
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 535–548,
November 16–20, 2020. c©2020 Association for Computational Linguistics

535

Efficient Meta Lifelong-Learning with Limited Memory

Zirui Wang∗, Sanket Vaibhav Mehta∗, Barnabás Póczos, Jaime Carbonell
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Abstract

Current natural language processing models
work well on a single task, yet they often fail
to continuously learn new tasks without for-
getting previous ones as they are re-trained
throughout their lifetime, a challenge known
as lifelong learning. State-of-the-art lifelong
language learning methods store past exam-
ples in episodic memory and replay them at
both training and inference time. However, as
we show later in our experiments, there are
three significant impediments: (1) needing un-
realistically large memory module to achieve
good performance, (2) suffering from negative
transfer, (3) requiring multiple local adapta-
tion steps for each test example that signifi-
cantly slows down the inference speed. In this
paper, we identify three common principles of
lifelong learning methods and propose an effi-
cient meta-lifelong framework that combines
them in a synergistic fashion. To achieve sam-
ple efficiency, our method trains the model in
a manner that it learns a better initialization
for local adaptation. Extensive experiments
on text classification and question answering
benchmarks demonstrate the effectiveness of
our framework by achieving state-of-the-art
performance using merely 1% memory size
and narrowing the gap with multi-task learn-
ing. We further show that our method allevi-
ates both catastrophic forgetting and negative
transfer at the same time.

1 Introduction

Humans learn throughout their lifetime, quickly
adapting to new environments and acquiring new
skills by leveraging past experiences, while re-
taining old skills and continuously accumulating
knowledge. However, state-of-the-art machine
learning models rely on the data distribution be-
ing stationary and struggle in learning diverse tasks

∗Equal contribution, name order decided by coin flip.

in such a lifelong learning setting (Parisi et al.,
2019) (see section 2 for a formal definition). In
particular, they fail to either effectively reuse previ-
ously acquired knowledge to help learn new tasks,
or they forget prior skills when learning new ones -
these two phenomena are known as negative trans-
fer (Wang et al., 2019) and catastrophic forgetting
(McCloskey and Cohen, 1989), respectively. These
downsides limit applications of existing models to
real-world environments that dynamically evolve.

Due to its potential practical applications, there
is a surge of research interest in the lifelong learn-
ing, especially in the vision domain (Rusu et al.,
2016; Kirkpatrick et al., 2017; Zenke et al., 2017;
Lopez-Paz and Ranzato, 2017; Yoon et al., 2018;
Sprechmann et al., 2018; Chaudhry et al., 2019).
However, its application to language learning has
been relatively less studied. While progress in
large-scale unsupervised pretraining (Devlin et al.,
2019; Radford et al., 2019; Liu et al., 2019; Yang
et al., 2019; Raffel et al., 2020) has recently driven
significant advances in the field of natural lan-
guage processing (NLP), these models require large
amounts of in-domain training data and are prone to
catastrophic forgetting when trained on new tasks
(Yogatama et al., 2019), hindering their deploy-
ment in industry or other realistic setups where
new tasks/domains continuously emerge.

One successful approach to achieving lifelong
learning has been augmenting the learning model
with an episodic memory module (Sprechmann
et al., 2018). The underlying idea is to first store
previously seen training examples in memory, and
later use them to perform experience replay (Rol-
nick et al., 2019) or to derive optimization con-
straints (Lopez-Paz and Ranzato, 2017; Chaudhry
et al., 2019) while training on new tasks. Recently,
d’Autume et al. (2019) propose to use such a mem-
ory module for sparse experience replay and local
adaptation in the language domain, achieving state-
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of-the-art results for lifelong learning on text clas-
sification and question answering tasks. Despite its
success, the method has three critical downsides,
which we demonstrate later in our experiments:

• It requires an unrealistically large memory
module, i.e. storing all training examples, in
order to achieve optimal performance.

• While the model can mitigate catastrophic for-
getting, its local adaptation step is prone to
negative transfer such that it performs worse
on the most recent task than the naive baseline
without any lifelong learning regularization.

• Its inference speed is extremely slow due to
a non-trivial amount of local adaptation steps
required for each test example.

In this paper, we address these limitations and
tackle the problem of efficient lifelong language
learning. That is, we focus on storing limited train-
ing examples in memory. Our contributions are
three-fold: First, we identify three common prin-
ciples underlying lifelong learning methods. We
seek to characterize them in language learning and
glean insights on overlooked downsides of the exist-
ing method. Second, stemming from this analysis,
we propose a meta-lifelong framework that unifies
these three principles. Our approach is a direct
extension of d’Autume et al. (2019) and it explic-
itly meta-learns the model as a better initialization
for local adaptation. Finally, we conduct extensive
experiments to demonstrate that our proposed ap-
proach can use the identified three principles to
achieve efficient lifelong language learning. We
find that our framework outperforms prior meth-
ods while using 100 times less memory storage.
Moreover, we demonstrate that our method can ef-
fectively alleviate catastrophic forgetting and neg-
ative transfer, closing the performance gap with
the multi-task learning upper bound. It can also
potentially obtain 22 times faster inference speed.

2 Background: Principles of Lifelong
Language Learning

Following prior work (d’Autume et al., 2019), we
consider the lifelong learning setting where a model
needs to learn multiple tasks in a sequential order
via a stream of training examples without a task
descriptor, i.e. the model does not know which
task an example comes from during both training
and testing. This setup is ubiquitous in practice, as

environments consistently evolve without sending
an explicit signal.

