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Abstract

Incompleteness of domain ontology and un-
availability of some values are two inevitable
problems of dialogue state tracking (DST). Ex-
isting approaches generally fall into two ex-
tremes: choosing models without ontology
or embedding ontology in models leading to
over-dependence. In this paper, we propose
a new architecture to cleverly exploit ontol-
ogy, which consists of Slot Attention (SA)
and Value Normalization (VN), referred to as
SAVN. Moreover, we supplement the anno-
tation of supporting span for MultiWOZ 2.1,
which is the shortest span in utterances to sup-
port the labeled value. SA shares knowledge
between slots and utterances and only needs a
simple structure to predict the supporting span.
VN is designed specifically for the use of on-
tology, which can convert supporting spans to
the values. Empirical results demonstrate that
SAVN achieves the state-of-the-art joint accu-
racy of 54.52% on MultiWOZ 2.0 and 54.86%
on MultiWOZ 2.1. Besides, we evaluate VN
with incomplete ontology. The results show
that even if only 30% ontology is used, VN
can also contribute to our model.

1 Introduction

Dialogue state tracking (DST) is a core component
in the pipeline-based task-oriented dialog systems.
The goal of DST is to extract the dialogue states
which are indicated by a set of (domain, slot, value)
triples during conversation. The (domain, slot,
value) triple represents that previous conversation
involves the slot of the domain and the specific con-
tent is the value. For example, as shown in Figure 1,
(restaurant, price, expensive) triple means that user
wants to reserve an expensive restaurant. A high-
quality DST model plays a significant role in the
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dialogue system, because the dialogue states deter-
mine the next system action (Chen et al., 2017).

Traditional DST approaches generally rely on
ontology already defined, where all slots and their
possible values are given. With a predefined ontol-
ogy, DST is simplified to a classification problem.
The goal is to choose the most appropriate value
from ontology for the slot (Mrkšić et al., 2017;
Zhong et al., 2018). However, in practical applica-
tions, a complete ontology is almost impossible to
be defined in advance. To overcome the drawback,
span-based (Xu and Hu, 2018; Gao et al., 2019)
and generation (Wu et al., 2019) approaches spring
up.

The second problem is that some values required
by DST cannot be found in utterances due to the di-
verse descriptions during a conversation. As shown
in Figure 1, value expensive was expressed as high
end in the first turn. The problem gives rise to the
powerlessness of span-based approaches. Recently,
Zhang et al. (2019) show a dual strategy that com-
bines the advantages of both the picklist-based and
span-based methods. They use ontology in span-
based approaches to deal with the problem and
achieve the SOTA performance, which also shows
that the ontology is powerful.

Budzianowski et al. (2018) introduced a large-
scale multi-turn dialogue dataset (MultiWOZ) span-
ning over several domains and topics. As shown in
Figure 1, the user initially wants to make a restau-
rant reservation, then requests information about
attractions close to the restaurant, and finally books
a taxi. During the conversation, the models for
DST should determine whether each (domain, slot)
pair has a value in each turn to obtain the most rele-
vant (domain, slot, value) triples. However, unlike
single domain DST problems, in which only a few
slots need to be tracked, such as four slots in WOZ
(Wen et al., 2017), there are a total of 30 (domain,
slot) pairs of five domains in MultiWOZ, which
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User                                                  System Dialogue state 
I would like to find a high end restaurant in the center of the city.   (restaurant, price, expensive) 

(restaurant, area, centre) 
  There is an expensive restaurant called the Ugly Duckling. 

Can i get a reservation for 7 at 14:00 this coming Friday?   
(restaurant, price, expensive), … 
(restaurant, name, the Ugly Ducking), 
(restaurant, people, 7), (restaurant, time, 
14:00), (restaurant, day, Friday) 

  I have successfully booked your reservation. Your reference number is ynceb914. Will this be all? 
I am also looking for some entertainment close to the restaurant.   

(restaurant, price, expensive), … 
(attraction, area, centre) 

  Is there any type of attraction you would like me to search? 
Why do not you try an architectural attraction.   

