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Abstract

We present a novel supervised word alignment
method based on cross-language span predic-
tion. We first formalize a word alignment
problem as a collection of independent predic-
tions from a token in the source sentence to
a span in the target sentence. Since this step
is equivalent to a SQuAD v2.0 style question
answering task, we solve it using the multi-
lingual BERT, which is fine-tuned on manu-
ally created gold word alignment data. It is
nontrivial to obtain accurate alignment from
a set of independently predicted spans. We
greatly improved the word alignment accuracy
by adding to the question the source token’s
context and symmetrizing two directional pre-
dictions. In experiments using five word align-
ment datasets from among Chinese, Japanese,
German, Romanian, French, and English,
we show that our proposed method signifi-
cantly outperformed previous supervised and
unsupervised word alignment methods with-
out any bitexts for pretraining. For example,
we achieved 86.7 F1 score for the Chinese-
English data, which is 13.3 points higher
than the previous state-of-the-art supervised
method.1

1 Introduction

Over the last several years, machine transla-
tion accuracy has been greatly improved by neu-
ral networks (Cho et al., 2014; Sutskever et al.,
2014; Bahdanau et al., 2015; Luong et al., 2015;
Vaswani et al., 2017). However, word align-
ment tools, which were developed during the age
of statistical machine translation (Brown et al.,
1993; Koehn et al., 2007) such as GIZA++
(Och and Ney, 2003), MGIZA (Gao and Vogel,
2008) and FastAlign (Dyer et al., 2013), remain

1Our implementation is available at
https://github.com/nttcslab-nlp/word align/

widely used because the improvement of word
alignment accuracy has become stagnant.

This situation is unfortunate because word
alignment could be used for many down-
stream tasks including projecting linguistic an-
notation (Yarowsky et al., 2001), projecting XML
markups (Hashimoto et al., 2019), and enforcing
terminology constraints (pre-specified translation)
(Song et al., 2019). We could also use it for the
user interfaces of post-editing to detect such prob-
lems as under-translation (Tu et al., 2016).

Word alignment has a long research history.
Here, we focus on approaches that use neural
networks because they are the state-of-the art.
Most previous works that use them for word
alignment (Yang et al., 2013; Tamura et al., 2014;
Legrand et al., 2016) achieved accuracies that are
basically comparable to GIZA++. However,
the accuracy of recent works (Garg et al., 2019;
Stengel-Eskin et al., 2019; Zenkel et al., 2020)
based on the Transformer (Vaswani et al., 2017),
which is the state-of-the art neural machine trans-
lation model, have started to outperform GIZA++.

Garg et al. (2019) made the attention of the
Transformer more closely resembled the word
alignment, and achieved better accuracy than
GIZA++ when they used alignments obtained
from it for supervision. Zenkel et al. (2020) added
an alignment layer using a full target context
on top of the Transformer and trained it with a
loss function that encouraged contiguous align-
ment and bidirectional agreement. They outper-
formed GIZA++ without GIZA++ output for su-
pervision. Stengel-Eskin et al. (2019) proposed a
supervised word alignment method using the hid-
den states of the Transformer, and significantly
outperformed FastAlign (11-27 F1 points) using a
small number of gold word alignments (1.7K-5K
sentences). However, both Garg et al. (2019) and
Stengel-Eskin et al. (2019) required more than a
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million parallel sentences to pretrain their models.
Applying these methods to low-resource language
pairs and domains is difficult.

In this paper, we present a novel supervised
word alignment method that requires no paral-
lel sentences for pretraining and can be trained
from fewer gold word alignments (150-300 sen-
tences). It formalizes word alignment as a col-
lection of SQuAD-style span prediction problems
(Rajpurkar et al., 2016) and solves them with mul-
tilingual BERT (Devlin et al., 2019). We exper-
imentally show that our proposed model signifi-
cantly outperformed both (Garg et al., 2019) and
(Stengel-Eskin et al., 2019).

Our main contribution is that we make
supervised word alignment more practical.
Stengel-Eskin et al. (2019) argued that super-
vised word alignment is a viable option. They
concluded that alignment annotation could be
performed rapidly 4.4 sentences per minute by
annotators with minimal experience using a
web-based crowd-sourcing interface. Assuming
that a small amount of gold word alignment data,
which can be annotated in a couple of hours, our
proposed method could be used on 104 languages
supported by the multilingual BERT.