Formally, during training, the model makes
a single pass over the training example stream
consisting of N tasks in an ordered sequence,
Dtrain = {Dtrain1 , · · · ,DtrainN }, where Dtraint =
{(xit, yit)}nt

i=1 is drawn from the task-specific distri-
bution Pt(X ,Y) of the t-th task. Overall, the goal
is to learn a predictor fθ : X → Y such as a neural
network, parameterized by θ ∈ RP , to minimize
the average expected risk of all N tasks:

R(fθ) :=
1

N

N∑
t=1

Ex,y∼Pt [`(fθ(x), y)] , (1)

with ` being the specific task loss. Notice that while
the average risk is most commonly evaluated after
the model has seen all tasks, we can also evaluate a
specific task at different stages to demonstrate the
model’s training behavior, and evaluate its robust-
ness against catastrophic forgetting and negative
transfer.

While different methods have been developed
to optimize Eq.(1), we abstract away from their
specific assumptions and instead focus on identi-
fying common principles, among which we stress
the following three points that are most relevant to
language learning:

Generic Representation. Stemming from trans-
fer learning (Weiss et al., 2016; Ganin and Lem-
pitsky, 2015), a key idea of transferring knowl-
edge across diverse tasks is to learn a generic rep-
resentation (such as a neural network encoder) that
is able to encode useful information for all tasks.
For instance, regularization based lifelong learn-
ing methods (Kirkpatrick et al., 2017; Zenke et al.,
2017; Schwarz et al., 2018; Chaudhry et al., 2019)
add an extra constraint to prevent the model pa-
rameter θ from drastically deviating when training
on new tasks, thereby learning a generic model
for old tasks as well. In the language domain, as
language models have proven success to generate
highly generic representation for many language
understanding tasks (Yogatama et al., 2019; Raffel
et al., 2020), both d’Autume et al. (2019) and Sun
et al. (2020) propose utilizing a pretrained language
model (Devlin et al., 2019; Radford et al., 2019) to
initialize parameters, and further training the model
on Dtrain.

Experience Rehearsal. Motivated by the com-
plementary learning systems (CLS) theory (Mc-
Clelland et al., 1995) that humans rely on episodic
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memory to store past experiences and conduct expe-
rience rehearsal, we can also retrain lifelong learn-
ing models on previously seen tasks to reduce for-
getting. While prior methods use memory to define
optimization constraints (Lopez-Paz and Ranzato,
2017; Chaudhry et al., 2019; Sodhani et al., 2020),
recent work use either stored examples (Sprech-
mann et al., 2018) or generated synthetic data (Shin
et al., 2017; Sun et al., 2020) to perform experience
replay. Further, d’Autume et al. (2019) shows that
a sparse 1% rate of replaying to learning new ex-
amples is sufficient for lifelong language learning.

Task-specific Finetuning. In multi-task learn-
ing, injecting task-specific parameters and finetun-
ing on individual task have proven effective for dif-
ferent language understanding tasks (Houlsby et al.,
2019) or even diverse languages (Bapna and Firat,
2019). Prior work (Rusu et al., 2016; Yoon et al.,
2018) exploit this idea to expand model parameters
for new tasks in lifelong learning setting. However,
all these methods require a task descriptor in order
to know when to add new parameters. When no
such signal exists, local adaptation (Sprechmann
et al., 2018) uses K stored nearest neighbors of
each test example to perform extra finetuning at in-
ference time. Recent work (d’Autume et al., 2019;
Khandelwal et al., 2020) demonstrate that the sen-
tence embeddings produced by pretrained models
can be used to effectively measure query similarity
and that local adaptation can improve performance
on text classification, question answering and lan-
guage modelling.

3 Proposed Framework

With these principles in mind, we next turn to the
problem of how to achieve efficient lifelong learn-
ing. To motivate our proposed framework, we first
review the state-of-the-art method, improved MbPA
(d’Autume et al., 2019), and show how these prin-
ciples help us to identify the limitation.

3.1 Model-based Parameter Adaptation

As a notable example, a recent line of work (Sprech-
mann et al., 2018; d’Autume et al., 2019; Khan-
delwal et al., 2020) have successfully utilized an
episodic memory module as a crucial building
block for general linguistic reasoning. Specfically,
the improved Model-based Parameter Adaptation
(MbPA++) (d’Autume et al., 2019) consists of three
main components: (i) a predictor network fθ, (ii)
a key network gφ, and (iii) a memory moduleM.

The end goal is to train fθ to generalize well across
all tasks as in Eq.(1).

To learn a generic representation, MbPA++ uti-
lizes any state-of-the-art text encoder, such as
BERT, to initialize both predictor network fθ and
key network gφ. At each time step, the model re-
ceives a training example (xit, y

i
t) ∈ Dtrain and

updates parameter θ by optimizing the task loss:

LTASK(θ;x
i
t, y

i
t) = `(fθ(x

i
t), y

i
t), (2)

To determine if the training example should be
added to the memory moduleM, a Bernoulli ran-
dom variable is drawn with pre-set probability,
which is used to control the memory size.

For experience rehearsal, a subset S of M is
randomly selected, based on a set ratio of replay
examples to learning new examples (i.e. revisit
nre examples for every ntr training examples). To
avoid catastrophic forgetting, the model then up-
dates the following replay loss to adapt θ towards
seen tasks:

LREP(θ;S) =
1

nre

∑
x,y∈S

`(fθ(x), y), (3)

At inference time, the key network gφ, which is
fixed during training, is used to encode example
inputs as keys to obtain the K nearest neighbour
context Nxi of the i-th testing example xi. L local
adaptation gradient updates are then performed to
achieve task-specific finetuning for the following
objective:

LLA(θ̃i; θ,Nxi) =
1

K

∑
x,y∈Nxi

`(fθ̃i(x), y)

+ λl‖θ̃i − θ‖22 (4)

where λl is a hyperparameter. The predictor net-
work fθ̃i is then used to output the final prediction
for the i-th testing example.