(restaurant, price, expensive), … 
(attraction, type, architectural) 

  All Saints Church looks good , would you like to head there? 
That sounds good.   

(restaurant, price, expensive), … 
(attraction, name, All Saints Church) 

  Is there anything else I can help you? 
I also need to book a taxi between the restaurant and the church.   

(restaurant, price, expensive), … 
(taxi, departure, the Ugly Ducking),  
(taxi, destination, All Saints Church) 

  What time would you like the taxi from the Ugly Ducking? 
 
20:00, please.  

(restaurant, price, expensive), (restaurant, 
area, centre), (restaurant, name, the Ugly 
Ducking), (restaurant, people, 7), (restaurant, 
time, 14:00), (restaurant, day, Friday), 
(attraction, area, centre), (attraction, name,  
All Saints Church), (taxi, departure, the Ugly 
Ducking), (taxi, destination, All Saints 
Church), (taxi, leaveAt, 20:00) 

 
Figure 1: An example of dialogue state tracking in a conversation. Each turn contains a user utterance (left) and
a system utterance (right). The blue words are supporting spans in the utterances and new (domain, slot, value)
triples in the Dialogue state. In each turn, the DST models need to track slot values mentioned by the user for all
the (domain, slot) pairs.

can be more in practical applications. Therefore,
it requires DST models should determine the slots
efficiently.

To tackle these challenges, we emphasize that
DST models should optimize the structure of slots
determination and utilize ontology more flexibly
rather than abandon it. In this paper, we propose
to divide the model of DST into Slot Attention
(SA) and Value Normalization (VN). Simple and
efficient processing of slots and flexible use of on-
tology are the main advantages of SAVN. Contri-
butions in this work are summarized as †:

• SA shares knowledge between slots and ut-
terances and is able to optimize the deter-
mination of all slots jointly. Compared to
the span-based approach in DS-DST (Zhang
et al., 2019), SA improves efficiency by nearly
count(slots) times in determining the slots.

• Considering that the number of possible slot
values in ontology could be large in the real
scenario, VN is designed as a simple, flexible,
and effective model to use an ontology, which
only needs 8 minutes for training on a V100
GPU. VN can choose to directly output the
supporting span from SA or select a value in
the ontology.

• We supplement the annotation of supporting
†The code will be released at https://github.com/

wyxlzsq/savn.
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Figure 2: The overview of Slot Attention with Value
Normalization for Dialogue State Tracking.

span for labeled values unavailable in utter-
ances on MultiWOZ 2.1, which can help the
span-based model learn semantics more fully
and help ontology be better utilized.

• We fully evaluate VN with incomplete on-
tology. The results show that VN can gain
positive performance for SAVN as long as the
integrity of ontology is more than 30%. And
as we expected, the more complete ontology
is, the more VN can rely on it.

2 SAVN model

The overview of the model is shown in Figure 2,
which consists of Slot Attention and Value Nor-
malization. SA outputs the Supporting sPan (SP)
from utterances for each (domain, slot) pair. And
VN chooses to output supporting span directly or
convert supporting span to the value in ontology
according to the gate.

https://github.com/wyxlzsq/savn
https://github.com/wyxlzsq/savn
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Figure 3: The model architecture of Slot Attention.

2.1 Slot Attention

As shown in Figure 3, Slot Attention (SA) accepts
two inputs, one of which is the text of the previous
conversations, and the other is a list of (domain,
slot) pairs. Similar to DS-DST model (Zhang et al.,
2019), we also employ BERT (Devlin et al., 2019)
as the encoder for utterances. The difference is that
we separate slots and utterances and share knowl-
edge between them. Then we directly use the inner
product to predict the span in utterances and use
an attention module to interact with slots and utter-
ances to classify. Benefiting from this structure, our
model can determine the slots in parallel, optimize
the determination jointly, and only needs to encode
the utterances once for each turn while DS-DST
needs to encode count(slots) times. Additionally,
for SA to have the ability to output some special
words, we added some fixed candidate values in
front of the utterances such as yes, no.

