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Abstract

We introduce a new task of rephrasing for a
more natural virtual assistant. Currently, vir-
tual assistants work in the paradigm of intent-
slot tagging and the slot values are directly
passed as-is to the execution engine. However,
this setup fails in some scenarios such as mes-
saging when the query given by the user needs
to be changed before repeating it or sending it
to another user. For example, for queries like
‘ask my wife if she can pick up the kids’ or ‘re-
mind me to take my pills’, we need to rephrase
the content to ‘can you pick up the kids’ and
‘take your pills’. In this paper, we study the
problem of rephrasing with messaging as a
use case and release a dataset of 3000 pairs of
original query and rephrased query. We show
that BART, a pre-trained transformers-based
masked language model with auto-regressive
decoding, is a strong baseline for the task, and
show improvements by adding a copy-pointer
and copy loss to it. We analyze different trade-
offs of BART-based and LSTM-based seq2seq
models, and propose a distilled LSTM-based
seq2seq as the best practical model.

1 Introduction

Virtual assistants have achieved very high accuracy
in parsing queries for execution (Gupta et al., 2018),
such as reciting the weather or setting a reminder.
However, in some scenarios, parsing alone is not
enough to execute a request as expected. For exam-
ple, when the user says “Tell Alice I’ll meet her in
10 minutes”, executing the parsed message would
send the tagged content “I’ll meet her in 10 min-
utes” instead of a more appropriate message such
as “I’ll meet you in 10 minutes”. The other scenario
where rephrasing is needed to better represent the
user’s request is when the user asks “Remind me to
brush my teeth tonight”. A more natural response
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would be “OK, I’ll remind you to brush your teeth
tonight”.

To make a virtual assistant sound more natural,
it needs to rephrase the user’s query content before
executing it. The task is different from paraphras-
ing, as we do not want to change the user’s wording,
i.e., the language formality or choice of words. In-
stead, we need to make minimal syntactic changes
to make the utterance sound natural. As a use case,
we work on the messaging domain, where we focus
on rephrasing a message that needs to be inferred
from the user query. This domain is so named
as it covers requests about sending and receiving
text and instant messages. Unlike the confirmation
case, the message rephrasing is more complicated
and can involve syntactic, pronoun or verb changes.
Note that our goal is not to paraphrase the user’s
message but to rephrase it minimally, making it
sound more natural when being sent to another
user. As such, we need to maintain the semantics
and style of the original content.

Our contributions are as follows: (1) We intro-
duce a new task and release a Message Content
Rephrasing (MCR) dataset for this task consist-
ing of 3k queries with tagged content and possible
rephrases, (2) We explore various modeling ap-
proaches to achieve high accuracy on the MCR and
modify existing pre-trained models to accommo-
date for the nature of this task, and (3) We show that
distilling the pre-trained models into simple models
can significantly close the performance gap.

2 Data

We first collected a task-oriented dataset of mes-
saging utterances by asking our annotators to come
up with natural scenarios in which a user wants to
send a message to a second user.

We observed that the collected queries contained
two distinct types of messaging content: 1) where
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the content needs to be rephrased (REPHRASE)
and 2) where the content should be used verbatim
(EXACT). As such, the utterances were sent to an-
other set of annotators to mark the message content
in the utterances, disregard the ones that do not con-
tain one, and mark whether the utterance belongs
to the EXACT or REPHRASE class. Two annota-
tors needed to agree on the labelling for this task,
with a possible third for disagreement resolution.
In the event of no resolution after three annotators,
the query was reviewed individually. Examples of
each class is shown in Table 1 where the original
content is tagged by brackets around it.

Next, we sent the utterances belonging to the
REPHRASE class to a different set of annotators
and asked them to rephrase the message content in
a way that it would be natural to send to the second
user without any additional context.

During annotation, our goal was to minimally
rephrase a sentence, e.g., keeping the words and
attributes (e.g., formality) of the original content
as much as possible. In order to ensure high qual-
ity, we asked three annotators to independently
rephrase the utterances. In around 30% of the cases,
there was not a majority (i.e., two or more anno-
tators agree) and we asked a fourth annotator to
resolve. Most of the disagreements were due to
changing words that did not need to be changed for
minimal rephrasing but there were cases where the
minimal rephrase was not obvious. We will discuss
this further when introducing our metrics.