Despite its effectiveness, the performance gain
of MbPA++ comes at a cost of large memory stor-
age and slow inference speed. The root of this
inefficiency is the non-synergistic nature of the
method - the three principles are performed inde-
pendently without close interaction. In particular:
(i) the generic representation learned is not opti-
mized for local adaptation and thus more steps are
required for robust performance, (ii) the memory
module is selected randomly and lacks a systematic
selection method to effectively reduce its size, (iii)
local adaptation only utilize a few neighbours for
each testing example so it is prone to overfit and
negative transfer when memory size is small.
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Algorithm 1 Meta-MbPA
1: Procedure Train
2: Input: training data Dtrain
3: Output: parameters θ, memoryM
4: Initialize θ with some pretrained model
5: for (xit, y

i
t) ∈ Dtrain do

6: [Generic Representation] Perform a gradi-
ent update on θ to minimize Eq.(5)

7: if training step mod ntr = 0 then
8: Sample nre examples fromM
9: [Experience Rehearsal] Perform a gra-

dient update on θ to minimize Eq.(6)
10: end if
11: Compute p(xit) according to Eq.(7)
12: if Bernoulli(p(xit)) = 1 then
13: Update memoryM←M∪ (xit, y

i
t)

14: end if
15: end for
16: Procedure Test
17: Input: test examples x
18: Output: predictions ŷ
19: for l = 1, ..., L do
20: Sample K examples fromM
21: [Task-specific Finetuning] Perform a gra-

dient update on θ to minimize Eq.(4)
22: end for
23: Output prediction ŷi = fθ(xi)

3.2 Synergistic Meta-lifelong Framework

We notice that there is a discrepancy between
training and testing in MbPA++. Specifically, the
generic representation is trained on the task loss
in Eq.(2) directly while it makes prediction after
the local adaptation at test time. Therefore, the
model always overfits to the latest task it has seen,
and it never learns how to incorporate experience
rehearsal efficiently. According to the CLS theory
(McClelland et al., 1995), however, human learning
systems are complementary in nature - we learn
structured knowledge in a manner that allows us to
adapt to episodic information fast. Thus, to resolve
the training-testing discrepancy of MbPA++, we
change the training goal of generic representation
from how to perform better on the current task to
how to adapt to episodic memory efficiently.

In particular, we propose an extension of
MbPA++ that exploits a meta learning paradigm
to interleave the three key principles: (i) to resolve
the training-testing gap, our framework learns a
generic representation that is tailored for local adap-

tation, (ii) to enable robust local adaptation, the
memory module uses a diversity-based selection
criteria to reduce memory size, (iii) to accommo-
date small memory, the framework utilizes a coarse
local adaptation to alleviate negative transfer. The
full framework is outlined in Algorithm 1 and be-
low we detail how each principle is instantiated in
a systematic way.

Generic Representation. We incorporate local
adaptation into training generic representation. In
particular, we exploit the idea of meta learning
by formulating local adaptation as the base task
and representation learning as the meta task. That
is, the generic representation is trained such that
it should perform well after the local adaptation
(a.k.a. learning to adapt). Thus, for each training
example (xit, y

i
t) ∈ Dtrain, we formulate the task

loss in Eq.(2) into a meta-task loss as:

Lmeta
TASK(θ;x

i
t, y

i
t) = `(fθ̃

xi
t

(xit), y
i
t)

s.t. θ̃xi
t
= θ − α∇θLLA(θ;Nxi

t
)

(5)

where α is the current learning rate. Notice the
differentiation requires computing the gradient of
gradient, which can be implemented by modern
automatic differentiation frameworks. Intuitively,
we first approximate local adaptation using gradient
step(s), and then optimize the adapted network.

Experience Rehearsal. With similar rationale
to the meta-task loss, we reformulate the memory
replay loss in Eq.(3) into a meta-replay loss:

Lmeta
REP (θ;S) =

1

nre

∑
x,y∈S

`(fθ̃x(x), y)

s.t. θ̃x = θ − α∇θLLA(θ;Nx)

(6)

with the objective to stimulate efficient local adap-
tation for all tasks.

We use the same replay ratio as in MbPA++
to keep the meta replay sparse. In addition, we
propose a diversity-based selection criterion to de-
termine if a training example (xit, y

i
t) ∈ Dtrain

should be added to the memory module. Here, we
exploit the key network gφ to estimate diversity via
the minimum distance of xit to existing memory as:

log(p(xit)) ∝ −
min

x,y∈M
‖gφ(xit)− gφ(x)‖22

β
, (7)

where p(xit) is the probability of the example be-
ing selected and β is a scaling parameter. The
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intuition is to select examples that are less simi-
lar to existing memory thereby covering diverse
part of data distribution. As shown later, the pro-
posed method outperforms the uncertainty-based
selection rule (Ramalho and Garnelo, 2019), which
picks examples based on certainty level of the pre-
dictor network fθ. This is because local adaptation
is prone to negative transfer when the memoryM
misrepresents the true data distribution.

Task-specific Finetuning. With small memory,
local adaptation for each testing example is prone
to negative transfer. This is because less related
memory samples are more likely to be included in
Nxi and the model can easily overfit. Thus, we
consider local adaptation with more coarse granu-
larity. For example, we can cluster testing exam-
ples and conduct local adaptation for each cluster
independently. In our experiments, we find that it
is sufficient to take this to the extreme such that
we consider all test examples as a single cluster.
Consequently, we consider the whole memory as
neighbours and we randomly sample from it to be
comparable with the original local adaptation for-
mulation (i.e. same batch sizes and gradient steps).
As shown in the next section, it has two benefits: (1)
it is more robust to negative transfer, (2) it is faster
when we evaluate testing examples as a group.

