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Abstract

Cross-language differences in dependency
parsing performance are mostly attributed to
treebank size, average sentence length, aver-
age dependency length, morphological com-
plexity, and domain differences. In this paper
I point to a factor not previously discussed: If
we abstract away from words and dependency
labels, how many graphs in the test data were
seen in the training data? I discuss how to com-
pute graph isomorphisms, and show that, tree-
bank size aside, overlap between training and
test graphs explains more of the observed vari-
ation than standard explanations such as the
above.

1 Introduction

The state of the art in dependency parsing varies
a lot across languages: on Polish, the best system
in the CoNLL 2018 shared task achieved a labeled
attachment score of 94.9% on held-out data; on
Basque, the same number was 19.5%. Just a few
years ago, a major source of variation was the com-
plexity of the annotation schemes used in the dif-
ferent treebanks; with the Universal Dependencies
project,1 treebanks now follow the same annotation
guidelines, but nevertheless, these performance dif-
ferences persist.2

Differences are typically attributed to training
set size (Vania et al., 2019), linguistic variation

1https://universaldependencies.org/
2While Universal Dependencices have made the available

dependency treebanks more compatible, treebanks were of
course developed using very different protocols; some are
automatically or semi-automatically converted from other
formalisms, others written with the Universal Dependencies
guidelines in mind; some, again, were developed by big teams,
some by a single person. While protocol is hard to isolate and
study – and while protocol may correlate both positively or
negatively with parsing performance, i.e., it is easy to imagine
a poorly designed treebank that is easy to parse – the proto-
col likely has a significant downstream effect on performance;
which means we can only hope to explain some of the variance
in the experiments below.
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Figure 1: Isomorphic examples from UD-English-
Pronouns. Left: Yours drove responsibly. Right: It is
hers. The two sentences are associated with the same
unlabeled directed graphs.

(Nivre et al., 2007), sentence length or average gold
dependency length (in the test data) (McDonald
and Nivre, 2011), and domain differences between
training and test data (Foster et al., 2011). Train-
ing set size is undoubtedly a very strong predictor
of parsing performance, but in this paper, overlap
between unlabeled graphs in the training and test
sections of a treebank is shown to be more pre-
dictive than any of the other factors. Specifically,
we compute equivalence classes over unlabeled de-
pendency graphs – directed or undirected – and
compute the ratio of trees in the treebanks’ test
sections that are isomorphic to graphs observed in
the training section, i.e., the graph-level train-test
leakage, and correlate this number with state-of-
the-art performance numbers across languages. To
the best of our knowledge, no one has previously
considered this predictor of parsing performance,
and we show that it is more predictive than factors
previously discussed in the literature.

Contribution We present a way to quantify
graph-level train-test leakage and an empirical eval-
uation of it across parsing results for 45 languages;
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Figure 2: LEAKAGE. The 5 UD treebanks with the
most UUG-level train-test leakage.

we show that next to treebank size, graph-level
train-test leakage is a better predictor of parsing
performance than any of the factors previously con-
sidered.

2 Unlabeled Graph Isomorphisms

Exact graph isomorphism is in NP, but it remains
an open problem whether it is NP-complete or in
P. We use the VF2 algorithm in (Cordella et al.,
2001), which is known to be fast in practice with
low memory requirements (Foggia et al., 2001).
The algorithm proceeds by iteratively expanding a
subgraph isomorphism, until this procedure fails,
or until the subgraph isomorphism covers the input
graphs. We compute isomorphisms over depen-
dency trees in the training set by first reducing
the trees to a more abstract graph. In our experi-
ments below, we consider two such reductions: to
undirected, unlabeled graphs (UUGs; removing
labels and edge directions) and to directed, unla-
beled graphs (DUGs; removing only labels). Once
we have computed the isomorphisms, we count
how many of the dependency trees in the test data
are members of one of these equivalence classes.
We then report the fraction of test dependency trees
that are isomorphic to at least one dependency tree
in the training data. This number can be seen as a
metric of graph-level train-test leakage. See Figure
2 for the top 5 most leaking treebanks in the Univer-
sal Dependencies project (Version 2.5); the worst
has only 3/100 unseen test graphs. In the Appendix,
we report the full set of results with UUGs; both
for exact computation of isomorphims with VF2,
as well as for a heuristic simply matching a set of
edge degrees.

3 Usual Suspects

We briefly discuss other factors assumed to be pre-
dictive of the performance of dependency parsers.

