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Abstract

This paper proposes to adapt self-attention
to discourse level for modeling discourse ele-
ments in argumentative student essays. Specif-
ically, we focus on two issues. First, we
propose structural sentence positional encod-
ings to explicitly represent sentence positions.
Second, we propose to use inter-sentence at-
tentions to capture sentence interactions and
enhance sentence representation. We con-
duct experiments on two datasets: a Chinese
dataset and an English dataset. We find that
(i) sentence positional encodings can lead to
a large improvement for identifying discourse
elements; (ii) a structural relative positional en-
coding of sentences shows to be most effective;
(iii) inter-sentence attention vectors are useful
as a kind of sentence representation for identi-
fying discourse elements.

1 Introduction

Discourse describes how a document is organized.
This paper focuses on the task of discourse ele-
ment identification (DEI) in argumentative student
essays. Discourse elements represent the func-
tion and contribution of every discourse unit to
the discourse. Burstein et al. (2003) formulate dis-
course elements as 5 categories: introduction, the-
sis, main idea, supporting and conclusion, while ar-
gument components such as major claim, claim and
premise are used as discourse elements in argumen-
tation structure parsing in persuasive essays (Stab
and Gurevych, 2014). DEI can benefit automated
essay scoring in many aspects: modeling organi-
zation, inferring topics and opinions or used as
features for scoring systems (Attali and Burstein,
2006; Burstein et al., 2001; Persing et al., 2010;
Song et al., 2020).

Despite its importance, DEI is challenging.
First, the ambiguity of sentences makes learn-

ing models difficult to distinguish some discourse

elements. For example, the thesis is defined as
expressing the central claim of the author and the
main ideas support the thesis from specific aspects.
However, it is hard to distinguish them from their
content and style.

Second, the discourse element of a specific sen-
tence depends on context. As a result, considering
individual sentences only would have difficulties
in identifying discourse elements. The relations
and relatedness among multiple sentences should
be explored.

Third, the data imbalance problem is serious,
e.g., the number of elaboration sentences could
be 10 times more than the number of thesis sen-
tences. The minority discourse elements (such as
thesis, main ideas or major claim) are harder to
be recalled although they have important roles in
many scenarios, e.g., evaluating the organization
of essays (Attali and Burstein, 2006).

In this paper, we propose a method to explicitly
model sentence positions and relations to improve
discourse element identification in argumentative
student essays. Our idea is partially motivated
by the self-attention mechanism such as (Vaswani
et al., 2017). Self-attention is usually applied to
capture dependencies between words. We aim to
apply self-attention mechanism to describe rela-
tions between sentences.

On one hand, position information is important
for DEI to give clues on discourse elements be-
yond content and style, because authors usually
hold some conventions to organize content. Po-
sition is one of the most useful feature classes in
feature-based DEI (Burstein et al., 2003; Stab and
Gurevych, 2014). Previous neural network mod-
els usually cast DEI as a classification or sequence
labeling task and do not explicitly model position
information. Motivated by the positional encoding
of words, we propose a simple structural positional
encoding strategy for a sentence by considering its
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relative position in its essay, relative position of
its paragraph in its essay, and its relative position
within its paragraph.

On the other hand, relatedness among sentences
may also indicate properties of discourse elements.
For example, thesis sentences should have close
relations to the whole essay; main ideas usually
locate in similar positions and have high relat-
edness. Relatedness between discourse elements
has shown to be an important indicator of essay
coherence (Higgins et al., 2004). We compute
inter-sentence attention vectors to represent either
element-wise or content-wise relations to other sen-
tences, which bring in additional information be-
yond individual sentences and enhance sentence
representation without extra information.

Experiments show that the proposed approach
can get considerable improvements compared with
feature-based and neural network based baselines
on a Chinese dataset and obtain competitive results
compared with the state-of-the-art method on an
English dataset. The structural positional encod-
ings of sentences show effectiveness to achieve
obvious overall improvements. The inter-sentence
attention vectors enhance sentence representation
helping identify discourse elements as well.

2 Related Work

2.1 Discourse Element Identification

DEI could be seen as a subtask in discourse struc-
ture analysis. It aims to identify discourse elements,
determine their functions and establish relation-
ships among them in an argumentative text.

