoted byNMT+X (T) andNMT+X (M) respec-
tively, where X = Czech/German/Russian/Chinese.
We treat the X-En data size as hyper-parameter.
All other detailed model designs and hyper-
parameters are introduced in Appendix B.

5.2 Quantitative Results

Our main experimental results are shown in Ta-
ble 3 and Table 4.14 Overall, the translation perfor-

10http://data.statmt.org/news-crawl/en/
11http://www.statmt.org/wmt18/index.html
12http://opus.nlpl.eu/bible-uedin.php
13BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.4
14The confidence intervals in Table 3 and Table 4 are com-

puted by the bootstrap method (Efron and Tibshirani, 1994).

http://data.statmt.org/news-crawl/en/
http://www.statmt.org/wmt18/index.html
http://opus.nlpl.eu/bible-uedin.php
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ID System Cherokee-English English-Cherokee
Dev Test Out-dev Out-test Dev Test Out-dev Out-test

S1 SMT 15.0 14.5 6.7 6.4 11.1 9.8 5.4 4.7
S2 + bigLM 15.3 14.5 6.8 6.5 (±1.4) 11.3 10.1 5.4 4.7
S3 + BT 15.4 14.5 6.5 5.9 11.4 9.9 5.7 5.0 (±1.2)

N4 RNN-NMT 15.7 15.1 2.7 1.8 12.4 11.7 1.1 1.8
N5 + BERT - - - - 12.8 12.2 0.7 0.5
N6 + mBERT - - - - 12.4 12.0 0.5 0.4
N7 + BT 16.0 14.9 3.6 2.7 11.4 11.0 1.2 1.5

N8 Transformer-NMT 9.6 9.1 1.1 0.7 7.9 7.4 0.4 0.3
N9 + BERT - - - - 8.0 7.2 0.4 0.2
N10 + mBERT - - - - 6.8 6.3 0.4 0.2
N11 + BT 9.9 9.4 1.3 0.5 6.6 5.8 0.4 0.1

Table 3: Performance of our supervised/semi-supervised SMT/NMT systems. Bold numbers are our best out-of-
domain systems together with Table 4, selected by performance on Out-dev. (±x) shows 95% confidence interval.

mance is poor compared with the results of some
high-resource translations (Sennrich et al., 2016a),
which means that current popular SMT and NMT
techniques still struggle to translate well between
Cherokee and English especially for the out-of-
domain generalization.
Chr-En vs. En-Chr. Overall, the Cherokee-
English translation gets higher BLEU scores than
the English-Cherokee translation. It is reasonable
because English has a smaller vocabulary and sim-
pler morphology; thus, it is easier to generate.
SMT vs. NMT. For in-domain evaluation, the
best NMT systems surpass SMT for both trans-
lation directions. It could result from our exten-
sive architecture hyper-parameter search; or, it sup-
ports our conjecture that SMT is not necessarily
better than NMT because of the different word or-
ders. But, SMT is dominantly better than NMT for
out-of-domain evaluation, which is consistent with
the results in Koehn and Knowles (2017).
RNN vs. Transformer. Transformer-NMT
performs worse than RNN-NMT, which contra-
dicts the trends of some high-resource translations
(Vaswani et al., 2017). We conjecture that Trans-
former architecture is more complex than RNN
and thus requires larger-scale data to train prop-
erly. We also notice that Transformer models are
very sensitive to hyper-parameters, so it can be
possibly improved after a more extensive hyper-
parameter search. The best Transformer-NMT has
a 5-layer encoder/decoder and 2-head attention,
which is smaller-scale than the model used for
high-resource translations (Vaswani et al., 2017).
Another interesting observation is that previous
works have shown applying BPE and using a small
vocabulary by setting minimum word frequency

are beneficial for low-resource translation (Sen-
nrich et al., 2016c; Sennrich and Zhang, 2019);
however, these techniques are not always being
favored during our model selection procedure, as
shown in Appendix B.4.