2 Proposed Method

2.1 Word Alignment as Question Answering

Figure 1 shows an example of Japanese-English
word alignment data and Figure 2 is its illustration.
It consists of a token sequence of the L1 language
(Japanese), a token sequence of the L2 language
(English), a sequence of the aligned token pairs,
the original L1 sentence, and the original L2 sen-
tence. For example, the first item of the third line
“0-1” represents that the first token “足利” of the
L1 sentence is aligned to the second token “ashik-
aga” of the L2 sentence. The index of the tokens
starts from zero.

In this paper, we frame word alignment as
a cross-language span prediction problem simi-
lar to the SQuAD-style question answering task
(Rajpurkar et al., 2016). In SQuAD, given a con-
text (a paragraph from Wikipedia) and a question,
the question answering system predicts an answer
as a span in the context. Similarly, given a tar-
get sentence as the context and a source word as
a question, the word alignment system predicts a
translation of the source word as the answer, which
is a span in the target sentence.

Figure 3 shows an example of converting word
alignment data to a SQuAD-style span prediction.
In its upper half, the L1 (Japanese) sentence is
given as the context. A token in the L2 (English)
sentence “was” is given as a question whose an-
swer is span “である” in the L1 sentence. It corre-
sponds to the three aligned token pairs “24-2 25-2
26-2” in the third line of Figure 1.

We can convert the word alignments for a sen-
tence to a set of queries from a token in the L1
sentence to a span in the L2 sentence and a set of
queries from a token in the L2 sentence to a span
in the L1 sentence. If a token is aligned to multi-
ple spans, we treat it as a question with multiple
answers. If a token has no alignment, we treat it as
a question without answers.

We call the question’s language the source lan-
guage and the context’s language (and the an-
swer’s language) the target language. In Figure 3,
the source language is English and the target lan-
guage is Japanese. This is an English-to-Japanese
query.

Suppose the question is such a high-frequency
word as “of”, which might be found many times
in the source sentence. We might easily experi-
ence difficulty finding the corresponding span in
the target sentence without the source token’s con-
text.

The lower half of Figure 3 shows two examples
of a question with the source token’s context. In
question 2, the two preceding words “Yoshimitsu
ASHIKAGA” and two following words “the 3rd”
are attached to the source token “was” with ‘¶’
(pilcrow: paragraph mark) as a boundary marker2.
As shown in the experiment, the longer the context
is, the better the result. We used the whole source
sentence as a context, as shown in question 3.

Since there are many null alignments in word
alignment, we adopted the SQuAD v2.0 format
(Rajpurkar et al., 2018), which explicitly defines
cases when there are no answer spans to the ques-
tion in the given context. For converting word
alignment data to SQuAD-style question answer-
ing, both the question and the context are taken
from the original sentences, not the tokenized se-
quences. The start and end positions of the answer
span are indexes to the character position of the
original target sentence. Since each dataset has a

2We used ‘¶’ as a boundary marker because it belongs to
the Unicode character category “punctuation” and is included
in the multilingual BERT vocabulary. It rarely appears in or-
dinary text.
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足利 義満 （ あしかが よしみつ ） は 室町 幕府 の 第 3 代 征夷 大 将軍 （ 在位 1368 年 - 1394 年 ）
で あ る 。

yoshimitsu ashikaga was the 3rd seii taishogun of the muromachi shogunate and
reigned from 1368 to1394 .
0-1 1-0 3-1 4-0 7-9 8-10 9-7 10-3 11-4 12-4 13-5 14-6 15-6 17-12 18-14 19-14 21-15
22-15 24-2 25-2 26-2 27-16
足利義満（あしかがよしみつ）は室町幕府の第 3代征夷大将軍（在位 1368年-1394年）である。
Yoshimitsu ASHIKAGA was the 3rd Seii Taishogun of the Muromachi Shogunate and
reigned from 1368 to1394.

Figure 1: Word alignment data between Japanese and English (’to1394’ is copied as is).

足利 義満 （ あしかが よしみつ ） は 室町 幕府 の 第 3 代 征夷 大 将軍 （ 在位 1368 年 - 1394 年 ） で あ る 。

yoshimitsu ashikaga was the 3rd seii taishogun of the muromachi shogunate and reigned from 1368 to1394 .