Treebank size It is trivially true that parser per-
formance depends on treebank size, and it is un-
surprising that the correlation is strong. Obviously,
if the treebank does not contain any training data,
supervised parsers will have to resort to blind guess-
ing, and the more data they see, the less variance
they have to resolve. That said, it is well estab-
lished that increasing the size of a treebank often
comes with diminishing returns (Sagae et al., 2008).
Since treebank size is nevertheless trivially related
to parsing performance, we correlate all other fac-
tors φ in combination with treebank size (see §4):

Morphology Previous work has pointed to mor-
phology as a source of lower parsing performance
(Tsarfaty et al., 2013; Coltekin and Rama, 2018).
In languages with rich morphology, many relations
which are expressed implicitly by word order and
adjacency in languages like English, are encoded
in morphological affixes, which requires subword-
level processing to detect (in the tail). Expressing
functional information morphologically also allows
for a high degree of word-order variation. In our
experiments, we use the most predictive morpho-
logical feature in WALS3 and impute the missing
values.

Sentence length Parser performance unsurpris-
ingly also depends on input length, i.e., the search
space of possible parses (McDonald and Nivre,
2011). This, for example, is why unsupervised de-
pendency parsing has successfully relied on baby
steps training (Spitkovsky et al., 2010). We corre-
late state-of-the-art parser performance with train-
ing set size and average test sentence length.

Graph properties McDonald and Nivre (2011)
discuss graph properties that seem to correlate with
parsing performance. We include average depen-
dency length in our experiments below, which we
compute by simply dividing the total length of de-
pendencies by word tokens in the test section.

Open class ratio Nivre and Fang (2017) argue
that open word classes (especially nouns and verbs)
tend to be harder to attach than other parts of
speech, and that languages with many of them will
therefore be harder to parse. We therefore evaluate

3https://wals.info
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Factors Explained Variance Mean Error

Treebank Size 0.014 0.082
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+POS Bigram Perplexity 0.000 0.085
+Morphology (WALS 21B) 0.000 0.082
+Open Class Ratio 0.000 0.081
+A-Distance 0.036 0.078
+Dependency Length 0.052 0.079
+Sentence Length 0.170 0.073

+UUG-ISO 0.222 0.072
+DUG-ISO 0.228 0.071

Table 1: EMPIRICAL COMPARISON OF FACTORS. We report the three-fold cross-validation explained variance
and mean absolute error of a linear regression model with two features, as well as the baseline of just using a linear
regression with treebank size as our only feature.

whether the ratio of nouns and verbs over the to-
tal number of tokens in a sentence is predictive of
parser performance.

POS bigram perplexity Others have proposed
to use the perplexity of a POS bigram language
model trained on the treebank’s training section
and applied to its test section, to predict parser per-
formance (Coltekin and Rama, 2018; Berdicevskis
et al., 2018).

Domain divergence Gildea (2001) explore the
effect of domain shifts on parsing performance and
show that such shifts are often detrimental to the
quality of parses. This issue has, since then, been
explored in great detail in the domain adaptation
literature, but here we simply note that treebanks
with train-test divergences may appear harder to
parse. In order to compute the impact of train-test
divergence on state-of-the-art parsing results, we
need to be able to compute it. Several proposals
exist in the literature, including Jensen-Shannon di-
vergence (Wu and Huang, 2016), Renyi divergence
(Van Asch and Daelemans, 2010), and Wasserstein
distance (Shen et al., 2018). We choose to rely
on A-distance (Kifer et al., 2004), since it is ar-
guably the most popular divergence measure in
domain adaptation, and since we can approximate
it efficiently by the accuracy of a linear percep-
tron trained to discriminate between examples from
the train and test splits. Note that Van Asch and
Daelemans (2010) explicitly proposed quantifying
domain divergence as a way of predicting perfor-
mance, noting a linear correlation between the two.

4 Empirical Comparison of Factors

We correlate the factors φ assumed to influence syn-
tactic dependency parser performance with state-of-
the-art performance figures from the CoNLL 2018
shared task, i.e,. the performance of the best per-
forming system per language.4 See the Appendix
for the full statistics. While computing their Pear-
son’s ρ coefficients is standard methodology for
validating performance metrics (Lin, 2004; Miculi-
cich Werlen and Popescu-Belis, 2017) and has also
been used to evaluate factors predicting system per-
formance (Martin and Foltz, 2004; Søgaard and
Haulrich, 2010), this is inadequate in our case:
Many factors are potentially covariate, and we are,
for example, not interested in factors that correlate
strongly with treebank size, e.g., out-of-vocabulary
rate or type-token ratio (Kettunen, 2014). Instead
we compute the explained variance and mean abso-
lute error of a linear regression model with treebank
size and φ as input, i.e., ats + bφ+ c with ts tree-
bank size and a, b, c learned parameters. We report
explained variance and mean absolute error from
three-fold cross-validation experiments to avoid
overfitting. We make our code publicly available.5