Typical tasks in this line include argumentative
zoning (Teufel et al., 1999) , argumentation mining
(Mochales and Moens, 2011; Lippi and Torroni,
2016) and analyzing argumentative student essays
(Burstein et al., 2003; Stab and Gurevych, 2014).
Argumentative zoning identifies arguments in sci-
entific articles (Teufel et al., 1999; Guo et al., 2010).
Argumentation mining aims to identify argument
components and relations from legal texts (Palau
and Moens, 2009; Mochales and Moens, 2011)
or argumentative texts (Stab and Gurevych, 2014;
Daxenberger et al., 2017).

The solutions to these tasks usually adopt similar
machine learning methods but use domain related
features. The methods could be roughly classified
into the following categories.

Classification based methods cast DEI as a
classification problem. Various classifiers have

been tested, such as SVM (Stab and Gurevych,
2014), decision trees (Burstein et al., 2003, 2001)
and naive Bayes, maximum entropy model (Moens
et al., 2007; Palau and Moens, 2009).

Sequence labeling based methods exploit con-
textual information for DEI with conditional ran-
dom fields (Hirohata et al., 2008; Song et al., 2015)
or recurrent neural networks (Daxenberger et al.,
2017).

Establishing relations between sentences is of-
ten viewed as a classification tasks as well (Stab
and Gurevych, 2014). Parsing based methods are
also adopted to build more complex structures with
techniques like ILP (Stab and Gurevych, 2017) or
RST style parsing (Peldszus and Stede, 2015).

Feature engineering. Some common features
are shared across these tasks, including syntactic,
lexical, semantic and discourse relations. There
are also domain related features to further boost
the performance. Mochales and Moens (2011) de-
signed special features for argumentation mining
in legal texts. Nguyen and Litman (2015) identified
claims based on domain words. Lippi and Torroni
(2015) modeled syntactic structures for content in-
dependent claim detection based on tree kernels.

Our work is mostly related to DEI in argumenta-
tive student essays (Burstein et al., 2003; Stab and
Gurevych, 2014), which is useful for qualifying
essay organization (Persing et al., 2010), argumen-
tation (Persing and Ng, 2016; Wachsmuth et al.,
2016) and general writing (Burstein et al., 2003;
Ong et al., 2014; Song et al., 2014). The major
feature classes proposed by Burstein et al. (2003)
and Stab and Gurevych (2014) are used to build a
baseline. The features include: position, cue words,
lexical features (main verbs, adverbs and connec-
tives) and structural features (such as number of
clauses). Some of these features are based on man-
ually collected lexicons.

Deep Learning Methods have achieved great
success in many NLP tasks. Eger et al. (2017) pro-
posed neural argumentation mining models based
on sequence tagging or dependency parsing. It
exploits inter-sentence relations but needs sophis-
ticated language processing. Daxenberger et al.
(2017) exploited CNN and LSTM for classifying
sentences to identify claims from different domains.
It mainly depends on the content of components but
does not sufficiently model positions and exploit
inter-sentence relatedness.



2822

2.2 Attention Mechanism for Discourse
Representation

Attention mechanism was first introduced by (Bah-
danau et al., 2015) in the encoder-decoder frame-
work. Attention has the ability to learn important re-
gions within a context and has been widely adopted
in deep learning. Liu and Lapata (2018) proposed
a structured attention mechanism to derive a tree
over a text, akin to an RST discourse tree. Ferra-
cane et al. (2019) evaluated the model, however,
found multiple negative results. Attention mech-
anism has also been applied for RST parsing and
its applications (Li et al., 2016; Ji and Smith, 2017;
Huber and Carenini, 2019) but it is mostly used for
capturing local semantic interactions.

2.3 Self-Attention Mechanism

Vaswani et al. (2017) proposed the self-attention
mechanism and achieved state of the art results in
many NLP tasks. Since then, self-attention has
drawn increasing interests due to flexibility in mod-
eling long range interactions.

Self-attention ignores word order in a sentence.
As a result, position representations are developed
to cooperate with self-attention. In addition to
the sinusoidal position representation proposed by
Vaswani et al. (2017), there are also other varia-
tions to bias the selection of attentive regions (Shen
et al., 2018; Shaw et al., 2018; Yang et al., 2019). In
NLP, self-attention is mostly applied to sequential
structures such as a sequence of words. Mihaylov
and Frank (2019) proposed a discourse-aware self-
attention encoder for reading comprehension on
narrative texts, where event chains, discourse rela-
tions and coreference relations are used for connect-
ing sentences. Self-attention can be also extended
to 2d-dimensions for image processing (Parmar
et al., 2018) and lattice inputs (Sperber et al., 2019).