0      1       2       3               4        5    6     7       8        9   10  11 12    13    14     15    16   17      18 19  20   21    22 23 24  25  26 27

0                1         2      3     4      5           6          7    8            9                10            11    12         13       14        15     16

Figure 2: Illustration of the word alignment data. Annotation in Japanese ’あしかがよしみつ’ enclosed in the
first pair of parentheses is the reading of Chinese characters ’足利義満’ (ASHIKAGA, Yoshimitsu). Annotation
in Japanese ’在位 1368年-1394年’ enclosed in the second pair of parentheses is plainly translated in English as
’and reigned from 1368 to 1394’.

different standard for tokenization and casing, we
only used the tokenization of the source sentence
to create a source span in a question.

2.2 Cross-Language Span Prediction using
Multilingual BERT

We defined our cross-language span prediction
task as follows. Suppose we have a source sen-
tence with |X| characters X = x1x2 . . . x|X|,
and a target sentence with |Y | characters Y =
y1y2 . . . y|Y |. Given source token xi:j = xi . . . xj
that covers (i, j) in source sentence X , the task is
to extract target span yk:l = yk . . . yl that covers
(k, l) in target sentence Y .

We applied multilingual BERT (Devlin et al.,
2019) to this task. Although it is designed for
such monolingual language understanding tasks
as question answering and natural language infer-
ence, it works surprisingly well for cross-language
span prediction.

For the SQuAD v2.0 task, we used a model de-
scribed in (Devlin et al., 2019) that added two in-
dependent output layers to the pretrained BERT to
predict the start and end positions in the context.
Suppose pstart and pend are the probabilities that
each position in the target sentence is the start and
end positions of the answer span. We defined score
ωX→Y
ijkl of target span yk:l given source span xi:j as

the product of its start and end position probabili-
ties and selected span (k̂, l̂) that maximizes ωX→Y

ijkl

as the best answer span:

ωX→Y
ijkl = pstart(k|X,Y, i, j) · pend(l|X,Y, i, j)

(1)
(k̂, l̂) = arg max

(k,l):1≤k≤l≤|Y |
ωX→Y
ijkl (2)

In the SQuAD model of BERT, first, the ques-
tion and the context are concatenated to generate
sequence “[CLS] question [SEP] context [SEP]”
as input, where [CLS] and [SEP] are the classifica-
tion and separator tokens, respectively. Then, the
start and end positions are predicted as indexes to
the sequence. In the SQuAD v2.0 model, the start
and end positions are the indexes to the [CLS] to-
ken if there are no answers.

Unfortunately, since the original implementa-
tion of the SQuAD model only outputs an answer
string, we extended it to output the answer’s start
and end positions. Inside BERT, the input se-
quence is first tokenized by WordPiece. It then
splits the CJK characters into a sequence of a sin-
gle character. Since the start and end positions are
indexes to the BERT tokens, we converted them to
character indexes to make the input tokenization
(word boundary) independent of the BERT tok-
enization.

Figure 4 shows an example of span prediction
where the source token is “Yoshimitsu”, which
consists of four BERT tokens. The original to-
ken (word) boundaries are shown by dotted lines.
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context: "足利義満（あしかがよしみつ）は室町幕府の第 3代征夷大将軍（在位 1368年-1394年）である。"
question_1: "was"
answer: "である",

question_2: "Yoshimitsu ASHIKAGA ¶ was ¶ the 3rd"
question_3: "Yoshimitsu ASHIKAGA ¶ was ¶ the 3rd Seii Taishogun of the Muromachi
Shogunate and reigned from 1368 to1394.

Figure 3: English-to-Japanese query without source context (question 1), with limited source context (question 2),
and with full source context (question 3)

足 利 義 満 （ あ ##し ##か ##が ##よ ##し ##み ##つ ） は
義満

1    2    3    4     5   6       7        8       9       10       11      12      13   14   15

1:2

3:5

6:9

10

12:13

14:15

Yo

##shi

##mits

##u

AS

##HI

義満（あしかがよしみつ

足利義満

義満（

義満（あしかがよし

Figure 4: An example of Japanese-to-English span prediction where source token is “Yoshimitsu”. Each BERT
token is shown with its character index to the original sentence, and word boundaries are shown by dotted lines.