Let us define X = {(u1, r1), ..., (un, rn)} as
the set of user utterances and system responses in
a conversation with n turns, C = [a1, a2, ..., ak]
as the list of k fixed candidate values, and S =
[s1, s2, ..., sj ] as the list of j (domain, slot) pairs.
Due to the limitation of the maximum sequence
length of BERT, sometimes it is not possible to en-
code all utterances. Therefore, we set a parameter
m to limit the number of turns entered. The input
utterances for turn t should be :

Xm
t =

{
[U1, ..., Ut−1, ut] if t ≤ m
[Ut−m+1, ..., ut] otherwise,

(1)

where U1 represents u1 ⊕ r1, the ⊕ means to con-

catenate the utterances of u1 and r1. rt is the sys-
tem response of turn t, so rt /∈ Xm

t .

Then by encoding the utterances of turn t by
BERT and embedding the slots by the Embedding
module of BERT, we can get the hidden states of
utterances and slots as follows:

I = C ⊕Xm
t ,

Hu
t = BERT(I),

Es
t = Embedding(S),

Hs
t = MeanPooling(Es

t ),

(2)

where Hu
t ∈ Rp×h and Hs

t ∈ Rq×h. p is the
sequence length of I , q is the number of (domain,
slot) pairs and h is the dimension of the BERT
hidden state.

2.1.1 Slot Gate Classification

As introduced in Section 1, There are many (do-
main, slot) pairs in Multi-domain DST prob-
lem, which make it more challenging than single-
domain DST problem. Similar to TRADE model
(Wu et al., 2019), we design a classification module
with none, dontcare and span as a slot gate. For
each (domain, slot) pair, if the slot gate predicts
none or dontcare, we ignore the span predicted
from utterances and fill the pair with “none” or “do
not care”.

The module to classify slots is similar to a Trans-
former (Vaswani et al., 2017) block. We em-
ploy the “Scaled Dot-Product Attention” to get an
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utterances-aware slot representation As
u:

Qt = Hs
t ·Wq + bq,

Kt = Hu
t ·Wk + bk,

Vt = Hu
t ·Wv + bv,

As
u = Softmax(

QtKt
T

√
dk

)Vt,

(3)

where As
u ∈ Rq×h.

Then in order to better integrate the states of
slots and utterances, we add As

u and Hs
t to get Hc

as the features to classify:

H ′c = GELU(Hc ·Wc + bc),

Gt = Softmax(H ′c ·Wl + bl) ∈ Rq×3,
(4)

where Gt is the slot gates of all (domain, slot) pairs
at turn t.

2.1.2 Span-Based Value Prediction
For each (domain, slot) triple, span-based methods
obtain the value by predicting a span with start and
end position in utterances. In order to make the
slot determination more efficient, we simplify the
structure of span-based predictions. We can get the
span predictions by:

Ds
t = Hs

t ·Ws + bs,

De
t = Hs

t ·We + be,

P s
t = Softmax(Ds

t · (Hu
t )

T ) ∈ Rq×p,

P e
t = Softmax(De

t · (Hu
t )

T ) ∈ Rq×p,

(5)

where P s
t and P e

t are the start position distributions
and end position distributions of all (domain, slot)
pairs at turn t respectively.

2.1.3 Optimization
We can optimize all slots determination jointly. The
joint losses at turn t are as follows:

Lg =

Q∑
q=1

−log(Gq · (ygq )T ),

Ls =

Q∑
q=1

−log(P s
q · (ysq)T ),

(6)

where Lg is the loss of the slot gate predictions, Ls

and Le are the loss of the start and end position
predictions respectively. And Q is the number of
(domain, slot) pairs, y is the true one-hot label.

Similar to Ls, we can get the end loss Le. Then
we optimize the weighted-sum of these three loss
functions using hyper-parameters α and β,

L = αLg + β(Ls + Le). (7)
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Figure 4: The model architecture of Value Normaliza-
tion.