Supervised vs. Semi-supervised. As shown
in Table 3, using a big language model and back-
translation both only slightly improve SMT base-
lines on both directions. For English-Cherokee
translation, leveraging BERT representations im-
proves RNN-NMT by 0.4/0.5 BLEU points on
Dev/Test. Multilingual-BERT does not work bet-
ter than BERT. Back-translation with our Chero-
kee monolingual data barely improves perfor-
mance for both in-domain and out-of-domain eval-
uations, probably because the monolingual data is
also out-of-domain, 72% of the unique Cherokee
tokens are unseen in the whole parallel data. For
Cherokee-English translation, back-translation im-
proves the out-of-domain evaluation of RNN-
NMTby 0.9/0.9 BLEU points onOut-dev/Out-test,
while it does not obviously improve in-domain
evaluation. A possible reason is that the English
monolingual data we used is news data that is not
of the same domain as Dev/Test but closer to Out-
dev/Out-test so that it helps themodel to do domain
adaptation. We also investigate the influence of the
English monolingual data size. We find that all of
the NMT+BT systems perform best when only us-
ing 5K English monolingual data, see Figure 5 in
Appendix B.5.

Transferring vs. Multilingual. Table 4 shows
the transfer learning and multilingual joint train-
ing results. It can be observed that, in most cases,
the in-domain RNN-NMT baseline (N4) can be
improved by both methods, which demonstrates
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ID System Cherokee-English English-Cherokee
Dev Test Out-dev Out-test Dev Test Out-dev Out-test

N4 RNN-NMT 15.7 15.1 2.7 1.8 12.4 11.7 1.1 1.8

N12 + Czech (T) 15.8 14.7 2.3 1.8 12.7 12,6 1.8 2.4
N13 + German (T) 15.9 14.8 2.3 1.1 12.9 12.1 1.8 1.4
N14 + Russian (T) 16.5 15.8 1.9 1.9 12.6 11.8 1.8 2.3
N15 + Chinese (T) 16.9 15.8 (±1.2) 2.0 1.5 12.9 12.9 1.2 0.8

N16 + Czech (M) 16.6 15.7 2.4 2.0 13.2 12.4 1.1 2.1
N17 + German (M) 16.6 15.4 2.3 1.4 13.4 12.7 (±1.0) 0.8 2.0
N18 + Russian (M) 16.5 15.9 1.9 1.6 13.2 13.1 1.2 1.8
N19 + Chinese (M) 16.8 16.1 2.2 1.8 13.0 13.0 1.1 1.4

Table 4: Performance of our transfer and multilingual learning systems. Bold numbers are our best in-domain
systems together with Table 3, selected by the performance on Dev. (±x) shows the 95% confidence interval.

that even though the 4 languages are not related
to Cherokee, their translation knowledge can still
be helpful. Transferring from the Chinese-English
model and joint training with English-German
data achieve our best in-domain Cherokee-English
and English-Cherokee performance, respectively.
However, there is barely an improvement on the
out-of-domain evaluation sets, even though the X-
En/En-X data is mostly news (same domain as Out-
dev/Out-test). On average, multilingual joint train-
ing performs slightly better than transfer learning
and usually prefers a larger X-En/En-X data size
(see details in Appendix B.4).

5.3 Qualitative Results

Automatic metrics are not always ideal for natu-
ral language generation (Wieting et al., 2019). As
a new language to the NLP community, we are
also not sure if BLEU is a good metric for Chero-
kee evaluation. Therefore, we conduct a small-
scale human (expert) pairwise comparison by our
coauthor between the translations generated by our
NMT and SMT systems. We randomly sample
50 examples from Test or Out-test, anonymously
shuffle the translations from two systems, and ask
our coauthor to choose which one they think is
better.15 As shown in Table 5, human prefer-
ence does not always follow the trends of BLEU
scores. For English-Cherokee translation, though
the RNN-NMT+BERT (N5) has a better BLEU
score than SMT+BT (S3) (12.2 vs. 9.9), it is liked
less by humans (21 vs. 29), indicating that BLEU
is possibly not a suitable for Cherokee evaluation.
A detailed study is beyond the scope of this paper
but is an interesting future work direction.

15The author, who conducted this human study, was not
involved in the development of MT systems.

Condition | System IDs Win Lose

Chr-En Test N7 vs. S3 43 7
Out-test N7 vs. S2 16 34

En-Chr Test N5 vs. S3 21 29
Out-test N7 vs. S3 2 48

Table 5: Human comparison between the translations
generated from our NMT and SMT systems. If A vs.
B, “Win” or “lose” means that the evaluator favors A
or B. Systems IDs correspond to the IDs in Table 3.