There are five target span candidates, where “
義満” is the correct answer. The predicted tar-
get spans do not necessarily agree with the target
token boundaries because BERT predicts spans
based on its tokens. For target spans that do not
agree with the target token boundaries such as “
義満（あしかがよし”, we select the longest se-
quence of the target tokens that is strictly included
in the predicted target span such as “義満”, “（”,
and “あしかが”, as a set of aligned target tokens
from the source token.

2.3 Symmetrization of Word Alignments

Since the proposed span prediction model predicts
a target span for a source token, it is asymmetric
like the IBM model (Brown et al., 1993). To make
the span predictions more reliable, we designed a
simple heuristics to symmetrize the span predic-
tions of two directions.

Symmetrizing IBM model alignments was first
proposed by Och and Ney (2003). One of the most
popular Statistical Machine Translation Toolkits,
Moses (Koehn et al., 2007), supports a variety
of symmetrization heuristics, such as intersection
and union, where grow-diag-final is the default.
The intersection of the two yields an alignment
that consists of one-to-one alignments with higher
precision and lower recall than either one sepa-
rately. The union yields higher recall and lower
precision.

As a symmetrization method, for an alignment
we averaged the probabilities of the best spans for
each token for each direction. A token is aligned
if it is completely included in the predicted span.
We then extracted the alignments with the average
probabilities that exceed a threshold.

Let xi:j be a substring of sentence X that spans
(i,j), and let yk:l be a substring of sentence Y that
spans (k,l). Let ωX→Y

ijkl be the probability that to-
ken xi:j predicts span yk:l, and let ωY→X

ijkl be the
probability that token yk:l predicts span xi:j . Let
ωijkl be the probability of alignment aijkl where
token xi:j is aligned to token yk:l. We define
ωijkl as the average of probability ωX→Y

ijk̂l̂
of the

best predicted span yk̂:l̂ from xi:j and probability
ωY→X
îĵkl

of the best predicted span xî:ĵ from yk:l :

ωijkl = 1/2(Ik̂≤k≤l≤l̂(ω
X→Y
ijk̂l̂

)+Iî≤i≤j≤ĵ(ω
Y→X
îĵkl

))

(3)
where IA(x) is an indicator function. IA(x) re-
turns x if A is true and 0 otherwise. We regard xi:j
and yk:l as aligned if ωijkl is more than or equal to
threshold, which we set to 0.4.

We call our proposed symmetrization the bidi-
rectional average (bidi-avg). It is easy to imple-
ment and works similarly to grow-diag-final in the
sense that it tries to find an intermediate alignment
between union and intersection. Figure 5 shows an
example where a Japanese-to-English span predic-
tion (left) and an English-to-Japanese span predic-
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Figure 5: Ja-to-En span prediction (left) and En-to-Ja span prediction (middle) are symmetrized using bidi-avg
(right). Alignments whose average probabilities are more than or equal to the threshold are shown in black.

Language Train Test Reserve
Zh-En 4,879 610 610
Ja-En 653 357 225
De-En 300 208 0
Ro-En 150 98 0
En-Fr 300 147 0

Table 1: Number of gold alignment sentences and their
training/test splits.

tion (middle) are symmetrized using bidirectional
average (right). The token pair “is” and “で” is
identified as aligned because its bidirectional aver-
age probability equals the threshold, even though
it is only predicted in one direction.

We determined a threshold of 0.4 in a pre-
liminary experiment in which we divided the
Japanese-English training data into two halves for
training and test sets. We used the threshold for all
the experiments described in this paper. Although
the span prediction of each direction was made in-
dependently, we did not normalize the scores be-
cause both directions are trained in one model.

Although we only used the best span for each
direction, we could use the n-best spans to handle
discontinuous alignment such as a pair between
“never” and “決して...ない”. It is worth inves-
tigating further as future work.

3 Experiments

3.1 Data

Table 1 shows the number of training and
test sentences of the five gold word alignment
datasets used in our experiments: Chinese-English
(Zh-En), Japanese-English (Ja-En), German-
English (De-En), Romanian-English (Ro-En), and
English-French (En-Fr).

Stengel-Eskin et al. (2019) used the Zh-En
dataset and Garg et al. (2019) used the De-En, Ro-
En, and En-Fr datasets. We added a Ja-En dataset

because Japanese is one of the most distant lan-
guages from English3.