3 Baseline

We use Hierarchical BiLSTM (HBiLSTM), which
is similar to (Yang et al., 2016), as the base model to
model sentence and discourse level representations.

The task is to assign discourse element labels
y = (y1, ..., yn) to sentences (x1, ..., xn) in a text,
where xi, 1 ≤ i ≤ n, is a sentence of a sequence
of words and yi ∈ Y , Y is a set of pre-defined
discourse elements.

3.1 Sentence Representation Layer

A sequence of words x = {w1, ..., wN} is mod-
eled with a RNN encoder and is converted into a
sequence of hidden states H = {h1, ...,hN}. The
hidden state at the i-th step is

hi = f (e (wi) ,hi−1) , (1)

where f is a RNN unit, e(wi) ∈ Rd is the embed-
ding of a word, and hi−1 is the hidden state of the
previous step. The whole sequence could be repre-
sented as a fixed length vector c = φ({h1, ···,hN})
to represent the semantic of a sentence, where φ(·)
is a function to summarize hidden states.

In this work, Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) is used as the
RNN unit and the sequence is encoded in a Bi-
directional way that a hidden state hi = [

−→
hi;
←−
hi]

is the concatenation of the corresponding hidden
states from both directions. The summarization
function φ(·) could be based on the attention mech-
anism.

3.2 Discourse Representation Layer

In the discourse element layer, we feed sentence
representations C = (c1, ..., cn) ∈ Rd×n to a BiL-
STM and use a nonlinear layer to map semantic rep-
resentations to discourse element representations,

D = tanh(BiLSTM(C)). (2)

3.3 Inference Layer

Finally, we use a linear and a softmax layer to
predict the discourse element of every sentence,

Y = softmax (linear(D)) , (3)

where Y ∈ R|Y|×n refers to the probabilities of
every sentence over discourse element categories.

The baseline mainly exploits interactions be-
tween adjacent sentences, but long distance inter-
actions and sentence positions are not explicitly
considered, which may be also important to deter-
mine the function of sentences in argumentative
discourse.

4 Discourse Self-Attention

We propose the Discourse Self-Attention (DiSA)
layer to improve the baseline by explicitly model-
ing sentence positions and inter-sentence interac-
tions. The architecture is illustrated in Figure 1.
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The sentences in an essay are converted to sen-
tence embeddings C through the BiLSTM encoder
introduced in Section 3.1, which are used as the
input of DiSA. DiSA explicitly represents sentence
positions, which are integrated with the content rep-
resentations of sentences to get element represen-
tations. DiSA also has an inter-sentence attention
module to get both element-wise and content-wise
attention vectors of sentences to capture sentence
interactions. The attention vectors and element rep-
resentations are concatenated and fed to a linear
layer and a softmax layer for prediction.

4.1 Sentence Positional Encodings (SPE)

Discourse elements in argumentative essays are
sensitive to their positions. For example, introduc-
tion mostly comes before thesis or main ideas and
main ideas may occur more often at the beginnings
or endings of paragraphs.

Figure 2 shows an essay with 7 sentences and 4
paragraphs as an example. We consider three types
of sentence positions for positional encoding.

• Global position: The index of a sentence is
used to describe its position where we assume
sentences in an essay form a sequence.

• Paragraph position: An essay has multiple
paragraphs. The position of the paragraph that
contains the sentence is also important.

• Local position: The position of the sentence
in its paragraph is informative as well.