4 Experiments

4.1 Evaluation Dataset

To evaluate the proposed framework, we conduct
experiments on text classification and question an-
swering tasks (see Appendix A for details). Follow-
ing prior work, we consider each dataset as a sepa-
rate task and the model needs to sequentially learn
several tasks of the same category (e.g. all text
classification tasks). As pointed out in (McCann
et al., 2018), many NLP tasks can be formulated as
question answering and thus our setup is general.

Text classification We use five datasets from
(Zhang et al., 2015) spanning four text classifica-
tion tasks: (1) news classification (AGNews), (2)
sentiment analysis (Yelp, Amazon), (3) Wikipedia
article classification (DBPedia) and (4) questions
and answers categorization (Yahoo). To compare
our framework with (d’Autume et al., 2019), we
follow the same data processing procedure as de-
scribed by them to produce balanced datasets. In
total, we have 33 classes, 575, 000 training exam-
ples and 38, 000 test examples from all datasets.

Question Answering Following (d’Autume
et al., 2019), we use three question answering
datasets: SQuAD v1.1(Rajpurkar et al., 2016),
TriviaQA (Joshi et al., 2017) and QuAC (Choi
et al., 2018). TriviaQA has two sections, Web and
Wikipedia, which we consider as separate datasets.
We process the datasets to follow the same
setup as (d’Autume et al., 2019). Our processed
datasets includes 60, 000-90, 000 training and
7, 000-10, 000 validation examples per task.

4.2 Experimental Setup

We consider the prominent baselines correspond-
ing to each one of the three principles as intro-
duced in Section 2. We first consider a standard
encoder-decoder model (Enc-Dec) which does not
utilize any lifelong learning regularization. In the
spirit of learning generic representation using pa-
rameter regularization, we compare our framework
with Online EWC (Schwarz et al., 2018) and A-
GEM (Chaudhry et al., 2019). For experience
rehearsal, we implement Replay, a model that
uses stored examples for sparse experience replay
only. Finally, we compare with the state-of-the-art
MbPA++ (d’Autume et al., 2019) which combines
experience rehearsal with task-specific finetuning.

Implementation Details We utilize the pre-
trained BERTBASE (Wolf et al., 2019) for initializ-
ing the encoder network. BERTBASE has 12 Trans-
former layers, 12 self-attention heads, and 768 hid-
den dimensions (110M parameters). Similar to
(d’Autume et al., 2019), we use a separate pre-
trained BERTBASE for key network and freeze it
to prevent from drifting while training on a non-
stationary data distribution. For text classifica-
tion, we use encoded representation of the special
beginning-of-document symbol [CLS]as our key.
For question answering, we use the question part
of the input to get the encoded representation. For
both tasks, we store the input example as its associ-
ated memory value. Further, we use Faiss (Johnson
et al., 2019) for efficient nearest neighbor search in
the memory, based upon the key network.

We mainly set hyper-parameters as mentioned
in (d’Autume et al., 2019). We use Adam (Kingma
and Ba, 2014) as our optimizer, set dropout (Srivas-
tava et al., 2014) to 0.1 and the base learning rate
to 3e−5. For text classification, we use a training
batch of size 32 and set the maximum total input
sequence length after tokenization to 128. For ques-
tion answering, we use a training batch of size 8,
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Order Enc-Dec Online A-GEM† Replay MbPA++† MbPA++ Meta-MbPA MTL MTL LAMOL‡

EWC (Our Impl.) (1%) (1%)
Text Classification

i. 35.5 43.8 70.7 63.4 70.8 75.3 77.9 - - 76.7
ii. 44.8 49.8 65.9 73.0 70.9 74.6 76.7 - - 77.2
iii. 42.4 59.5 67.5 65.8 70.2 75.6 77.3 - - 76.1
iv. 28.6 52.0 63.6 74.0 70.7 75.5 77.6 - - 76.1
Average 37.8 51.3 66.9 69.1 70.6 75.3 77.3 78.9 50.4 76.5

Question Answering
i. 60.9 58.0 56.1 62.3 62.0 63.3 64.8 - - -
ii. 57.3 57.2 58.4 61.3 62.4 63.5 65.3 - - -
iii. 47.0 49.5 52.4 58.3 61.4 61.6 64.4 - - -
iv. 61.0 58.7 57.9 62.9 62.4 62.4 65.0 - - -
Average 56.6 55.9 56.2 61.2 62.1 62.7 64.9 68.6 44.1 -

Table 1: Accuracy and F1 scores for text classification and question answering, respectively. Methods that
use the defined lifelong learning setup in Section 2 are listed on the left. Where applicable, all methods use
rM = 100% memory size unless denoted otherwise. The best result for lifelong learning methods is made bold.
† Results obtained from (d’Autume et al., 2019). ‡ LAMOL (Sun et al., 2020) is not directly comparable due to
their different problem setup where task descriptors are available.

set the maximum total input sequence length after
tokenization to 384 and to deal with longer docu-
ments we set document stride to 128. We also set
the maximum question length to 64.

For Online EWC (Schwarz et al., 2018), we set
the regularization strength λ = 5000 and forgetting
coefficient γ = 0.95. For all models with memory
module (Replay, MbPA++, Meta-MbPA), we re-
play 100 examples for every 10, 000 new examples,
i.e., ntr = 10, 000 and nre = 100. As mentioned
in (d’Autume et al., 2019), for MbPA++, we set
the number of neighbors K = 32, the number of
local adaptation steps L = 30 and λl = 0.001.
We tune the local adaptation learning rate α for
MbPA++ in our re-implementation (MbPA++ Our
Impl.) and report the improved numbers as well as
their reported numbers in Table 1, 7, and 8. For text
classification, we set α = 5e−5 and for question
answering we set α = 1e−5.