The Zh-En data were obtained from the
GALE Chinese-English Parallel Aligned Tree-
bank (Li et al., 2015), which consists of broadcast-
ing news, news wires, and web data. To make
the experiment’s condition as close as possible
to Stengel-Eskin et al. (2019), we used Chinese
character-tokenized bitexts, which we cleaned (by
removing mismatched bitexts, time stamps, etc.)
and randomly split them into 80% training, 10%
testing, and 10% future reserves.

The Japanese-English data were obtained from
the KFTT word alignment data (Neubig, 2011).
The Kyoto Free Translation Task (KFTT) 4 was
made by manually translating Japanese Wikipedia
pages about Kyoto into English. KFTT is one
of the most popular Japanese-English translation
benchmarks and consists of 440k training sen-
tences, 1166 development sentences, and 1160 test
sentences. The KFTT word alignment data were
made by manually word aligning a part of the dev
and test sets. The aligned dev set has eight files
and the aligned test set has seven files. We used
all eight dev set files for training, four test set files
for testing, and three other files for future reserves.

De-En, Ro-En, and En-Fr data are the same
ones described in Zenkel et al. (2019). They
provide pre-processing and scoring scripts5.
Garg et al. (2019) used these three datasets for
their experiments. The De-En data were orig-
inally provided by Vilar et al. (2006)6. Ro-En
and En-Fr data were used in the shared task
of the HLT-NAACL-2003 workshop on Building
and Using Parallel Texts (Mihalcea and Pedersen,

3Stengel-Eskin et al. (2019) also used an Arabic-English
(Ar-En) dataset. We did not use it here due to time constraints

4http://www.phontron.com/kftt/index.html
5https://github.com/lilt/alignment-scripts
6https://www-i6.informatik.rwth-

aachen.de/goldAlignment/
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2003)7. The En-Fr data were originally provided
by (Och and Ney, 2000). The numbers of the test
sentences in the De-En, Ro-En, and En-Fr datasets
are 508, 248, and 447. In De-En and En-Fr, we
used 300 sentences for training. In Ro-En, we
used 150 sentences for training. The other sen-
tences were used for testing.

3.2 Implementation Details

We used BERT-Base, Multilingual Cased (104
languages, 12 layers, 768 hidden states, 12 heads,
110M parameters, November 23rd, 2018) in
our experiments8. We basically used the script
for SQuAD as it is except for the start and
end positions. The following are the parame-
ters: train batch size = 12, learning rate = 3e-
5, num train epochs = 2, max seq length = 384,
max query length = 160, and max answer length
= 15.

Devlin et al. (2019) used the following thresh-
old for the squad-2.0 model:

ŝij > snull + τ (4)

Here, if the difference of the scores of best non-
null span ŝij and null (no-answer) span snull ex-
ceeds threshold τ , a non-null span is predicted.
The default value of τ = 0.0, and the optimal
threshold is decided by the development set. We
used the default value because we assumed the
score of a null alignment is appropriately esti-
mated since there are many null alignments in the
training data.

We used two NVIDIA TESLA V100 (16GB)
for our experiments. If we set the training batch
size to 6, the experiments could be performed in
NVIDIA GEFORCE RTX 2080 Ti (11GB) with
no significant differences in accuracy. It took
about 30 minutes to fine-tune an epoch for the Ja-
En data (653 sentences). It took 3 to 4 sentences
per second for the inferences, excluding the time
for loading the model, which was about two min-
utes.

3.3 Measures for Word Alignment Quality

We evaluated the quality of the word alignment us-
ing an F1 score that assigns equal weights to pre-
cision (P) and recall (R):

F1 = 2× P ×R/(P +R) (5)
7http://web.eecs.umich.edu/ mihalcea/wpt/index.html
8https://github.com/google-research/bert

If necessary, we also used alignment error rate
(AER) (Och and Ney, 2003) because some previ-
ous works only reported it. Let quality of align-
ment A be measured against a gold word align-
ment that contains sure (S) and possible(P ) align-
ments (S ⊆ P ). Precision, recall, and AER are
defined as follows:

Precision(A,P ) =
|P ∩A|
|A|

(6)

Recall(A,S) =
|S ∩A|
|S|

(7)

AER(S, P,A) = 1− |S ∩A|+ |P ∩A|
|S|+ |A|

(8)

Fraser and Marcu (2007) pointed out that since
AER is broken in a way that favors precision,
it should be used sparingly. In previous works,
Stengel-Eskin et al. (2019) used precision, recall,
and F1, while Garg et al. (2019) and Zenkel et al.
(2019) used precision, recall, and AER. Note that,
if we distinguish between sure and possible align-
ments, precision and recall are different from those
when we do not make such a distinction. Among
our five datasets, De-En and En-FR make a dis-
tinction between sure and possible alignments.