2.2 Value Normalization

Value Normalization is a flexible module for uti-
lizing ontology, which can also be combined with
other DST models. Considering that there are nu-
merous possible values in the ontology and few
data for training, we design a simple and effective
model for VN, which can also benefit from the
pre-trained BERT model.

As shown in Figure 4, VN is designed with
one layer of the transformer block, which we call
VN1. By analogy, we can get VN4 and VN12 (i.e.,
use BERT-base model as encoder). The model
will load parameters from the corresponding layers
of BERT. In Section 4.2, the experimental results
show that VN1 has done well enough for the Mul-
tiWOZ dataset.

Let us define T0 is the hidden state of the first
token ([CLS]) after transformer. Then we use T s

0 ∈
Rh as the hidden state of the supporting span after
encoding and T o

0 ∈ Rn×h as the hidden states of n
possible values in ontology for the corresponding
(domain, slot) pair. We use the inner products of
the supporting span and the possible values as the
matching scores, which is defined as:

M = Softmax(T s
0 · (T o

0 )
T ) ∈ Rn. (8)

Then we can get the max matching value. In
addition, we employ the cosine similarity as the
value gate since the ontology may be incomplete.

cos(T V m

0 , T s
0 ) =

T V m

0 · (T s
0 )

T

‖T V m

0 ‖‖(T s
0 )

T ‖
, (9)
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Labeled Value Supporting Span

Varied
Expressions

expensive high end
0 no stars
09:15 after 9am
cinema movie theaters

Spelling
Mistakes

west wets
thursday thirsday
expensive expensiove
museum musems

Annotation
Errors

1145 11:45
sunday saturday
08:15 18:15
5 4

Table 1: Some examples of supporting span annotation.

the final output is:

output =

{
V m cos(T V m

0 , T s
0 ) > θ

SP cos(T V m

0 , T s
0 ) ≤ θ,

(10)

where V m is the max matching value, SP is the
supporting span and θ is a hyper-parameter.

Our loss function for optimizing VN is defined
as follows:

Li =

{
−log(M · (yv)T ) r = 1

max(cos(T o
0 , T

s
0 )) + 1 r = 0,

(11)

where yv is the true one-hot label and r = 1 means
the value for the supporting span is in ontology.
However, r will always be equal to 1 without pre-
processing in training because ontology is invari-
ably complete for the training set. In our exper-
iments, we employ full training set to train VN
with incomplete ontology in order to get dispersed
vector representations for values.

3 Annotation for Supporting Span

Our annotation work is based on the MultiWOZ
2.1 dataset (Eric et al., 2019), which is a fixed ver-
sion of the MultiWOZ 2.0 dataset (Budzianowski
et al., 2018). MultiWOZ 2.1 dataset is a large-scale
collection of human-human written conversations
over multiple domains and topics, which has la-
beled 63,662 (conversation, domain, slot, value)
quadruples (except “none” value) in the training
set.

Annotation for supporting span is mainly to ad-
dress the problem that some labeled value can not

be found in the conversations. The causes of this
problem can be divided into three categories: var-
ied expressions, spelling mistakes, and annotation
errors.

The criterion of annotations is to find the shortest
span in the conversations, which can help us get the
labeled value. Based on the criterion, we annotate
936 (supporting span, value) pairs on MultiWOZ
2.1 training set, in which varied expressions ac-
count for 637 (68%), spelling mistakes account for
123 (13%), and annotation errors account for 176
(19%). Table 1 shows some examples of supporting
span annotation.

After annotation, we can change (domain, slot,
value) triples in training set to (domain, slot, sup-
porting span, value) quadruples, where the sup-
porting span will be equal to the value if the value
can be found in the conversations. Then we em-
ploy (domain, slot, supporting span) triples to train
SA and (supporting span, value) pairs to train VN.
Specifically, we do not use the annotation of anno-
tation errors to train VN, for it should not convert
Saturday to Sunday.