Overall, we have around 3k examples (almost
half for each class) which we split by 70/20/10
for train/test/validation, respectively. We can see
from the training data that rephrasing mostly in-
volves making a question and/or changing the sub-
ject pronoun. There are other linguistically com-
plex scenarios such as deciding when to use polite-
ness strategies (e.g. “Could you pick up milk” as
opposed to “Can you pick up milk?”) among these
queries as well. We decided that these complex
edge cases were best addressed in future work. As
such, we cluster the rephrasing into three main cat-
egories. In Table 1, the first example only needs
a pronoun change, the second needs the form to
be changed to a question, and the third needs both.
We have also put the statistics for the changes in
table 3. 1

As mentioned earlier, there is a huge overlap

1The dataset can be downloaded from
dl.fbaipublicfiles.com/rephrasing/rephrasing dataset.tar.gz

between the source and target sequences. As such,
rephrasing can be viewed as a post-editing task
more than a generation task. In Table 2, we have
showed some basic statistics about the training data
for the REPHRASE class in MCR.

3 Evaluation

Our goal is to maximize the rephrasing accuracy
while also maintaining a very high accuracy on the
EXACT class. Our first metric is the Exact Match
(EM) accuracy in which the predicted rephrase
should be the same as the original content for
the EXACT class and equal to the top rephrased
candidate for the REPHRASE class. The down-
side of this metric is that for utterances such as
‘ask her to pick up her phone’, we would penalize
rephrases such as ‘can you pick up your phone’ if
the gold label was ‘pick up your phone’. In order
to smooth this metric, we also use EMany in which
the rephrased content is correct if it matches any of
the provided annotations.

Since the required changes to rephrase the con-
tent are usually small, the BLEU score may not
be useful. On the other hand, not all the wrong
rephrases are equal, e.g., when the model halluci-
nates. Metrics such as BLEU can penalize these
phenomena more than the EM metrics. We also
use SARI (Xu et al., 2016), which is commonly
used for text-editing tasks. It measures the average
F1 score of three editing actions for ngrams: Keep,
Add, and Delete.

4 Modeling Approaches

We assume that the gold tagging for the content
inside the query is provided. Our base model is an
LSTM seq2seq model with two-layers for both en-
coder and decoder using Glove (Pennington et al.,
2014) initialized word embeddings (20k vocab size)
concatenated with ELMo (Peters et al., 2018) em-
beddings to represent the tokens. We also use the
pointer-generator mechanism (See et al., 2017),
which can choose between copying from the source
or generating new tokens using a pointer-attention
mechanism. As we can see in Table 4, the copy
mechanism is crucial in our task, as most of the
tokens are copied from the source.

The copy pointer works as follows: We calculate
two token output probabilities; one over the full
vocab P t

vocab using the standard softmax and an-
other P t

copy over the source tokens. To obtain P t
copy

we use a learned attention between the decoder

dl.fbaipublicfiles.com/rephrasing/rephrasing_dataset.tar.gz
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Query Query Rephrase
REPHRASE Let Kira know [ I can pick her up ] I can pick you up
REPHRASE Message Donna and ask [ when dinner is ] when is dinner
REPHRASE message Brad and ask [ if he has my keys ] do you have my keys
EXACT Tell Jo [I will be on time] I will be on time
EXACT ask my boss [will I have to work on Friday] Will I have to work on Friday

Table 1: Examples of queries and the rephrased utterance

Source Target Keep Add Delete
7.9 9.3 5.9 3.4 2.0

Table 2: Average Length and overlap between source
and target

EXACT (no changes) 57%
REPHRASE (pronoun) 8%
REPHRASE (question) 13%
REPHRASE (pronoun+question) 22%

Table 3: Frequency of the needed changes

hidden htd and the encoder outputs HT
e . To gen-

erate the output, we weigh between copying and
generation using a parameter αmix which is also
computed as a function of the hidden states, i.e.,
P t
output = (1 − αmix)P

t
vocab + αmixP

t
copy. More

precisely:

qt,K, V = htdW
T
q , H

T
e W

T
k , H

T
e W

T
v

P t
copy = softmax(qTK)

αt
mix = sigmoid(Wmix.concat(q

TK,V )),

where q, K, V are the query, key and value, respec-
tively, needed to calculate the attention and all the
W∗ matrices are learned parameters.