3.4 Results

Table 2 compares our proposed method with previ-
ous works. In all five datasets, our method outper-
formed all previous methods. In the Zh-En data,
our method achieved an F1 score of 86.7, which
is 13.3 points higher than that of DiscAlign 73.4,
as reported in (Stengel-Eskin et al., 2019), which
is the state-of-the-art supervised word alignment
method. Stengel-Eskin et al. (2019) used 4M bi-
texts for pretraining, while our method needed no
bitexts for pretraining. In Ja-En data, our method
achieved an F1 score of 77.7, which is 20 points
higher than that of GIZA++ 57.8, as reported in
(Neubig, 2011).

For the De-EN, Ro-EN, and En-Fr datasets,
Garg et al. (2019), which is the state-of-the-art un-
supervised method, only reported AER in their
paper. We classified their method as unsuper-
vised because they did not use manually cre-
ated word alignment data. Their method used
the GIZA++ output for supervision. For refer-
ence, we show the precision, recall, and AER
of MGIZA (Zenkel et al., 2019)9, the AER of

9We took these numbers from their GitHub.
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Test set Method P R F1 AER
Zh-En FastAlign (Stengel-Eskin et al., 2019) 80.5 50.5 62.0 -

DiscAlign (Stengel-Eskin et al., 2019) 72.9 74.0 73.4 -
Our method 84.4 89.2 86.7 -

Ja-En Giza++ (Neubig, 2011) 59.5 55.6 57.6 -
Our method 77.3 78.0 77.6 -

De-En Our method (trained on sure + possible) 89.9 81.7 85.6 -
Ro-En Our method 90.4 85.3 87.8 -
En-Fr Our method (only trained on sure) 79.6 93.9 86.2 -
De-En MGIZA (BPE, Grow-Diag-Final) (Zenkel et al., 2019) 91.3 70.2 - 20.6

GIZA++ (BPE, Grow-Diag) (Zenkel et al., 2020) - - - 18.7
Alignment layer, bidi, unsupervised (Zenkel et al., 2020) - - - 16.3
Align and translate, GIZA++ supervised (Garg et al., 2019) - - - 16.0
Our method (trained on sure + possible) 89.9 87.3 - 11.4

Ro-En MGIZA (BPE, Grow-Diag-Final) (Zenkel et al., 2019) 90.9 61.8 - 26.4
GIZA++ (BPE, Grow-Diag) (Zenkel et al., 2020) - - - 26.5
Alignment layer, bidi, unsupervised (Zenkel et al., 2020) - - - 23.4
Align and translate, GIZA++ supervised (Garg et al., 2019) - - - 23.1
Our method 90.4 85.3 - 12.2

En-Fr MGIZA (BPE, Grow-Diag) (Zenkel et al., 2019) 97.5 89.7 - 5.9
GIZA++ (BPE, Grow-Diag) (Zenkel et al., 2020) - - - 5.5
Discriminative matching (Taskar et al., 2005) - - - 5.4
Supervised ITG (Haghighi et al., 2009) 95.5 94.2 - 5.0
Alignment layer, bidi, unsupervised (Zenkel et al., 2020) - - - 5.0
Align and translate, GIZA++ supervised (Garg et al., 2019) - - - 4.6
Our method (only trained on sure) 97.7 93.9 - 4.0

Table 2: Best-effort comparison of proposed method with previous works

GIZA++ (Zenkel et al., 2020), as well as the ac-
curacies of previous methods (Taskar et al., 2005;
Haghighi et al., 2009; Zenkel et al., 2020) with the
same datasets.

For training, we used both the sure and possible
alignments for the De-En dataset, but we only used
sure alignments for the En-Fr dataset because it is
very noisy10.