6 Conclusion and Future Work

In this paper, we make our effort to revitalize
the Cherokee language by introducing a clean
Cherokee-English parallel dataset, ChrEn, with
14K sentence pairs; and 5K Cherokee monolin-
gual sentences. It not only can be another re-
source for low-resource machine translation re-
search but also will help to attract attention from
the NLP community to save this dying language.
Besides, we propose our Chr-En and En-Chr base-
lines, including both SMT and NMT models, us-
ing both supervised and semi-supervised methods,
and exploring both transfer learning and multi-
lingual joint training methods with 4 other lan-
guages. Experiments show that SMT is signifi-
cantly better and NMT under out-of-domain condi-
tion while NMT is better for in-domain evaluation;
and the semi-supervised learning, transfer learning,
and multilingual joint training can improve sim-
ply supervised baselines. Overall, our best mod-
els achieve 15.8/12.7 BLEU for in-domain Chr-
En/En-Chr translations and 6.5/5.0 BLEU for out-
of-domain Chr-En/En-Chr translations. We hope
these diverse baselines will serve as useful strong
starting points for future work by the community.
Our future work involves converting the monolin-
gual data to parallel and collecting more data from
the news domain.
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Appendix

A Data

A.1 The Sources of Our Data
Table 14 and Table 15 list the original sources of
our parallel and monolingual data, which include
the title of original article/book/etc., the name of
the speaker/translator, the date of the source, text
type, the dialect, and the number of sentences/pairs.
OK and NC denote the two existing dialects of

Statistics Ours OPUS

Sentence Pairs 14,101 7,974
Dialects 2 1
Text Types 5 2

English tokens 312,854 210,343
Unique English tokens 13,620 6,550
Average English sentence length 22.2 26.4

Cherokee tokens 205,564 144,126
Unique Cherokee tokens 38,494 25,762
Average Cherokee sentence length 14.6 18.1

Table 6: The comparison between our parallel data and
the data provided on OPUS.

Cherokee: the Overhill dialect, most widely spo-
ken in Oklahoma (OK), and the Middle dialect,
most widely used in North Carolina (NC).

A.2 Comparison with Existing Data

Here, we compare our parallel data with the data
provided on OPUS (Tiedemann, 2012). OPUS
has 4 Cherokee-English parallel data resources:
Tatoeba, Wikimedia, Bible-uedin, and Ubuntu.
Wikimedia’s Cherokee sentences are mostly En-
glish, and Ubuntu only has several word map-
pings. Wemainly compare with Tatoeba and Bible-
uedin. Tatoeba has 22 daily dialogue sentence
pairs. Bible-uedin has 15.9K sentence pairs, and
after deduplicating,16 7.9K pairs are left. It is
the translation of the Bible (Cherokee New Testa-
ment) (Christodouloupoulos and Steedman, 2015),
which is also present in our data. Table 617 shows
the detailed statistics of our versus OPUS’s paral-
lel data. In summary, 99% of the OPUS data is
also present in our parallel data, i.e., our data has
6K more sentence pairs that are not sacred texts
(novels, news, etc.).

B Experimental Details

B.1 Data and Preprocessing

For semi-supervised learning, we sample addi-
tional English monolingual data from News Crawl
2017.18 We randomly sample 5K, 10K, 20K, 50K,
and 100K sentences, which are about half, equal,
double, 5-times, 10-times the size of the parallel

16The deduplication is based on Cherokee sentences not
sentence pairs, because we notice that in Bible-uedin two En-
glish sentences can be different just because of one additional
white space in the sentence.

17Note that we apply the same deduplication on our data,
so the numbers are slightly different from those in Table 2.

18http://data.statmt.org/news-crawl/en/

https://openreview.net/forum?id=Hyl7ygStwB
http://data.statmt.org/news-crawl/en/
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training set. For transfer and multilingual train-
ing experiments, we use 12K, 23K, or 58K X-
En (X=Czech/German/Russian/Chinese) parallel
examples, which are equal, double, and 5-times the
size of Chr-En training set. We sample these exam-
ples either only from News Commentary v13 of
WMT201819 or from both News Commentary and
Bible-uedin (Christodouloupoulos and Steedman,
2015) on OPUS20, because half of in-domain Chr-
En data is the Bible. Whenever we sample from
Bible-uedin, we keep the sample size as 6K and
sample the rest from News Commentary.
For all the data we used, the same tokenizer and

truecaser from Moses (Koehn et al., 2007) are ap-
plied. For some NMT systems, we also apply the
BPE subword tokenization (Sennrich et al., 2016c)
with 20,000 merge operations for Cherokee and
English separately. For NMT systems with BERT,
we apply theWordPiece tokenizer fromBERT (De-
vlin et al., 2019) for English. Before evaluation,
the translation outputs are detokenized and detrue-
cased. We use SacreBLEU (Post, 2018)21 to com-
pute the BLEU (Papineni et al., 2002) scores of all
translation systems.