We have shown the LSTM results alongside ab-
lation on the ELMo and Copying mechanism in
Table 4. We can see that copying is crucial, espe-
cially for the EXACT class. We show the results
for copying the content part of the source in the
first row.

We also experiment with using BART (Lewis
et al., 2019) for this task. BART is a powerful
pre-trained seq2seq model trained on a de-noising
objective over massive amount of web data. The
training details are listed in the Appendix. During
our initial experiments with BART, we realized it
can replace proper nouns when rephrasing. Even
though BART is a de-noising autoencoder and it

has a high proclivity to copy the source through
its encoder-decoder attention heads, it is still done
over the whole vocabulary space (50k bpe tokens)
and not the dozen of source tokens. To address
this PEGASUS (Zhang et al., 2019) is pre-trained
by generating a selected masked sentence from the
input, where some of the selected sentences are not
masked. We instead opt to add an explicit copying
to BART in the fine-tuning stage.

Since the pre-trained model has no explicit copy
mechanism, adding it naively during the fine-tuning
phase as above is not effective. In this case, the
decoder prefers to use the well-trained generator
instead of a randomly initialized attention head for
copying. We use two strategies to mitigate this:
(1) We initialize the copying attention head with
the average of the last layer’s pre-trained decoder
attention head, and (2) We also add an explicit loss
that forces the decoder to use the copying mech-
anism when it can. For all the target tokens that
can be found in the source, we add a hinge loss:
λmax(T − P, 0) to the cross-entropy loss which
forces the copying probability P for those token to
be above a threshold T . Hyper-parameters λ and
T are optimized over the validation set, 0.25 and
0.9, respectively.

We show results using the BART large model
in Table 4. Vanilla BART yields strong results
compared with the LSTM seq2seq model for the
rephrasing class but slightly lags for EMexact,
which requires pure copying. On the other hand,
by adding the explicit copying to BART, it sig-
nificantly improves the accuracy for both classes.
Moreover, the gap between EM and EMany, the
biggest for BART, shows the proportion of errors
due to subtle differences within the resolved an-
notation, as opposed to errors caused by serious
problems such as hallucination.



5104

Model EM EMany BLEU EMexact EMrephrase SARI
Exact Copy 55.0 55.0 80.6 100 0 26.3
LSTM seq2seq 84.1 85.8 91.0 96.6 68.9 83.1
LSTM seq2seq w/o ELMo 81.3 82.4 89.4 93.8 66.1 81.3
LSTM seq2seq w/o Copy 54.7 55.8 78.9 62.3 39.2 69.7
BART 88.2 90.5 96.0 95.5 79.2 86.4
BART w copy 89.3 92.1 96.1 96.9 80.0 86.5
LSTM + seq-level KD 84.1 86.1 90.5 96.6 68.9 82.9
LSTM + seq-level KD + FT 85.4 87.2 94.0 95.5 73.0 83.7
LaserTagger 87.4 88.7 94.6 97.2 75.8 84.0

Table 4: Rephrasing Model Performance

Model Semantic Grammatical Copy Related Correct
BART 4% 13% 24% 59%
BART w Copy 14% 10% 8% 68%
Distilled LSTM 8% 45% 8% 39%
LaserTagger 25% 38% 4% 33%

Table 5: Prevalence of each category of the models’ mispredictions

4.1 Distilling BART

Deploying models such as BART can be prohibitive
for real-time applications. It has 514M parameters
and around 10X average CPU inference latency
compared with the LSTM model that has only
9.6M parameters. Unlike the pointer-generator
LSTM model, BART with copying still exhibits an
over-generation problem while the LSTM model
makes many grammatical errors. As such, we look
into Knowledge Distillation (KD) (Hinton et al.,
2015) to transfer the language modeling capabil-
ity of BART while keeping its copying behavior.
Transferring the language model of massive pre-
trained models into smaller models has been of
high interest recently (Sanh et al., 2019; Turc et al.,
2020; Sun et al., 2019). Knowledge transfer to
simple models has also been discussed in lesser
extent (Tang et al., 2019; Mukherjee and Awadal-
lah, 2019). We use the sequence-level distillation
introduced in (Kim and Rush, 2016) and train the
LSTM model using the BART output. We found
that fine-tuning on the gold labels after the KD step
is also beneficial to the performance.