For our framework, Meta-MbPA1, unless stated
otherwise, we set the number of neighbors K = 32
and control the memory size through a write rate
rM = 1%. We use L = 30 local adaptation steps
and perform local adaptation for whole testing set.
That is, we randomly draw K = 32 examples from
the memory and perform a local adaptation step.
Through this, the computational cost is equivalent
to MbPA++ but we only need to perform the whole
process once while MbPA++ requires conducting
local adaptation independently for each testing ex-

1Source code is available at https://github.com
/sanketvmehta/efficient-meta-lifelong-le
arning.

ample. We set α = 1e−5 (in Eq. (5), (6)), β = 10
(in Eq. (7)) and λl = 0.001 (in Eq. (4)). All
of the experiments are performed using PyTorch
(Paszke et al., 2017), which allows for automatic
differentiation through the gradient update as re-
quired for optimizing the meta-task loss Eq. (5)
and meta-replay loss Eq. (6).

4.3 Results
We use four different orderings of task sequences
as in (d’Autume et al., 2019) (see Appendix A)
and evaluate the model at the end of all tasks. Fol-
lowing prior work, we report the macro-averaged
accuracy for classification and F1 score for ques-
tion answering. Table 1 provides a summary of our
main results. Notice that results on the right are not
comparable due to different setups. The complete
per-task results are available in Appendix B.

We first compare our framework (Meta-MbPA)
with all baselines. Even using only 1% of total
training examples as memory, the proposed frame-
work still outperforms existing methods on both
text classification and question answering. Specifi-
cally, while regularization-based methods (A-GEM
and Online EWC) perform better than the standard
Enc-Dec model, their performance vary depending
on the task ordering and thus are not robust. On the
other hand, methods that involve local adaptation
(MbPA++ and ours) perform consistently better
for all orderings. In particular, our framework im-
proves over MbPA++ while using 100 times less
memory, demonstrating the effectiveness of the
proposed approach.

https://github.com/sanketvmehta/efficient-meta-lifelong-learning
https://github.com/sanketvmehta/efficient-meta-lifelong-learning
https://github.com/sanketvmehta/efficient-meta-lifelong-learning
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rM = 1% rM = 10%

Model / Task class. QA class. QA
MbPA++ 73.1 61.9 73.5 62.6
Meta-MbPA 77.3 64.9 78.0 65.5
MTL 50.4 44.1 70.5 56.2

Table 2: Performance of models using different sizes
of memory.

We then compare lifelong learning methods to
the multitask model MTL, which serves as an up-
per bound of achievable performance. As shown
in Table 1, there is still a non-trivial gap between
MbPA++ and MTL, albeit MbPA++ stores all train-
ing examples as memory. Our framework narrows
the gap while using smaller memory.

4.4 Analysis

Memory Capacity. In Table 1, MbPA++ uses
100% memory while our framework only uses 1%
memory. To test memory efficiency, we present
results for models using equivalent memory re-
sources in Table 2. The results demonstrate that the
performance of MbPA++ degrades significantly as
the memory size decreases. Consequently, the per-
formance gap between MbPA++ and Meta-MbPA
enlarges when they both use equal amount of stored
examples, compared to results in Table 1. It is then
natural to ask if using memory alone is sufficient to
obtain good performance. We thus compare with
MTL trained on subsampled training data, which
is equivalent to only performing local adaptation
without training the generic representation. Notice
that this variant of MTL is not an upper bound as
it uses less resources. Our method significantly
outperforms it, showing that the meta generic rep-
resentation in our method is also crucial to achieve
good performance. These results validate that the
proposed framework can utilize the memory mod-
ule more effectively than existing methods.

We then study the source of improvement of our
method. In particular, we show that prior method
is prone to negative transfer. To see this, we first
conduct a case study of memory selection rule.

Memory Selection Rule. We consider two pop-
ular paradigms in active learning (Donmez et al.,
2007), namely the diversity-based method that
picks the most representative examples and the
uncertainty-based method that picks the most un-
sure examples. In particular, we compare four se-
lection criteria belonging to these two categories:
random selection, our proposed diversity-based
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Figure 1: Proportions of source of neighbours used
in local adaptation for each task when different
memory selection rule is used, e.g. 10% of neigh-
bours retrieved for Yelp belong to Amazon. Num-
bers in each row sum to 1. Classification figures are at
the top while QA at the bottom (Task ordering i.)

Replay MbPA++ Meta-MbPA
Text Classification

Random 69.2 73.1 76.8
Diversity 69.1 73.0 77.3
Uncertainty 65.4 41.2 62.7
Forgettable 62.7 50.5 61.8

Question Answering
Random 61.2 61.9 63.8
Diversity 61.5 62.2 64.9
Uncertainty 56.1 50.4 54.2
Forgettable 59.7 52.1 57.5

Table 3: Performance of models using different
memory selection criteria. “Uncertainty” utilizes
model’s confidence level (Ramalho and Garnelo, 2019).
“Forgettable” picks examples according to forgetting
events (Toneva et al., 2019). We tune hyperparameters
that result in rM = 1% memory size for all methods.

method in Eq.(7), and two uncertainty-based meth-
ods (Ramalho and Garnelo, 2019; Toneva et al.,
2019). Notice that random selection is consid-
ered as a diversity-based method since it picks
examples that represent the true data distribution.
As shown in Table 3, we observe that the choice
of memory selection criteria clearly impacts per-
formance. While the proposed diversity method
slightly outperforms random selection, the two
uncertain-based methods perform worse than the
random baseline, consistent with similar findings
reported in d’Autume et al. (2019).