B.2 SMT Systems

We implement SMT systems via Moses (Koehn
et al., 2007). We train a 3-gram langauge model
(LM) by KenLM (Heafield et al., 2013) and con-
duct word alignment by GIZA++ (Och and Ney,
2003). Model weights are tuned on the Dev or Our-
dev by MERT (Och, 2003).

B.3 NMT Systems

Our NMT systems are all implemented by Open-
NMT (Klein et al., 2017). As shown in Table 3
and Table 4, there are 16 NMT systems in total
(N4-N19). For each of these systems, We con-
duct a limited amount of hyper-parameter grid
search on Dev or Out-dev. The search space in-
cludes applying BPE or not, minimum word fre-
quency threshold, number of encoder/decoder lay-
ers, hidden size, dropout, etc. The detailed hyper-
parameter tuning procedure will be discussed in
the next subsection. During decoding, all systems
use beam search with beam size 5 and replace un-
knownwords with source words that have the high-
est attention weight.

19http://www.statmt.org/wmt18/index.html
20http://opus.nlpl.eu/bible-uedin.php
21BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.4

B.4 Hyper-parameters

We observed the NMT models, especially the
Transformer-NMT models, are sensitive to hyper-
parameters. Thus, we did a limited amount
of hyper-parameter grid search when developing
NMT models. For building vocabulary, we take
BPE (Sennrich et al., 2016c) (use or not) and
the minimum word frequency (0, 5, 10) as two
hyper-parameters. For the model architecture, we
explore different number of encoder/decoder lay-
ers (1, 2, 3 for RNN; 4, 5, 6 for Transformer),
hidden size (512, 1024), embedding size (equals
to hidden size, except 768 for BERT), tied de-
coder embeddings (Press and Wolf, 2017) (use
or not), and number of attention heads (2, 4,
8). For training techniques, we tune dropout
(0.1, 0.2, 0.3), label smoothing (Szegedy et al.,
2016) (0.1, 0.2), average decay (1e-4 or not use),
batch type (tokens or sentences), batch size (1000,
4000 for tokens; 32, 64 for sents), and warmup
steps (3000, 4000). We take the English mono-
lingual data size (5K, 10K, 20K, 50K, 100K) as
hyper-parameter when we do back-translation for
Cherokee-English translation. We take the size
of Czech/German/Russian/Chinese-English paral-
lel data (12K, 23K, 58K) and whether sampling
from Bible-uedin (yes or no) as hyper-parameter
when we do transfer or multilingual training. Be-
sides, we take how we incorporate BERT as hyper-
parameter, and it is chosen from the following five
settings and their combinations:

• BERT embedding: Initializing NMT mod-
els’ word embeddingmatrix with BERT’s pre-
trained word embedding matrix IB , corre-
sponding to 1⃝ in Figure 4;

• BERT embedding (fix): The same as “BERT
embedding” except we fix the word embed-
ding during training;

• BERT input: Concatenate NMT encoder’s in-
put IE with BERT’s output HB , correspond-
ing to 2⃝ in Figure 4;

• BERT output: Concatenate NMT encoder’s
output HE with BERT’s output HB , corre-
sponding to 3⃝ in Figure 4;

• BERT output (attention): Use another atten-
tion to leverage BERT’s output HB into de-
coder, corresponding to 4⃝ in Figure 4;

http://www.statmt.org/wmt18/index.html
http://opus.nlpl.eu/bible-uedin.php
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Dev Out-dev

Hyper-parameter N4 N7 N8 N11 N4 N7 N8 N11

BPE yes -
word min frequency 10 0 10

encoder layer 2 5 2 5
decoder layer 2 5 2 5
hidden size 1024 512 1024
embedding size 1024 512 1024
tied decoder embeddings yes - yes - yes
head - 2 - 2

dropout 0.3 0.5 0.1 0.3 0.1
label smoothing 0.2 0.1 0.2 0.1
average decay 1e-4 - 1e-4
batch type tokens sents tokens sents tokens
batch size 1000 32 4000 32 4000
optimizer adam
learning rate (lr) 5e-4
lr decay method - rsqrt - rsqrt
warmup steps - 4000 - 4000
early stopping 10

mono. data size - 5000 - 5000 - 5000 - 5000

Table 7: The hyper-parameter settings of Supervised and Semi-supervised Cherokee-English NMT systems in
Table 3. Empty fields indicate that hyper-parameter is the same as the previous (left) system.