4.2 Edit vs Generate

In a pure generation framework, e.g., BART with-
out the copying loss, all the tokens are generated
from scratch. On the other side of the spectrum,
models such as LaserTagger (Malmi et al., 2019)
keep the original utterance and try to edit by adding
or removing as needed. Adding the copying mech-
anism to our models can be considered a middle
ground between editing and generation. We use
the framework introduced in (Malmi et al., 2019)

to edit the queries. It tags each word as Keep or
Delete plus the optional phrase that needs to be
added before it. We procure the list of phrases that
yield high coverage over the training data in MCR.
By using the top 100 phrases, we get coverage over
95% of the training data. Note that the verb conju-
gations needed in our problem can cause a lack of
generalization when using such limited vocabulary.

We train a tagging model using the RoBERTa
encoder (Liu et al., 2019) with one layer of MLP
and CRF on top of it. We have listed the editing
model performance on the last line of the Table 4.
We can see that the editing yields better EM than
the LSTM model but worse than BART. It is un-
surprisingly the best model when no rephrasing is
needed. On the other hand, the type of rephrasing
errors it makes may be worse than the generative
models as evidenced by the lower SARI score. For
example, we find grammatical errors such as “did
you I leave my sunglasses there”. This is possi-
bly caused by the added words being treated as
categorical classes and not as words in a LM.

4.3 Error Analysis

We cluster the errors into three categories with an
additional ‘Correct’ class which means that the
prediction is correct but does not match any of the
gold annotation exactly. A prominent example of
the latter is the addition of politeness prefixes such
as ‘Could you’ to the beginning of a request which
we discussed earlier.

The Grammatical error class represents cases
where the semantics can be understood but there
are some grammatical errors such as a mismatch be-
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tween the noun and verb forms (e.g. verb tense not
matching noun person or number). In the Seman-
tic error class, the meaning is seriously affected.
Semantic errors cover two distinct sub-categories
which both change the meaning of the message:
hallucinating new content and omission of parts of
the content. The Copy-related error category hap-
pens mostly for proper nouns that are not carried
over as exact copies into the output. Since this is
observed mostly in the vanilla BART, we decided
to separate this category from the rest of the errors.

Note that if there are multiple classes of errors
in the output, we pick the most prominent type of
error for that utterance. In Table 5, we have shown
the prevalence of each Category. We can see that
in BART models, the majority of the ostensible
errors are actually correct but the BART model
without the explicit copying has the biggest copy-
related errors among all models. Moreover, while
Grammatical errors is the biggest category in both
the distilled LSTM and the LaserTagger, the latter
makes many more semantic errors which echoes
our qualitative observation.

5 Related Work

5.1 Pre-trained Models for Generation

Pre-training transformers on massive amounts
of unlabeled data has resulted in recent ad-
vances in language understanding and genera-
tion tasks (Devlin et al., 2019; Radford, 2018).
Pre-trained encoder-decoder models have unified
the benefits for both discriminative and genera-
tive tasks through pre-training as de-noising auto-
encoders (Song et al., 2019; Lewis et al., 2019; Raf-
fel et al., 2019). (Chen et al., 2019) fine tune such
a big pre-trained model and add a copy pointer for
a few shot structured tabular data summarization
task.

5.2 Paraphrasing

Paraphrase generation using seq2seq mod-
els (Sutskever et al., 2014) has been recently
discussed in the literature. Prakash et al. (2016)
used residual LSTM seq2seq networks to perform
paraphrasing. Unlike paraphrasing, in MCR,
preserving the semantics of a message is necessary
but not enough. Instead, we make minimal changes
to make the sentence sound natural.