Results Our main results are presented in Table 1.
Treebank size correlates strongly with parser per-
formance; see the plot in Figure 3 (Left). Both
morphological complexity and open class ratio
are not very predictive. None of them correlate
very strongly with parser performance, and in com-

4https://universaldependencies.org/
conll18/results-las.html

5https://github.com/coastalcph/
treebank-leakage
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Figure 3: Correlations: Treebank Size (Left) and DUG-ISO and Size (Right). The outlier in both cases is the
Basque treebank.

bination with treebank size, they do not add much
predictiver power, it seems. A-distance correlates
strongly with parsing performance; the explained
variance improves a little, and the error decreases
a bit. Average dependency length is only weakly,
negatively correlated with parsing performance
(ρ ∼ 0.067), a result that is not significant; and
the absolute error of the linear regression model
decreases only a little from adding the feature; the
explained variance improves to 0.05. Sentence
length, perhaps unsurprisingly, correlates more
strongly with parsing performance; and the ex-
plained variance of our linear regression model
increases a lot from adding this feature.

Graph-level train-test leakage, however, is more
predictive of parsing performance than any of these
factors. See the correlation of treebank size over
DUG-level train-test leakage in Figure 3 (Right).
It also leads to much better performance of our lin-
ear regression model; both in terms of explained
variance and mean absolute error. We note that us-
ing DUGs to compute the isomorphisms is slightly
more predictive than relying on undirected graphs.

5 Related work

The factors evaluated in the above, from Nivre
et al. (2007); Van Asch and Daelemans (2010); Mc-
Donald and Nivre (2011); Nivre and Fang (2017);
Coltekin and Rama (2018); Berdicevskis et al.
(2018), were already discussed. A few other fac-
tors have been pointed at in the literature that were
not applicable to our experiments: Søgaard and
Haulrich (2010) show that the perplexity of the
derivation orders of a transition-based dependency
parser, is also predictive of parser performance.

They report Pearson’s ρ scores that are consid-
erably higher than those we found. Their study
suffers from two biases, though; one imposed by
the transition-based parser and the other imposed
by the language model used to calculate the per-
plexity. Moreover, the results they report, are for
only the non-convertedd dependency treebanks in
the CoNLL 2006 (Buchholz and Marsi, 2006) and
CoNLL 2007 (Nivre et al., 2007) treebank releases.
These treebanks form a very small set, providing
limited statistical support, and, moreover, rely on
very different linguistic formalisms and annotation
guidelines, leading to very different levels of com-
plexity of derivation. In other words, a comparison
would be inconclusive because of the free parame-
ters imposed by the language model and the tran-
sition oracle, and the fact that no code is publicly
available. Also, their high correlation scores are
unlikely to transfer to Universal Dependencies.

6 Discussion and Conclusion

This paper suggested a factor contributing to vari-
ance in (universal) dependency parser performance
across languages: graph-level train-test leakage in
treebanks. This form of leakage can be quantified
by computing graph isomorphisms from training
sections and counting the ratio of trees in the test
sections that are not isomorphic with any tree in
the training data. I compared this factor to previ-
ous attempts to explain variance in parser perfor-
mance across languages through a series of correla-
tion and linear regression experiments; and showed
that graph-level train-test leakage, treebank size
aside, is the most predictive factor among those pro-
posed, yet complementary. The result is perhaps
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not too surprising, since graph isomorphisms cor-
relate with syntactic constructions, which in turn
correlate with the occurrence of linguistic markers
and tail linguistic phenomena.6

The observation that treebanks leak, quite dra-
matically, at the graph level, is not only interest-
ing for explaining variance in parser performance.
It also suggests a new and improved evaluation
methodology: Since language is Zipfian, not only
at the level of words, but at the level of phrases (Ha
et al., 2002; Williams et al., 2015), standard eval-
uation methodology relying on random samples
(Gorman and Bedrick, 2019; Dodge et al., 2019)
is biased toward frequent phenomena. Evaluat-
ing only on non-isomorphic trees, i.e., leaving out
graphs that have been seen at training time from the
test sections of treebanks, would reduce this bias.
We hope this is a factor that designers of future syn-
tactic treebanks will take into account. It is an open
question whether graph-level train-test leakage is
predictive of performance in other sentence-level
NLP tasks, i.e., whether the ratio of test sentences
whose (predicted) syntactic dependency structure
is identical to that of one of our training examples,
correlates with state-of-the-art performance.
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