4 Experiments

We evaluate our model on two publicly available
datasets: MultiWOZ 2.0 and MultiWOZ 2.1, both
of which are fully-labeled task-oriented corpora
comprised of human-human written conversations
and contain 8,438 multi-turn dialogues with each
dialogue having 13.68 turns on average in training
set (Budzianowski et al., 2018). The difference
between MultiWOZ 2.0 and MultiWOZ 2.1 is that
MultiWOZ 2.1 has changed more than 32% of state
annotations across 40% of the dialogue turns to fix
the noisy state annotations in MultiWOZ 2.0 (Eric
et al., 2019).

Following previous work (Wu et al., 2019), only
five domains (i.e., restaurant, hotel, attraction, taxi,
and train) are employed in our experiments because
the dialogues that belong to the other two domains
(i.e., hospital and police) are rare in the training
set and do not appear in the test set. As intro-
duced in Section 3, we get a new training set by
using the supporting span annotations, which can
be called the SP training set. Additionally, there
are no changes to the test set and the dev set.

4.1 Training Details

We use the pre-trained BERT-base-uncased model
as the utterance encoder in SA, which has 12 hid-
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Joint Slot
GLAD 35.57 95.44
Neural Reading 41.10 -
SUMBT 46.65 96.44
TRADE 48.62 96.92
DSTQA 51.44 97.24
SAraw 48.26 97.07

+ VN1 52.84 (+4.58) 97.34
+ VN12 53.04 (+4.78) 97.35

SAsp 48.44 97.02
+ VN1 54.36 (+5.92) 97.41
+ VN12 54.52 (+6.08) 97.42

Table 2: Results on MultiWOZ 2.0 dataset.

den layers with 768 units. For the limitation of
the maximum sequence length, We set m (in equa-
tion 1) to 9. If the current conversation turn exceeds
m, we will combine the predicted dialogue states
with the previous dialogue states to complete dia-
logue states for the current turn.

In our experiments, SA and VN are both trained
with Adam optimizer (Kingma and Ba, 2014) in
which the learning rate linearly decreases from
5e−5 and 1e−4, respectively. We have trained SA
with 3 epochs and VN with 5 epochs both on Multi-
WOZ 2.0 and MultiWOZ 2.1. Specifically for VN,
we train VN1 and VN12 (introduced in Section 2.2)
to compare their performance.

Our results can be reproduced with a 16 GB
V100 GPU in 2 hours (8 minutes for VN1).

4.2 Results
Two standard metrics, joint accuracy and slot accu-
racy, can be employed to evaluate the performance
of our model. Joint accuracy is the accuracy of dia-
logue states, which requires that all (domain, slot,
value) triples in the dialogue states are predicted
correctly. And slot accuracy is the accuracy of (do-
main, slot, value) triples, which requires that the
predicted value of (domain, slot) pair is predicted
correctly. The joint accuracy is a more challeng-
ing metric, for there is a considerable number of
(domain, slot) pairs in dialogue states.

To better evaluate the role of supporting spans,
we have trained two versions of SA, one of which
utilizes the original training set called SAraw and
the other employs the SP training set called SAsp.
And we make a comparison with the following
existing models:

• GLAD (Zhong et al., 2018) shares parameters

Joint Slot
DST-Span 40.39 -
TRADE 45.60 -
DSTQA 51.17 97.21
DS-DST 51.21 -
DST-Picklist 53.30 -
SAraw 45.72 96.89

+ VN1 50.76 (+5.04) 97.24
+ VN12 50.73 (+5.01) 97.24

SAsp 45.74 96.90
+ VN1 54.86 (+9.12) 97.55
+ VN12 54.80 (+9.06) 97.55

Table 3: Results on MultiWOZ 2.1 dataset.

among slots by virtue of global modules and
applies the local modules to learn slot-specific
features.

• Neural Reading (Gao et al., 2019) formulates
DST as a reading comprehension task. The
model encodes the word tokens by a pre-
trained BERT model, then obtains the con-
textual representation by LSTM.

• SUMBT (Lee et al., 2019) learns the slot and
utterance representations by fine-tuning a pre-
trained BERT model. Then they compute the
similarity between possible values and utter-
ances via a slot-utterance matching module.