We used the scoring script provided by
Zenkel et al. (2019). For the De-En, Ro-En,
and En-Fr datasets, the AERs of the proposed
method were 11.4, 12.2, and 4.0, which are sig-
nificantly smaller than those of (Garg et al., 2019)
and (Zenkel et al., 2020).

It is unfair to compare our supervised method
10In En-Fr data, all “phrasal correspondence” are anno-

tated as possible alignments. For example, if a phrase with
three words and a phrase with four words are regarded as mu-
tual translations, 12 word alignments are marked as possible
(Mihalcea and Pedersen, 2003). There are 4,038 sure align-
ments and 13,400 possible alignments in the En-Fr data (447
sentences). If our model is trained on both sure and possible,
such numerous possible alignments function as noise, which
results in low precision.

with unsupervised methods. Our experiment’s aim
is to show that we have made supervised methods
practical. We can train our model using a smaller
amount of manually created data than the amount
originally created for evaluation.

4 Analysis

4.1 Symmetrization Heuristics

To show the effectiveness of our proposed sym-
metrization heuristics (bidi-avg), Table 3 describes
the word alignment accuracies of the predictions
of two directions, intersection, unison, grow-diag-
final, and bidi-avg.

The accuracies are greatly affected by the or-
thography of the target language. For languages
whose words are not delimited by white spaces,
such as Chinese and Japanese, the span prediction
accuracy “to English” is significantly higher than
that of “from English”. In this case, grow-diag-
final outperforms bidi-avg. By contract, for lan-
guages with spaces between words, such as Ger-
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Test set Method P R F1
Zh-En Zh to En 89.9 85.8 87.8

En to Zh 82.0 81.8 81.9
intersection 95.5 74.9 83.9
union 79.4 92.7 85.5
grow-diag-final 94.7 81.2 87.4
bidi-avg 84.4 89.2 86.7

Ja-En Ja to En 80.6 79.7 80.2
En to Ja 61.9 69.0 65.2
intersection 90.8 63.1 74.5
union 60.8 85.6 71.1
grow-diag-final 86.5 71.7 78.1
bidi-avg 77.3 78.0 77.6

De-En De to En 86.7 80.7 83.6
En to De 87.0 82.1 84.5
intersection 93.8 76.1 84.0
union 81.5 86.7 84.0
grow-diag-final 91.1 78.4 84.3
bidi-avg 81.7 89.9 85.6

Ro-En Ro to En 84.6 86.5 85.5
En to Ro 87.2 86.3 86.7
intersection 93.1 82.2 87.3
union 80.2 90.6 85.0
grow-diag-final 92.0 83.7 87.6
bidi-avg 90.4 85.3 87.8

En-Fr En to Fr 79.9 91.7 85.4
Fr to En 79.5 91.3 85.0
intersection 85.3 88.1 86.7
union 75.2 94.9 83.9
grow-diag-final 79.6 92.4 85.5
bidi-avg 79.6 93.9 86.2

Table 3: Effects of symmetrization for various lan-
guage pairs

man, Romanian, and French, no significant dif-
ferences exist between the “to English” and “from
English” accuracies. In this case, bidi-avg is bet-
ter than grow-diag-final. In En-Fr, intersection
achieves the best accuracy, probably because the
dataset is very noisy. Since the proposed bidi-avg
works relatively well for all cases, we used the
heuristics as the default symmetrization method in
our experiments.

4.2 Importance of Source Context

Table 4 shows the word alignment accuracies for
questions of different source contexts. We used the
Ja-En data and found that the source context in-
formation is critical for predicting the target span.
Without it, the F1 score of the proposed method

Test set Context P R F1
Ja-En no context 67.3 53.0 59.3

±2 words 73.9 70.2 72.0
whole sentence 77.3 78.0 77.6

Table 4: Importance of source context

Test set # train P R F1
Zh-En 300 80.9 78.4 79.6

600 82.9 81.7 82.3
1200 82.8 85.6 84.1
2400 83.6 87.4 85.5
4879 84.4 89.2 86.7

Table 5: Test set performance when trained on subsam-
ples of Chinese gold word alignment data

is 59.3, which is only slightly higher than that of
GIZA++, 57.6. If we add a short context, namely,
the two preceding words and the two following
words, the F1 score is improved by more than 10
points to 72.0. If we use the whole source sen-
tence as the context, the F1 score is improved by
5.6 points to 77.6.