“BERT embedding” and “BERT embedding
(fix)” will not be applied simultaneously, and
“BERT output” and “BERT output (attention)”
will not be applied simultaneously. Multilingual-
BERT is used in the same ways. At most, there
are 576 searches per model, but oftentimes, we did
less than that because we early cut off unpromising
settings. All hyper-parameters are tuned on Dev
or Out-dev for in-domain or out-of-domain eval-
uation, and the model selection is based on trans-
lation accuracy on Dev or Out-dev. Table 7, Ta-
ble 8, Table 9, Table 10, Table 11, Table 12, and Ta-
ble 13 list the hyper-parameters of all the systems
shown in the Table 3 and Table 4. Since our paral-
lel dataset is small (14K sentence pairs), even the
slowest experiment, Transformer-NMT+mBERT,
only takes 2 minutes per epoch using one Tesla
V100 GPU.We train 100 epochs at most and using
early stop when the translation accuracy on Dev or
Out-dev does not improve for 10 epochs.

B.5 English Monolingual Data Size Influence

In the semi-supervised experiments of Cherokee-
English, we investigate the influence of the En-
glish monolingual data size. As mentioned above,
we use 5K, 10K, 20K, 50K, and 100K English
monolingual sentences. Figure 5 shows its influ-
ence on translation performance. It can be ob-
served that increasing English monolingual data

Figure 5: The influence of the English monolingual
data size on semi-supervised learning performance.
The results are on Dev or Out-dev.

size does not lead to higher performance, espe-
cially, all NMT+BT systems achieve the best per-
formance when only use 5K English sentences.
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Dev Out-dev

Hyper-parameter N12 N13 N14 N15 N12 N13 N14 N15

BPE -
word min frequency 0 5

encoder layer 2
decoder layer 2
hidden size 1024 512
embedding size 1024 512
tied decoder embeddings yes
head

dropout 0.3
label smoothing 0.2
average decay 1e-4
batch type tokens sents
batch size 1000 32
optimizer adam
learning rate (lr) 5e-4
lr decay method -
warmup steps -
early stopping 10

X-En data size 11,639 23,278 11,639 23,278
with Bible no yes no yes

Table 8: The hyper-parameter settings of Transferring Cherokee-English NMT systems in Table 4. Empty fields
indicate that hyper-parameter is the same as the previous (left) system.

Dev Out-dev

Hyper-parameter N16 N17 N18 N19 N16 N17 N18 N19

BPE -
word min frequency 5 5

encoder layer 2
decoder layer 2
hidden size 1024 512
embedding size 1024 512
tied decoder embeddings yes
head

dropout 0.3
label smoothing 0.2
average decay 1e-4
batch type tokens sents
batch size 1000 32
optimizer adam
learning rate (lr) 5e-4
lr decay method -
warmup steps -
early stopping 10

X-En data size 58,195 23,278
with Bible yes no

Table 9: The hyper-parameter settings of Multilingual Cherokee-English NMT systems in Table 4. Empty fields
indicate that hyper-parameter is the same as the previous (left) system.
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Dev

Hyper-parameter N4 N7 N5 N6 N8 N11 N9 N10

BPE - - yes -
WordPiece - yes - yes
word min frequency 0 5 0

encoder layer 2 5
decoder layer 2 5
hidden size 1024
embedding size 1024 768 1024 768
tied decoder embeddings yes -
head - 2

dropout 0.5 0.1
label smoothing 0.2 0.1 0.2 0.1
average decay 1e-4 -
batch type tokens
batch size 1000 4000
optimizer adam
learning rate (lr) 5e-4
lr decay method - rsqrt
warmup steps - 4000
early stopping 10

mono. data size - 5210 - 5210 -
BERT embedding - yes
BERT embedding (fix) - yes - -
BERT input - yes - yes
BERT output - yes - - yes
BERT output (attention) - -

Table 10: The hyper-parameter settings of in-domain Supervised and Semi-supervised English-Cherokee NMT
systems in Table 3. Empty fields indicate that hyper-parameter is the same as the previous (left) system.