We seek an explanation for this phenomenon and
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Uncertainty Forgettable

Model / Task class. QA class. QA
Meta-MbPA 62.7 54.2 61.8 57.5

w/o LA 65.8 55.8 67.9 59.2
MbPA++ 41.2 50.4 50.5 52.1

w/o LA 65.4 56.1 68.4 59.2

Table 4: Performance of models using the
uncertainty-based memory selection methods (cor-
respond to Table 3). “LA” refers to local adaptation.

visualize the heat maps in Figure 1 to show which
tasks each testing example’s retrieved neighbours
come from during the local adaptation phase. Ide-
ally, the model should always use neighbours from
the same task and the heat map should be diagonal.
We observe that, compared to diversity-based meth-
ods, more examples from other tasks are used as
nearest neighbours when models use uncertainty-
based methods. This is because the selected uncer-
tain examples are usually less representative in the
true distribution and could be outliers. Thus, the
resulting memory does not have a good coverage
of the data distribution and no similar examples
exist for certain test examples. Consequently, less
related examples from other tasks are used for the
local adaptation, which causes negative transfer.
This is verified in Table 4, where models without
local adaptation outperform their locally adapted
counterparts. More importantly, Meta-MbPA ob-
tains much smaller performance gaps, indicating
that it is more robust to negative transfer. We fur-
ther verify this in the following section.

Trade-off between Catastrophic Forgetting
and Negative Transfer. We first verify the models’
robustness to catastrophic forgetting. As shown in
Table 7 and 8 (Appendix B), the standard Enc-Dec
model performs poorly on previously trained tasks,
indicating the occurrence of catastrophic forget-
ting. While all baselines can alleviate the forget-
ting to some degree, our framework achieves the
best performance on previously learned tasks. We
also evaluate the model’s performance on the first
task as it continues to learn more tasks. Figure 2
illustrates how each model retains its previously ac-
quired knowledge as it learns new knowledge. We
observe that our framework is consistently better
than the baselines at mitigating forgetting.

In addition, as prior work have shown transfer-
ring from diversely related sources can hurt per-
formance in the target (Ge et al., 2014; Wang and
Carbonell, 2018), we study if transferring from

Enc-Dec Replay MbPA++ Meta-MbPA
class. 82.1 81.8 78.6 82.1
QA 72.6 72.7 70.7 72.1

Table 5: Average performance on the last task across
all four task orderings.

rM = 1% rM = 50%

Model / Task class. QA class. QA
Meta-MbPA 77.3 64.9 78.2 66.1

w/o Meta 73.1 58.5 74.0 59.6
w/o MS 76.8 63.8 78.1 66.1
w/o LA 75.9 62.0 75.8 62.1

Table 6: Ablation Study on different memory size.
“Meta” refers to the proposed meta optimization in
Eq.(5) and (6).“MS” denotes memory selection based
on Eq.(7). “LA” refers to local adaptation.
multiple tasks learned in the past can induce nega-
tive transfer, which is often overlooked in existing
studies on lifelong learning. Table 5 shows the av-
eraged results on the last task in each task ordering
(see Appendix B for complete results). Surpris-
ingly, compared to the Enc-Dec baseline, MbPA++
actually performs worse on the last task despite its
improved macro-averaged performance (Table 1).
This suggests that while it is robust to catastrophic
forgetting, MbPA++ fails to utilize prior knowledge
to benefit later tasks and thus is prone to negative
transfer. Apart from some practical bottlenecks
such as limited model capacity, local adaptation
is a critical factor of negative transfer as Replay2

outperforms MbPA++ in Table 5. Intuitively, this
shows that since Replay already performs well on
the last task, further using local adaption can over-
fit and hurt the performance. On the other hand,
the proposed method is trained to learn a more ro-
bust initialization for adaptation and uses a coarse
adaptation that is less prone to negative transfer.
Therefore, it outperforms MbPA++ and closes the
gap with Enc-Dec on the last task, consistent with
results in Table 4. All of these experiments illus-
trate that there is a trade-off between catastrophic
forgetting and negative transfer, such that more
adaptations are desired for earlier tasks while less
is better for later tasks. While prior studies focus
on catastrophic forgetting only, we are the first to
show the importance of balancing the trade-off to
avoid both negative effects.

Ablation Study. We report the results of abla-
tion study in Table 6 and analyze the effects of
the three components in our framework subject

2Replay is equivalent to MbPA++ without local adaptation.
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Figure 2: Catastrophic Forgetting of the first dataset as training progresses. Complete results in Appendix D

to different memory sizes. First, we observe that
the model without the meta learning optimization
performs the worst, which shows the importance
of learning a generic representation tailored for
local adaptation. More importantly, Meta-MbPA
achieves worse performance without any local
adaptation step. This demonstrates that learning
the generic representation alone is not sufficient
enough, and that the meta learning mechanism and
local adaptation are complementary, which mimic
the complementary human learning systems in the
CLS theory. Finally, while the diversity-based
memory selection rule contributes to the perfor-
mance gain when we use a small memory module,
it becomes less effective as the memory size in-
creases. This is expected since the memory distri-
bution can well represent the true data distribution
with a larger capacity, and thus it demonstrates that
the proposed methods mostly contribute to robustly
reducing the memory sizes for better efficiency.
Overall, these results validate the effectiveness of
each component and highlight the importance of
complementary lifelong learning systems. To the
best of our knowledge, this is the first work to for-
mulate the slow learning of structured knowledge
as meta task and the fast learning from episodic
memory as base task.