We adopt a relative positional encoding ap-
proach. We compute the relative positions for the
above three position types. For example, the rela-
tive global position of the i-th (i ≥ 1) sentence in
an essay E is

posglobal(i) =
i

|E|
, (4)

where |E| is the number of sentences.
To integrate with sentence representations, we

expand posglobal(i) to a vector of the same dimen-
sion d of the distributed sentence representations
by duplicating its value to every dimension, noted
as posglobal(i) ∈ Rd. The relative paragraph po-
sition representation pospara(i) and relative local
position representation poslocal(i) are computed
in the same way.
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Figure 1: The architecture of Discourse Self-Attention.
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The final position representation pos(i) is for-
mulated as a liner combination of the three relative
position representations, i.e.,

pos(i) =
∑

t∈{global,local,para}

βtpost(i), (5)

where {βt} are parameters to be learnt in training.
The element representation of the i-th sentence is

ei = tanh(BiLSTM(Ci + pos(i))). (6)

4.2 Inter-Sentence Attention (ISA)

Self-Attention relates elements at different posi-
tions by computing attention between every pair
of elements. An attention function is to map a
query and a set of key-value pairs to an output. The
queries Q, keys K and values V are vectors. We
define Q,K ∈ Rdk×n and dk is the dimension.
The attention is computed as

α = Attn(Q,K) = softmax(
QKT

√
dk

). (7)
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The output is computed as a weighted sum of
the values, i.e., αV. Here, we are interested in the
attention vectors rather than the weighted output,
because an attention vector reflects the relatedness
of a given sentence to every other sentence. We
propose the inter-sentence attention (ISA) by ap-
plying self-attention to sentence semantic represen-
tations C and discourse element representations
E = {ei}.
• Element Self-Attention (ElemSA): ElemSA

models relations among discourse elements.
We use E to get Q and K, Q = EWQ,
K = EWK , where WQ,WK ∈ Rd×dk . We
do not use the normalized attention vectors as
shown in Equation 7 to capture relative relat-
edness. Instead, we use αe = tanh(QKT

√
dk

) as
attention vectors.

• Content Self-Attention (ContSA): ContSA
explores content relatedness to model sen-
tence interactions. Similarly to ElemSA, we
use the sentence semantic representations C
to compute the ContSA vector αc. The pa-
rameters are independent from ElemSA.

Adaptive Maxpooling Different essays have dif-
ferent number of sentences. To have a fixed-length
attention vector, we borrow the idea of spatial
pyramid pooling from image processing (He et al.,
2015). It can maintain relatedness information by
maxpooling αe and αc in local bins. These bins
have sizes proportional to the number of an essay’s
sentences so that the number of bins is fixed re-
gardless of the essay length. We set the number
of bins to 1, 2, 4 and 8, respectively. The resulted
representations can be seen as descriptions of the
relatedness of a sentence to different zones of its
essay. These representations are concatenated so
that the dimension of the pooled attention vectors
α′c, α

′
e is 1+2+4+8=15.

Finally, the prediction is made according to

Y = softmax
(
linear([α′e;α

′
c;E])

)
, (8)

where α′c, α
′
e and E are concatenated.

5 Datasets

5.1 The Chinese Dataset
The construction of the Chinese Dataset mainly
follows the definition and taxonomy of discourse
elements proposed by Burstein et al. (2003). Specif-
ically, we consider the following discourse ele-
ments:

Element Train Test Total %
Introduction 2,859 285 3,144 9.5
Thesis 881 151 1,032 3.1
Main Idea 4,443 578 5,021 15.2
Evidence 5,972 679 6,651 20.1
Elaboration 12,405 1,127 13,532 41.0
Conclusion 3,086 333 3,419 10.3
Other 170 20 190 0.6
Total 29,816 3,173 32,989
# essays 1,112 118 1,230
Avg. #Chinese chars per essay 843
Avg. #sentences per essay 27
Avg. #words per sentence 21

Table 1: Basic statistics of the Chinese dataset.

• Introduction The role of introduction is to
introduce background or attract readers’ atten-
tion before making claims.

• Thesis The thesis express the central claim of
an author with respect to the essay’s topic.

• Main Idea The ideas establish foundational
ideas or aspects that are related to the thesis.

• Evidence The evidence elements provide ex-
amples or other evidence that are used to sup-
port main ideas and thesis.

• Elaboration The elaboration elements further
explain main ideas or provide reasons, but
contain no examples or other evidence.

• Conclusion The conclusion sentence is the
extension of the central argument, summarizes
the full text, and echos the thesis of the essay.

• Other Other elements refer to the ones that
do not match the above classes.