Out-dev

Hyper-parameter N4 N7 N5 N6 N8 N11 N9 N10

BPE -
WordPiece - yes - yes
word min frequency 10 0 0

encoder layer 2 5
decoder layer 2 5
hidden size 512 1024
embedding size 512 768 1024 768
tied decoder embeddings yes - yes -
head - 2

dropout 0.3 0.5 0.3 0.1
label smoothing 0.2 0.1 0.2 0.2
average decay 1e-4 - 1e-4 -
batch type sents tokens
batch size 32 4000
optimizer adam
learning rate (lr) 5e-4
lr decay method - rsqrt
warmup steps - 4000
early stopping 10

mono. data size - 5210 - 5210 -
BERT embedding - yes -
BERT embedding (fix) - yes -
BERT input - yes -
BERT output - yes -
BERT output (attention) -

Table 11: The hyper-parameter settings of out-of-domain Supervised and Semi-supervised English-Cherokee
NMT systems in Table 3. Empty fields indicate that hyper-parameter is the same as previous (left) system.
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Dev Out-dev

Hyper-parameter N12 N13 N14 N15 N12 N13 N14 N15

BPE -
word min frequency 0 10 5 10

encoder layer 2
decoder layer 2
hidden size 1024 512
embedding size 1024 512
tied decoder embeddings yes
head

dropout 0.3
label smoothing 0.2
average decay 1e-4
batch type tokens sents
batch size 1000 32
optimizer adam
learning rate (lr) 5e-4
lr decay method -
warmup steps -
early stopping 10

En-X data size 23,278 11,639 23,278 11,639 23,278 11,639
with Bible yes no yes no

Table 12: The hyper-parameter settings of Transferring English-Cherokee NMT systems in Table 4. Empty
fields indicate that hyper-parameter is the same as the previous (left) system.

Dev Out-dev

Hyper-parameter N16 N17 N18 N19 N16 N17 N18 N19

BPE -
word min frequency 5 5

encoder layer 2
decoder layer 2
hidden size 1024 512
embedding size 1024 512
tied decoder embeddings yes
head

dropout 0.3
label smoothing 0.2
average decay 1e-4
batch type tokens sents
batch size 1000 32
optimizer adam
learning rate (lr) 5e-4
lr decay method -
warmup steps -
early stopping 10

En-X data size 58,195 23,278 11,639
with Bible yes no yes no

Table 13: The hyper-parameter settings of Multilingual English-Cherokee NMT systems in Table 4. Empty
fields indicate that hyper-parameter is the same as the previous (left) system.
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Title Speaker/Translator Date Type Dialect Examples

Cherokee New Testament Elias Boudinot & Samuel
Worcester

1860 Sacred Text OK 7,957

Charlotte’s Web Myrtle Driver Johnson 2015 Novel NC 3,029

Thirteen Moons Myrtle Driver Johnson 2007 Novel NC 1,927

A Walk in the Woods Marie Junaluska 2011 Children’s nonfiction NC 104

Wolf Wears Shoes (from: Cherokee Stories
of the Turtle Island Liars’ Club)

Sequoyah Guess 2012 Traditional narrative OK 97

The Big Journey of Little Fish Myrtle Driver Johnson &
Abel Catolster

2010 Children’s fiction NC 97

NSU to host 2017 Inter-Tribal Language
Summit

David Crawler 2017 News article OK 69

Bobby the Bluebird - The Blizzard Blunder Myrtle Driver Johnson 2016 Children’s fiction NC 66

A Very Windy Day Myrtle Driver Johnson 2011 Children’s fiction NC 59

Sequoyah: The Cherokee Man Who Gave
His People Writing

Anna Sixkiller Huckaby 2004 Children’s nonfiction OK 56

Spearfinger Nannie Taylor 2008 Traditional narrative NC 50

Tom Belt Meets Horse Tom Belt 2008 Personal Narrative OK 45

The Beast Marie Junaluska 2012 Children’s fiction NC 45

Jackson waiting for lung, heart transplants Anna Sixkiller Huckaby 2017 News article OK 42

Hannah creates competitive softball league Anna Sixkiller Huckaby 2017 News article OK 39

CN re-opens Sequoyah’s Cabin Museum Anna Sixkiller Huckaby 2017 News article OK 36

Chance finds passion in creating soap Anna Sixkiller Huckaby 2016 News article OK 36