5.3 Sentence Editing and Simplification

Automatic post-editing is applied to paraphrases
and machine translation (Grangier and Auli, 2018).
Similar to this is Grammatical Error Correction
which seeks to correct errors such as grammar and
punctuation (Ng et al., 2014; Zhao et al., 2019).
Sentence revision (Ito et al., 2019) extends this to
cases for which major rewriting may be needed.
Sentence simplification (Nisioi et al., 2017) aims at
using techniques such as shortening the sentences
to make a text more readable. On the other hand,
style transfer is the task of making an utterance
conform to a specific style such as formality (Lo-
geswaran et al., 2018; Sennrich et al., 2016). From
this perspective, the rephrasing task can be viewed
as changing the style from the third-person to the
second-person language and/or forming a question.

6 Conclusion

In this paper, we introduce a new task of message
rephrasing in task-oriented dialog. We release a
dataset, MCR, for this task and propose a new
model (BART with copy). We show that adding
an explicit loss to a pre-trained generative model
during fine-tuning can improve the copying perfor-
mance without hurting its generation power. We
also show that by distilling the pre-trained model
into a much smaller LSTM seq2seq model with
copy pointer, we can significantly improve the
LSTM seq2seq model’s language model capability
while still keeping its accurate copying.
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Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto,
and Liviu P. Dinu. 2017. Exploring neural text sim-
plification models. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 85–91,
Vancouver, Canada. Association for Computational
Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Aaditya Prakash, Sadid A. Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji Farri.
2016. Neural paraphrase generation with stacked
residual LSTM networks. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
2923–2934, Osaka, Japan. The COLING 2016 Orga-
nizing Committee.

Alec Radford. 2018. Improving language understand-
ing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In NeurIPS
EMC2Workshop.

https://doi.org/10.18653/v1/N18-1025
https://doi.org/10.18653/v1/N18-1025
https://doi.org/10.18653/v1/W19-8606
https://doi.org/10.18653/v1/W19-8606
https://doi.org/10.18653/v1/W19-8606
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/7757-content-preserving-text-generation-with-attribute-controls.pdf
http://papers.nips.cc/paper/7757-content-preserving-text-generation-with-attribute-controls.pdf
https://doi.org/10.18653/v1/D19-1510
https://doi.org/10.18653/v1/D19-1510
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.18653/v1/P17-2014
https://doi.org/10.18653/v1/P17-2014
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/C16-1275
https://www.aclweb.org/anthology/C16-1275


5107

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Controlling politeness in neural machine
translation via side constraints. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 35–40, San
Diego, California. Association for Computational
Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to sequence
pre-training for language generation. In ICML.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323–4332, Hong Kong, China. Association for
Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2020. Well-read students learn better:
On the importance of pre-training compact models.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2019. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
ArXiv, abs/1912.08777.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), Minneapolis, Minnesota. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://openreview.net/forum?id=BJg7x1HFvB
https://openreview.net/forum?id=BJg7x1HFvB
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.1162/tacl_a_00107
https://www.aclweb.org/anthology/N19-1014
https://www.aclweb.org/anthology/N19-1014
https://www.aclweb.org/anthology/N19-1014


5108

Model BSz LR WD Epoch Avg Time
BART 10 . 0.00002 e-5 10 1hr
LSTM seq2seq 16 0.001 e-6 40 45min
RoBERTa 16 0.000005 e-4 10 4hr

Table 6: Training Parameters

A Appendix

Here, we describe the details regarding the training.
In Table 6, we have shown the training details for
all of our models. We use ADAM (Kingma and
Ba, 2014) with Learning Rate (LR), Weight Decay
(WD), and Batch Size (BSz) values that are listed
for each model. We have also shown the number
of epochs and the average training time for the full
CS data using 4 V100 Nvidia GPUs.

In all of our BART experiments, we have used
BART large from PyText2 (Aly et al., 2018). When
adding the copying loss to BART, we fine-tuned
the hyper-parameters λ and T over [0.1, 1] and
[0.5,1], respectively, with increments of 0.05. We
also use the RoBERTa large from PyText for the
LaserTagger experiment.

In our LSTM models, the encoder and decoder
are 2-layer LSTMs with hidden dimension of 128
and 256, respectively. We also use dropout of 0.3
for all connections. The ELMo and GloVe embed-
dings have dimesions of 512 and 200, respectively,
and we use the top 8k words in GloVe as our vo-
cabulary.

2https://pytext.readthedocs.io/en/
master/xlm_r.html

https://pytext.readthedocs.io/en/master/xlm_r.html
https://pytext.readthedocs.io/en/master/xlm_r.html