The dataset has 1,230 argumentative essays writ-
ten by high school students, covering diverse top-
ics. These essays were collected from a website
LeleKetang.1 We asked two annotators from the
literal arts college to assign discourse elements to
sentences from these essays according to a manual.
The annotators discussed to reach a consensus and
refined the manual for several rounds. We use one
annotator’s annotation as the gold answer, and the
other’s annotation as the prediction, and compute
the F1 scores to measure the agreement, which is
shown in Figure 3.

Table 1 shows the basic statistics of the dataset.
The distribution of discourse elements is imbal-
anced. Elaboration and evidence sentences are

1http://www.leleketang.com/zuowen/.

http://www.leleketang.com/zuowen/
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[To conclude, art could play an active role in improv-
ing the quality of people’s lives, ]s1 [ but I think that
governments should attach heavier weight to other
social issues such as education and housing needs]s2
[because those are the most essential ways enable to
make people a decent life.]s3

Table 2: A sentence from the dataset of (Stab and
Gurevych, 2017), with clause level component annota-
tions (in bold), are split into three individual sentences
s1, s2 and s3.

Element Train Test Total %
Major Claim 598 153 751 10.3
Claim 1,202 304 1,506 20.6
Premise 3,023 809 3,832 52.3
Other 999 232 1,231 16.8
Total 5,822 1,498 7,320
# essays 322 80 402
Avg. #sentences per essay 19
Avg. #words per sentence 20

Table 3: Basic statistics of the English dataset con-
verted from (Stab and Gurevych, 2017).

many more than thesis and main idea sentences.
The type of other sentence accounts for a very
small percentage of the dataset. The test dataset is
10% of the whole dataset.

5.2 The English Dataset

We also use the English student essay dataset re-
leased by Stab and Gurevych (2017). This dataset
marks argument components, i.e., major claim,
claim, and premise, at clause level. Table 2 shows
an example sentence. The consecutive words in
bold form three components, corresponding to
claim, major claim and premise, respectively.

Because our model is at sentence level, we con-
vert the original annotations to sentence level. First,
an essay is split into sentences by NLTK. Then if a
sentence contains only one argument component,
we annotate this sentence as the type of this compo-
nent; if a sentence contains more than one argument
component, we further separate it into multiple sen-
tences to ensure that each sentence has only one
argument. The beginning of a new sentence is from
the end of the last component. The end of a new
sentence is the end of the component it contains.
As shown in Table 2, three sentences s1, s2 and s3
are generated from the original example sentence.
If a sentence does not have any argument compo-
nent, its label is other. Table 3 shows the basic
statistics of the converted dataset.

6 Experiment

6.1 Experimental Settings

The max length of sentences is set to 40 words.
Sentences are padded or truncated according to
this length. The Tencent pre-trained word embed-
dings (Song et al., 2018) were used for experiments
on the Chinese dataset. The dimension of word
embeddings is 200. The Bert tokenizer and em-
beddings were used for experiments on the English
dataset. The dimension of all the BiLSTM hid-
den layers is 256 on Chinese dataset, and 128 on
English dataset. So is the dimension of dk. The
dimension of the attention vectors is 15. The opti-
mizer is stochastic gradient descent (SGD) with a
learning rate 0.1. The best models were selected for
all settings based on the results on the validation
data, which is 10% of the training data.

We use accuracy (Acc.) and macro-F1 as evalua-
tion metrics.

6.2 Comparisons

We compare with the following systems.

• Feature-based. We adapt features from pre-
vious feature-based methods (Burstein et al.,
2003; Stab and Gurevych, 2014; Song et al.,
2015) to build a feature-based CRF model.

• HBiLSTM. The baseline described in Sec-
tion 3 uses two BiLSTM layers to encode
word sequences and sentences.

• BERT. We fine-tune BERT on training data to
train a sentence classifier, because the lengths
of many Chinese essays exceed the length
constraint of BERT and it is expensive to train
BERT-like models at discourse level.

6.3 Results on the Chinese Dataset

6.3.1 System Comparisons
Table 4 shows the performance of the baselines
and DiSA. We can see that HBiLSTM performs
even worse than feature-based approach. HBiL-
STM has a low macro-F1 score, indicating that it
has difficulties in identifying particular discourse
elements. The two end-to-end models do not con-
sider position information and interactions among
sentences. The performance of BERT is worse than
HBiLSTM. This verifies that sequence modeling
is more proper than single sentence classification
for this task. DiSA achieves the best performance



2826

Model Acc. macro-F1
Feature-based 0.623 0.581
BERT 0.569 0.507
HBiLSTM 0.592 0.540
DiSA 0.681 0.657

Table 4: System comparisons.