Inference Speed. The ordinary local adaptation
requires customized gradient updates for each test-
ing example and thus it is notoriously slow. Using
1 Nvidia Tesla V100 GPU and 128 GB of RAM, it
takes 66.6 hours and 89.3 hours to evaluate on test
classification and question answering, respectively.
On the other hand, we use coarse local adaptation
in our method which uses the same updates for
all testing examples. Consequently, it takes 2.9
hours and 4.2 hours for our method to finish the
evaluation process, achieving a maximum 22 times
speedup. Notice that in a pure online learning setup,
our method will obtain similar inference speed as

MbPA++. In addition, we hypothesize that using a
different granularity (e.g. clustering testing exam-
ples) is beneficial for tasks that are more conflicting
in nature, as it can balance the trade-off between
overfitting to nearest neighbours of small memory
and performing more sample-specific adaptation
for each test example. We leave this exploration
for future work.

5 Conclusion

In this work, we identify three principles underly-
ing different lifelong language learning methods
and show how to unify them in a meta-lifelong
framework. Our experiments demonstrate the ef-
fectiveness of the proposed framework on text clas-
sification and question answering tasks. We report
new state-of-the-art results while using 100 times
less memory space. These results illustrate that
it is possible to achieve efficient lifelong learning
by establishing complementary learning systems.
Our analysis also shows that negative transfer is
an overlooked factor that could cause sub-optimal
performance, and we highlight the importance of
balancing the trade-off tween catastrophic forget-
ting and negative transfer for future work.
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Appendix

A Dataset and Ordering

Text classification We use the following text
classification dataset orders for comparing our
results with (d’Autume et al., 2019):
i. Yelp→AGNews→DBPedia→Amazon→Yahoo
ii. DBPedia→Yahoo→AGNews→Amazon→Yelp
iii. Yelp→Yahoo→Amazon→DBpedia→AGNews
iv. AGNews→Yelp→Amazon→Yahoo→DBpedia

Question Answering Our processed dataset in-
cludes SQuAD with 90, 000 training and 10, 000
validation examples, TriviaQA (Web) with 76, 000
training and 10, 000 validation examples, TriviaQA
(Wikipedia) with 60, 000 training and 8, 000 vali-
dation examples and QuAC with 80, 000 training
and 7, 000 validation examples. We consider fol-
lowing dataset orders for question answering:
i. QuAC→TrWeb→TrWik→SQuAD
ii. SQuAD→TrWik→QuAC→TrWeb
iii. TrWeb→TrWik→SQuAD→QuAC
iv. TrWik→QuAC→TrWeb→SQuAD

B Dataset Specific Results

We report per-dataset specific results for text classi-
fication in Table 7 and for question answering in Ta-
ble 8. For A-GEM and MbPA++ baselines, we ob-
tain results from (d’Autume et al., 2019). A-GEM,
Replay, MbPA++ and MbPA++ (Our Impl.) meth-
ods use rM = 100% memory size while our pro-
posed framework, Meta-MbPA, and MbPA++(1%)
use rM = 1% memory size.

C Single Task and Multi-task Models
Results

We report results for single-task models that uses
only single-task data and multi-task learning mod-
els using different amounts of training data in Table
9. For text classification, we report accuracy scores
and for question answering, we report F1 scores.

D Catastrophic Forgetting

To understand the severity of the catastrophic for-
getting of different models, in Figure 2 and Table
10, we report the performance on the first dataset
as training progresses. For example, we show re-
sults for AGNews as we train different models
on AGNews→Yelp→Amazon→Yahoo→DBpedia
dataset order in lifelong learning setup. We also

show the results prior to training on any dataset
(denoted by “Initial”).
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Order Dataset Enc-Dec Online A-GEM† Replay MbPA++† MbPA++ MbPA++ Meta-MbPA
EWC (Our Impl.) (rM = 1%) (rM = 1%)

i

1 2.0 29.7 42.5 49.2 45.7 59.2 54.2 62.1
2 4.3 0.1 89.8 50.1 91.6 94.0 91.0 93.7
3 95.8 97.5 96.0 98.7 96.3 98.5 98.5 99.1
4 1.3 18.5 56.8 45.2 54.6 57.7 56.7 60.7
5 74.2 73.2 68.2 74.0 65.6 67.2 66.7 73.8

Average 35.5 43.8 70.7 63.4 70.8 75.3 73.4 77.9

ii

1 62.2 89.9 80.1 98.7 95.8 98.5 98.0 99.0
2 0.0 0.1 50.3 54.6 63.1 69.7 61.7 70.2
3 39.4 40.3 91.3 89.3 92.2 95.0 93.0 92.5
4 61.3 60.0 57.3 61.5 55.7 55.2 55.2 60.1
5 61.2 58.5 50.6 61.1 47.7 54.7 52.7 61.5

Average 44.8 49.8 65.9 73.0 70.9 74.6 72.1 76.7

iii

1 11.4 52.5 41.1 54.8 44.3 59.2 53.7 59.6
2 2.1 14.9 55.0 31.9 62.7 67.7 60.2 70.2
3 12.8 40.3 54.6 52.0 54.4 58.2 60.7 63.8
4 92.5 98.0 93.3 97.4 96.2 98.5 98.0 98.9
5 93.3 91.8 93.6 93.1 93.4 94.5 92.5 94.1

Average 42.4 59.5 67.5 65.8 70.2 75.6 73.0 77.3

iv

1 0.0 31.9 90.8 80.3 91.8 94.0 91.0 93.1
2 8.3 33.3 44.9 59.3 44.9 57.2 54.2 60.8
3 3.6 22.2 60.2 59.6 55.7 59.7 61.2 61.6
4 31.8 73.5 65.4 71.9 65.3 68.7 63.7 73.6
5 99.1 98.9 56.9 99.1 95.8 98.0 98.5 99.1

Average 28.6 52.0 63.6 74.0 70.7 75.5 73.7 77.6

Table 7: Dataset specific accuracy for text classification tasks for different dataset orders and models. †
Results obtained from (d’Autume et al., 2019). Where applicable, we use rM = 100% unless denoted otherwise.