Ice passes on loom weaving knowledge David Crawler 2017 News article OK 35

Cherokee National Holiday sees first-ever
chunkey game

Anna Sixkiller Huckaby 2017 News article OK 34

Gonzales showcases interpretive Cherokee
art

David Crawler 2017 News article OK 33

Eating healthy on a budget David Crawler 2017 News article OK 31

Team Josiah fundraises for diabetes aware-
ness

Anna Sixkiller Huckaby 2017 News article OK 30

Cherokee Gates scholars reflect on pro-
gram’s influence

Anna Sixkiller Huckaby 2017 News article OK 28

‘Mankiller’ premieres June 19 at LA Film
Festival

Anna Sixkiller Huckaby 2017 News article OK 26

Hummingbird, Dart named Cherokee Na-
tional Treasures

Dennis Sixkiller 2017 News article OK 25

CNF scholarship applications open Nov. 1 Anna Sixkiller Huckaby 2017 News article OK 22

Chunestudy feels at home as CHC curator Anna Sixkiller 2016 News article OK 20

One Time in Chapel Hill… Tom Belt 2008 Personal Narrative OK 20

Ball of Fire (From: Cherokee Narratives: A
Linguistic Study)

Durbin Feeling 2018 Personal Narrative OK 20

Cat Meowing (From: Cherokee Narratives:
A Linguistic Study)

Durbin Feeling 2018 Personal Narrative OK 19

Peas – Our Garden, Our Life Marie Junaluska 2013 Children’s nonfiction NC 18

Stopping by Woods on a Snowy Evening Marie Junaluska 2017 Poetry NC 16

The Invisible Companion Fox (From: Chero-
kee Narratives: A Linguistic Study)

Durbin Feeling 2018 Personal Narrative OK 14

Cherokee Speakers Bureau set for April 12 Anna Sixkiller Huckaby 2018 News article OK 6

Table 14: Parallel Data Sources.
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Title Speaker/Translator Date Type Dialect Examples

Cherokee Old Testament Samuel Worcester 1860 Sacred Text OK 3802

Encyclopedia Brown Marie Junaluska 2016 Novel NC 537

Charlie Brown Christmas Wiggins Blackfox 2020 Children’s fiction NC 146

Interview with Wilbur Sequoyah Durbin Feeling 2018 Dialogue OK 96

One Fish Two Fish Red Fish Blue Fish Marie Junaluska 2019 Children’s Fiction NC 91

Climbing The Apple Tree Marie Junaluska 2020 Children’s Nonfiction NC 59

How Jack Went to Seek His Fortune Wiggins Blackfox 2019 Children’s Fiction NC 50

Trick Or Treat Danny Wiggins Blackfox 2019 Children’s Fiction NC 49

Kathy’s Change Myrtle Driver Johnson 2016 Children’s Fiction NC 45

Crane And Hummingbird Race Dennis Sixkiller 2007 Traditional Narrative OK 44

Ten Apples On Top Myrtle Driver Johnson 2017 Children’s Fiction NC 37

Transformation Durbin Feeling 2018 Personal Narrative OK 35

Halloween Wiggins Blackfox 2019 Children’s Fiction NC 26

Throw It Home Mose Killer 2018 Personal Narrative OK 21

Little People Durbin Feeling 2018 Personal Narrative OK 19

Hunting Dialogue Durbin Feeling 2018 Dialogue OK 18

Two Dogs in On Durbin Feeling 2018 Personal Narrative OK 18

Reminiscence Mose Killer 2018 Personal Narrative OK 17

The Origin of Evil Magic Homer Snell 2018 Personal Narrative OK 17

Water Beast Sam Hair 2018 Personal Narrative OK 16

Legal Document John Littlebones 2018 Personal Narrative OK 14

The Good Samaritan Samuel Worcester 1860 Sacred Text OK 12

My Grandma Wiggins Blackfox 2018 Children’s Nonfiction NC 9

Rabbit and Buzzard Charley Campbell 2018 Personal Narrative OK 7

Hello Beach Marie Junaluska 2020 Children’s Nonfiction NC 7

This Is My Little Brother Marie Junaluska 2017 Children’s Fiction NC 7

Diary Author Unknown 2018 Personal Narrative OK 6

How to Make Chestnut Bread Annie Jessan 2018 Personal Narrative OK 5

Table 15: Monolingual Data Sources.