It is nontrivial to obtain accurate alignments
from a set of independently predicted spans. In
preliminary experiments, we used Integer Linear
Programming (ILP) to optimize the span predic-
tions as in (DeNero and Klein, 2008). We found
that using context is simple and more effective.

4.3 Learning Curve
Table5 shows the learning curve of the pro-
posed method using the Zh-En data. Com-
pared to previous methods, our method achieved
higher accuracy using less training data. Even
for 300 sentences, the F1 score of our method
was 79.6, which is 6.2 points higher than that
of (Stengel-Eskin et al., 2019) (73.4), which used
more than 4800 sentences for training.

A supervised model trained on hand-aligned
data must learn the idiosyncrasies of the annota-
tion standard, which varies widely from language
to language and across different annotation efforts.
Our method allows us to fine-tune the specific pe-
culiarities of the annotation standard using only a
few hundred examples.

5 Related Works

For several years, word alignment methods using
neural networks (Yang et al., 2013; Tamura et al.,
2014; Legrand et al., 2016) failed to signifi-
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cantly outperform those using statistical methods
(Brown et al., 1993; Vogel et al., 1996).

Recently, Stengel-Eskin et al. (2019) proposed
a supervised method using a small amount of an-
notated data (1.7K-5K sentences) and significantly
outperformed the accuracy of GIZA++. They first
mapped the source and target word representa-
tions obtained from the encoder and decoder of the
Transformer to a shared space using a three-layer
feed-forward neural network. They then applied 3
× 3 convolution and softmax to obtain the align-
ment scores between the source and target words.
They used 4M parallel sentences to pretrain the
Transformer. We achieved significantly better ac-
curacy than (Stengel-Eskin et al., 2019) with less
annotated training data and no parallel sentences.

Garg et al. (2019) proposed an unsupervised
method that jointly optimized translation and
alignment objectives. They achieved a signif-
icantly better alignment error rate (AER) than
GIZA++ when they supervised their model us-
ing the alignments obtained from GIZA++. Their
model requires about a million parallel sen-
tences for training the underlying Transformer.
Zenkel et al. (2020) added an alignment layer on
top of the Transformer, which uses full target con-
text and a loss function to encourage contigu-
ous alignment and bidirectional agreement. Their
unsupervised end-to-end neural word alignment
method consistently outperformed GIZA++. We
experimentally showed that we can outperform
previous unsupervised neural word alignment re-
sults with just 150 to 300 annotated sentences
for training. Although it is not fair to compare
unsupervised methods with supervised ones, our
method is a practical option to obtain better word
alignment results.

Ouyang and McKeown (2019) proposed a
monolingual phrase alignment method that can
align phrases of arbitrary lengths. Compared
to our span prediction method, their method is
inflexible because they first segmented the source
and target sentences into chunks and used a
pointer-network (Vinyals et al., 2015) to calculate
the alignment scores between fixed chunks.

Cao et al. (2020) reported that multilingual
BERT is somewhat aligned out-of-the-box, and
proposed a method to align pretrained contextual
word embeddings. Their method learns a function
that maps aligned word pairs to similar represen-
tations, while our method implicitly learns a func-

tion that maps a word representation to its transla-
tion with both contexts.

6 Conclusion

We presented a novel supervised word alignment
method using the multilingual BERT, which re-
quires as few as 300 training sentences to outper-
form previous supervised and unsupervised meth-
ods. We made supervised word alignment practi-
cal because our method does not require any bi-
texts for pretraining, and it can be fine-tuned to
a specific guideline using fewer gold word align-
ments.

Future works include using other multilin-
gual pretraining models such as XLM-RoBERTa
(Conneau et al., 2019) for a more accurate model
and distilmBERT (Sanh et al., 2019) for a more
compact model. One significant merit of framing
word alignment as a SQuAD-style span prediction
task is that we can easily import the progress of
the latest question answering and multilingual lan-
guage modeling technologies.

Our cross-language span prediction method can
be used for any alignments between two se-
quences. We have already applied it to bilingual
sentence alignment (Chousa et al., 2020) and we
plan to extend it to other related problems.
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