Introduction Thesis Main Idea Evidence Elaboration Conclusion
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1

HBiLSTM
Feature-based
DiSA
Human

Figure 3: F1 scores on identifying specific discourse
elements.

on all metrics, with a large improvement compared
with the baselines.

Figure 3 further illustrates system performance
on identifying specific discourse elements. The hu-
man performance is also measured by considering
one annotator’s annotation as the answer, and the
other one’s as the prediction.

The discourse elements that HBiLSTM is un-
able to accurately identify are thesis and main idea.
Despite their importance for understanding a text,
their scale is obviously smaller than other discourse
elements, which may bring in obstacles for data-
driven approaches.

Feature-based method performs better than
HBiLSTM on identifying thesis and main idea. But
it heavily relies on feature-engineering such as man-
ually collected discourse markers and cue words.
It does not perform well on identifying evidence
due to the difficulties in designing related features.

DiSA is also an end-to-end model the same as
HBiLSTM but performs much better. We will dis-
cuss the impacts of positional encoding and inter-
sentence attention in Section 6.3.2 and 6.3.3.

Compared with the feature-based method, DiSA
has comparable performance on identifying thesis
but has superior results on identifying main idea
(9% higher in F1 score) and evidence (21% higher
in F1 score).

SPE Type Acc. macro-F1
Sinusoidal 0.674 0.638
PosEmbedding 0.657 0.628
RelativeSPE 0.681 0.657
No SPE 0.595 0.540
+posglobal 0.591 0.540
+pospara+
poslocal

0.676 0.655

Table 5: The effects of different SPEs.

6.3.2 Analysis of Positional Encodings
This part investigates the effect of sentence posi-
tional encodings. We compare our relative sen-
tence positional encoding (relativeSPE) with two
other encoding strategies which are previously used
for word sequences. Sinusoidal indicates the sinu-
soidal positional encoding which is used in Trans-
former (Vaswani et al., 2017). PosEmbedding
uses a distributed vector to represent an absolute
position. The position embeddings are learned dur-
ing training. Each of the above three strategies is
applied for modeling global position, local position
and paragraph position, which are then combined
according to Equation 5.

Table 5 lists the results of using different SPEs
and modeling different positions. RelativeSPE
performs best with improvements of 2-3% macro-
F1 score compared with Sinusoidal and PosEm-
bedding. Without SPE, the metrics drop at least
6.2% compared with using any SPE strategy, and
8.6% compared with relativeSPE. If we explic-
itly add only posglobal, the results even decrease.
Perhaps recurrent neural networks such as LSTM
naturally capture sequential positional information.
However, encoding paragraph position (pospara)
and local position (poslocal) largely improves the
performance. This indicates that proper structural
positional encodings can exploit richer discourse
structures than sequential structures.

6.3.3 Analysis of Inter-Sentence Attention
Table 6 shows the effects of removing inter-
sentence attention (ISA) components from DiSA.
We can see that both ElemSA and ContSA can
make contributions, and ElemSA seems to have a
larger effect on macro-F1 score. Removing ISA,
the accuracy and the macro-F1 score decreases
1.8% and 2.2%.

Remind that ISA uses attention vectors as rep-
resentations rather than the final output αV in the
self-attention module. Table 6 also lists the perfor-
mance that αV is used to replace attention vectors.
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ISA Type Acc. macro-F1
DiSA 0.681 0.657
− ContSA 0.675 0.646
− ElemSA 0.677 0.647
− ISA 0.663 0.635
ISA with αV 0.618 0.600

Table 6: The effects of inter-sentence attention (ISA).

Model DiSA − ISA ∆
Introduction 0.796 0.792 −0.4%
Thesis 0.383 0.338 −4.5%
Main Idea 0.577 0.573 −0.4%
Evidence 0.627 0.578 −4.9%
Elaboration 0.689 0.677 −1.2%
Conclusion 0.868 0.850 − 1.8%

Table 7: Macro-F1 scores on identifying specific dis-
course elements.