• TRADE (Wu et al., 2019) employs an encoder-
decoder architecture to generate the values for
slots from the vocabulary and the dialogue
history.

• DSTQA (Zhou and Small, 2019) models DST
as a question answering problem, which gen-
erates a question to ask for the value of the
slot at each turn.

• DS-DST (Zhang et al., 2019) proposes a
Dual Strategy to combine the advantages of
the picklist-based and span-based methods,
which has been evaluated individually as DST-
Picklist and DST-Span.

On MultiWOZ 2.0, as shown in Table 2, our
model achieves the highest performance, 54.52%
of joint accuracy in which VN gains 6.08% ab-
solute improvement. And on MultiWOZ 2.1, as
shown in Table 3, our model also achieves the high-
est performance, 54.86% of joint accuracy in which
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θ 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
-1.0 8.41 12.05 13.19 14.67 19.46 22.41 31.49 38.50 46.76 54.86
-0.5 33.35 22.30 17.48 20.15 20.89 26.97 31.84 38.68 46.76 54.86

0 33.35 25.83 25.99 24.86 22.58 29.61 36.43 41.67 48.29 54.86
0.3 33.35 30.20 33.66 38.18 39.81 48.60 48.75 51.43 53.5 54.86
0.5 33.44 35.71 43.44 46.88 49.43 49.81 51.40 51.87 53.57 54.86
0.7 34.03 40.64 45.97 47.19 48.14 49.42 51.28 49.55 51.18 54.86
0.9 33.44 41.76 45.39 46.10 46.90 47.84 48.19 46.52 47.43 52.10
1.0 45.74 45.74 45.74 45.74 45.74 45.74 45.74 45.74 45.74 45.74

Table 4: The performance of SAVN with incomplete ontology on MultiWOZ 2.1. The percentage in the header
refers to the usage rate of ontology and the θ is introduced in Equation 10.

VN gains 9.12% absolute improvement. Combin-
ing results from two tables, we demonstrate that
the performance of SA is similar to TRADE and
SA has about 5% higher absolute performance than
DST-span, which is also a span-based method using
BERT.

Comparing SAraw with SAsp, we find that
their performance is similar without VN and the
improvement of SAsp performance is obviously
greater than that of SAraw by VN, which shows
that SAsp has learned more about semantics so that
it could output the supporting span and can be bet-
ter combined with VN. Furthermore, by comparing
VN1 with VN12, we prove that VN has enough per-
formance for the MultiWOZ dataset with only one
transformer layer.

4.3 Incomplete Ontology

The experimental results in Table 2 and Table 3
show that ontology is a powerful resource for DST.
However, it is impractical to get a full ontology in
advance when the DST model is oriented to prac-
tical applications, which leads some models, such
as TRADE, to abandon ontology. In this section,
We choose SAsp on MultiWOZ 2.1 as the base
model to evaluate the performance of VN1 with
incomplete ontology.

There are many slots in the ontology. We can
divide them into two categories, common-value
slots and special-value slots. Common-value slots,
such as hotel-price and hotel-type, are able to in-
clude all possible values as long as a few values
are given. And for special-value slots, such as
restaurant-name and taxi-departure, it is difficult
to cover all possible values by predefined values. In
our experiment, we only drop out values in special-
value slots and always keep all values of common-
value slots.

0 0.02 0.04 0.06 0.08 0.1

restaurant-book day
train-day

hotel-book day
hotel-book stay

restaurant-book people
taxi-arriveby

hotel-book people
taxi-leaveat

restaurant-book time
train-destination
taxi-destination

taxi-departure
train-book people

train-departure
hotel-stars

restaurant-food
restaurant-pricerange

restaurant-area
hotel-pricerange

hotel-parking
attraction-area
train-arriveby
hotel-internet

attraction-type
hotel-area

hotel-name
train-leaveat

attraction-name
hotel-type

restaurant-name

SAVN SA

Figure 5: The error rate of slots on MultiWOZ 2.1.