Order Dataset Enc-Dec Online A-GEM† Replay MbPA++† MbPA++ MbPA++ Meta-MbPA
EWC (Our Impl.) (rM = 1%) (rM = 1%)

i

1 40.5 42.9 36.7 44.1 47.2 44.3 42.6 49.9
2 60.1 57.4 51.8 60.7 57.7 62.9 60.0 63.1
3 58.2 53.8 53.4 58.7 58.9 61.2 58.8 61.5
4 85.0 77.7 82.5 85.5 84.3 84.7 86.8 84.7

Average 60.9 58.0 56.1 62.3 62.0 63.3 62.0 64.8

ii

1 66.8 78.8 64.2 73.1 72.6 80.4 81.8 80.4
2 64.2 59.5 62.5 64.2 63.4 65.3 60.7 61.5
3 31.4 28.6 43.4 41.0 50.5 42.0 41.6 52.1
4 66.7 61.9 63.5 66.8 63.0 66.1 64.3 67.0

Average 57.3 57.2 58.4 61.3 62.4 63.5 62.1 65.3

iii

1 41.6 57.2 47.6 58.7 56.0 62.0 59.4 65.7
2 38.8 51.9 47.0 54.2 56.8 53.4 57.3 59.2
3 54.4 63.1 57.4 67.7 78.0 81.8 83.9 80.7
4 53.1 25.5 57.4 52.7 54.9 49.0 46.9 52.1

Average 47.0 49.5 52.4 58.3 61.4 61.6 61.8 64.4

iv

1 58.1 60.5 54.8 59.4 59.0 58.9 60.8 61.3
2 39.8 36.3 38.8 45.0 48.7 43.5 39.2 50.4
3 60.5 60.4 53.4 61.6 58.1 64.2 61.3 63.7
4 85.6 77.3 84.7 85.6 83.6 82.8 85.3 84.5

Average 61.0 58.7 57.9 62.9 62.4 62.4 61.6 65.0

Table 8: Dataset specific F1 scores for question answering tasks for different dataset orders and models. †
Results obtained from (d’Autume et al., 2019). Where applicable, we use rM = 100% unless denoted otherwise.
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Dataset Single Model MTL (1%) MTL (10%) MTL (100 %)
Text Classification

AGNews 93.6 83.1 88.7 94.0
Amazon 61.8 38.6 54.2 63.5
DBPedia 99.2 78.1 91.4 99.3

Yahoo 74.9 15.8 65.6 75.3
Yelp 61.9 36.4 52.8 62.6

Average 78.28 50.4 70.5 78.9
Question Answering

QuAC 54.0 20.9 30.9 53.5
SQuAD 87.8 60.5 75.2 88.1

Trivia Web 65.8 49.2 62.2 67.7
Trivia Wikipedia 62.9 45.9 56.5 64.9

Average 67.6 44.1 56.2 68.6

Table 9: Single model and Multi-Task Learning (MTL) results for text classification and question answering
tasks. MTL (X%) denotes X% of the training examples are used per dataset to train MTL models.

First Dataset Enc-Dec Online Replay MbPA++ Meta-MbPA
Dataset EWC (Our Impl.) (rM = 1%)

Text Classification

AGNews

0 (Initial) 0.2 0.2 0.2 0.2 0.2
1 (AGNews) 94.2 94.1 94.0 93.5 94.3
2 (Yelp) 45.9 78.2 92.4 94.5 94.1
3 (Amazon) 30.2 62.5 87.9 93.0 93.5
4 (Yahoo) 0.0 9.2 74.4 92.0 93.1
5 (DBPedia) 0.0 31.9 80.3 93.0 93.1

Yelp

0 (Initial) 0.2 0.2 0.2 0.2 0.2
1 (Yelp) 62.5 62.0 62.5 57.7 62.5
2 (Yahoo) 4.3 32.3 58.1 56.7 61.0
3 (Amazon) 60.4 61.7 60.1 55.7 61.2
4 (DBPedia) 48.6 61.4 60.3 58.2 61.4
5 (AGNews) 11.4 52.4 54.8 57.7 59.6

Question Answering

QuAC

0 (Initial) 14.1 14.1 14.1 14.1 14.1
1 (QuAC) 51.8 51.8 51.3 50.8 51.8
2 (TrWeb) 28.7 37.8 40.4 41.3 51.6
3 (TrWik) 27.0 35.3 38.8 39.8 50.9
4 (SQuAD) 40.5 42.9 43.7 44.0 49.9

SQuAD

0 (Initial) 7.5 7.5 7.5 7.5 7.5
1 (SQuAD) 87.2 87.2 86.6 88.6 86.8
2 (TrWik) 65.1 79.8 69.6 78.4 85.5
3 (QuAC) 48.5 70.0 54.4 76.2 79.0
4 (TrWeb) 66.8 78.8 69.4 81.5 80.4

Table 10: Performance of the first dataset as training progresses for text classification and question answer-
ing tasks over different dataset orders and models. Where applicable, we use rM = 100% unless denoted
otherwise. “0 (Initial)” denotes model before training on any dataset.