The result is not good. This indicates that seman-
tic relation among sentences is more important for
DEI than the specific meaning of sentences.

We further analyze ISA’s impact on specific dis-
course elements. As shown in Table 7, ISA affects
the identification of the minority discourse element
thesis most. It also benefits identifying evidence
which is not a minority discourse element. The-
sis sentences often relate to other sentences from
different essay zones, while evidence sentences
mainly provide facts or examples so they often re-
late to local context in content. ISA helps capture
such patterns. The performance on other types also
increases with different degrees.

Anyway, ISA provides a way to build useful rep-
resentations by exploiting relations between sen-
tences in the same text without any extra burden.

6.4 Results on the English Dataset

Table 8 and Table 9 show main experimental results
on the English dataset.

The second column of Table 8 shows the results
on distinguishing four component types (i.e., major
claim, claim, premise, other). DiSA outperforms
the baselines with a large margin on both accuracy
and macro-F1. Again, removing SPE leads to a
large performance decrease.

Stab and Gurevych (2017) conducted argument
component classification experiments (classifying
a component into major claim, claim and premise)
by assuming that argument components have been
correctly distinguished from other parts. To com-
pare with their results, during training, the other
type is removed from the label set and only the
losses over non-other sentences are accumulated.

4 classes 3 classes
Model Acc. macro-F1 Acc. macro-F1
BERT 0.673 0.596 - -
HBiLSTM 0.680 0.501 - -
DiSA 0.772 0.699 0.806 0.742
DiSA - SPE 0.687 0.529 0.710 0.534
DiSA+Feature - - 0.839 0.807
Eger et al. (2017) - - - 0.730
Single-Best - - - 0.773
Joint-Best - - 0.850 0.826

Table 8: Comparisons on the English dataset. Single-
BEST and Joint-Best indicate the best results reported
in (Stab and Gurevych, 2017), where Joint-Best incor-
porates relation identification as an auxiliary task.

The third column of Table 8 shows the compar-
ison to the best results from (Stab and Gurevych,
2017). DiSA does not perform competitively based
on the distributed representation only, because the
baseline uses some strong hand-crafted features,
especially the component position features, which
rely on the correct argument component informa-
tion. Thus we build a feature vector by incorporat-
ing the indicator features and a component position
feature: number of preceding and following compo-
nents in paragraph, out of 8 categories of features
introduced in (Stab and Gurevych, 2017). The
vector is concatenated with the distributed repre-
sentation. This combination obtains improvements,
outperforms Single-Best results, and achieves close
performance compared with Joint-Best, which con-
siders argumentative relation identification as an
auxiliary task. We also attempt to apply the same
strategy for the Chinese task. But the improvement
is negligible. The reason may be that the indicator
phrases used in Chinese essays is much less than
in English essays. The English dataset heavily re-
lies on phrases signaling beliefs or argumentative
discourse connectors (Daxenberger et al., 2017).

Table 9 shows the macro-F1 scores of DiSA on
identifying specific argument components. Without
the ISA module, the identification of major claims
and claims would decline by 3% and 1.4% absolute
F1 score, respectively. This is consistent with the
experimental results on the Chinese dataset. As a
result, the effectiveness of the SPE and ISA can
be verified on both the Chinese and the English
datasets.

7 Conclusion

We presented a method DiSA to identify discourse
elements in argumentative student essays by ex-
plicitly modeling structural positions and inter-
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Model DiSA − ISA ∆
Major Claim 0.649 0.619 −3.0%
Claim 0.523 0.509 −1.4%
Premise 0.887 0.882 −0.5%
Other 0.737 0.723 −1.4%

Table 9: Macro-F1 scores on identifying specific argu-
ment components on the English dataset.

sentence relations. The structural positional en-
coding considers relative positions of the sentence
and its paragraph. Moreover, we use inter-sentence
attention vectors to capture sentence relations in
content and function. Experiments on a Chinese
dataset and an English dataset show that (i) al-
though it is simple, the positional encoding largely
improves the performance. This indicates that mod-
eling structural positions is feasible and important
to analyze the role of sentences; (ii) discourse el-
ements could be better identified with the help of
inter-sentence attention vectors, especially the mi-
nority ones and the ones that have distinct relation
patterns to other sentences. In future, we plan to
evaluate DiSA on other discourse analysis tasks.
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