The results are shown in Table 4. Even if there
is only 30% ontology, VN can bring positive per-
formance as long as θ is appropriate. Based on
the results, we demonstrate that the performance of
VN has steadily improved with the increased usage
rate of ontology. Furthermore, the more complete
ontology is, the smaller θ can be, which means VN
can be more dependent on ontology.

5 Error Analysis

An error analysis of SAsp with VN1 on MultiWOZ
2.1 is shown in Figure 5. The three slots with
the highest error rates are restaurant-name with
6.37%, hotel-type with 6.08% and attraction-name
with 5.93%. Through the detailed analysis of error
samples, we observe many labeled states do not



3026

include the name that only appears in system re-
sponse. These states are similar to the example in
Figure 1 with the restaurant-name and attraction-
name removed. Once the difference occurs, it will
lead to errors in the subsequent dialogue states,
resulting in high error rates. And the labels of
hotel-type are found to be confusing. For instance,
for the sentence “I am looking for a hotel with
...”, sometimes the label of hotel-type is hotel and
sometimes it is none.

Compared with SA, SAVN has significantly
lower error rates on attraction-type and attraction-
name. The improvement of attraction-name is
mainly due to the repair of spelling mistakes, and
the improvement of attraction-type mainly bene-
fits from the normalization of varied expressions.
It is worth mentioning that VN can not improve
the accuracy of some slots, which only need to be
filled with yes or no, such as hotel-internet and
hotel-parking.

6 Related Work

Traditional dialogue state tracking models extract
utterance semantics by hand-crafted features and
complex domain-specific lexicons (Wang and
Lemon, 2013; Williams, 2014; Henderson et al.,
2014) to predict the dialogue states, which is hard
to adapt to new domains. Then, to overcome this
drawback, Mrkšić et al. (2017) propose a novel
Neural Belief Tracking (NBT) framework with
learning n-gram representation of utterance by us-
ing a convolutional neural network, and achieve
better performance. At the same time, Models
for multi-domain DST have then been proposed.
Rastogi et al. (2017) build a multi-domain DST
model by two-layer bi-GRU and Ramadan et al.
(2018) track domain and the dialogue states jointly
through multiple bi-LSTM. They employ semantic
similarity between utterances and the values in on-
tology and allow the knowledge to be shared across
domains. To transfer knowledge between slots,
Zhong et al. (2018) propose a global-local architec-
ture to share parameters among slots and Ren et al.
(2018) propose StateNet that shares all parameters
among slots and fix the word embeddings during
training to handle new slots.

After the pre-trained BERT model showed supe-
rior performance, encoding by BERT has become
the mainstream. Lee et al. (2019) encode the slots
and utterances with BERT, and then compute the
similarity between possible values and utterances

after a Multi-head attention layer. And Zhang et al.
(2019) also employ BERT to encode the utterances.
The difference is that they combine the picklist-
based and span-based methods and get higher per-
formance. In order to eliminate the dependence
on ontology, Wu et al. (2019) propose an encoder-
decoder architecture with a pointer network to gen-
erate the value for each slot. And Zhou and Small
(2019) formulate multi-domain DST as a question
answering problem and learn relationships between
slots by a dynamically-evolving knowledge graph.
Most recently, Heck et al. (2020) propose to use
copy mechanisms to fill slots with values, which
combine span-based methods with memory meth-
ods to avoid the use of value picklists.

7 Conclusion

We introduce a new architecture that divides the
prediction of slots and the use of ontology. SA
shares parameters not only among all slots but also
between slots and utterances. And VN can han-
dle ontology flexibly with a simple and effective
structure, which is able to work with incomplete on-
tology. Combining SA with VN, SAVN has shown
excellent performance on both MultiWOZ 2.0 and
MultiWOZ 2.1. And we also introduce the annota-
tion of supporting span. In future work, the support-
ing span annotation can be added to the datasets
of a task-oriented dialog system, for the reason
that supporting span serves as a bridge between
diverse descriptions of users and the normative val-
ues in the system. Furthermore, DST models with
supporting span allow for a fairer comparison re-
gardless of whether the ontology is used.
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