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Abstract

Empirical natural language processing (NLP)
systems in application domains (e.g., health-
care, finance, education) involve interoper-
ation among multiple components, ranging
from data ingestion, human annotation, to text
retrieval, analysis, generation, and visualiza-
tion. We establish a unified open-source frame-
work to support fast development of such so-
phisticated NLP workflows in a composable
manner. The framework introduces a uniform
data representation to encode heterogeneous
results by a wide range of NLP tasks. It offers
a large repository of processors for NLP tasks,
visualization, and annotation, which can be
easily assembled with full interoperability un-
der the unified representation. The highly ex-
tensible framework allows plugging in custom
processors from external off-the-shelf NLP
and deep learning libraries. The whole frame-
work is delivered through two modularized
yet integratable open-source projects, namely
Forte1 (for workflow infrastructure and NLP
function processors) and Stave2 (for user inter-
action, visualization, and annotation).

1 Introduction

Natural language processing (NLP) techniques are
playing an increasingly central role in industrial
applications. A real-world NLP system involves a
wide range of NLP tasks that interoperate with each
other and interact with users to accomplish com-
plex workflows. For example, in an assistive med-
ical system for diagnosis (Figure 4), diverse text
analysis tasks (e.g., named entity recognition, rela-
tion extraction, entity coreference) are performed
to extract key information (e.g., symptoms, treat-
ment history) from clinical notes and link to knowl-
edge bases; a medical practitioner could select any

1https://github.com/asyml/forte
2https://github.com/asyml/stave

extracted entity to retrieve similar past cases for
reference; text generation techniques are used to
produce summaries from diverse sources.

To develop domain-specific NLP systems fast, it
is highly desirable to have a unified open-source
framework that supports: (1) seamless integration
and interoperation across NLP functions ranging
from text analysis to retrieval to generation; (2)
rich user interaction for data visualization and an-
notation; (3) extensible plug-ins for customized
components; and (4) highly reusable components.

A wealth of NLP toolkits exist (§4), such
as spaCy (Honnibal and Montani, 2017),
DKPro (Eckart de Castilho and Gurevych, 2014),
CoreNLP (Manning et al., 2014), for pipelining
multiple NLP functions; BRAT (Stenetorp et al.,
2012) and YEDDA (Yang et al., 2018) for anno-
tating certain types of data. None of them have
addressed all the desiderata uniformly. Combining
them for a complete workflow requires non-trivial
effort and expertise (e.g., ad-hoc gluing code),
posing challenges for maintenance and upgrading.

We introduce a new unified framework to sup-
port complex NLP workflows that involve text data
ingestion, analysis, retrieval, generation, visualiza-
tion, and annotation. The framework provides an
infrastructure to simply plug in arbitrary NLP func-
tions and offers pre-built and reusable components
to build desired workflows. Importantly, the frame-
work is designed to be extensible, allowing users to
write custom components (e.g., specialized annota-
tion interfaces) or wrap other existing libraries (e.g.,
Hu et al., 2019; Wolf et al., 2019) easily.

The framework’s design is founded on a data-
centric perspective. We design a universal text data
representation that can encode diverse input/output
formats of various NLP tasks uniformly. Each com-
ponent (“processor”) in the workflow fetches rele-
vant parts of data as inputs, and passes its results
to subsequent processors by adding the results to
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Figure 1: Stack of the data-centric framework for NLP workflows, including workflow infrastructure, and proces-
sors for NLP tasks and interactions (e.g., visualization, annotation). Different processors are composed together
with the infrastructure APIs to form an arbitrary complex workflow. The example workflow transforms an unstruc-
tured text corpus into a knowledge graph through a series of NLP functions.

the data flow (Figure 1). In this way, different pro-
cessors are properly decoupled, and each is imple-
mented with a uniform interface without the need
of accommodating other processors. Visualization
and annotation are also abstracted as standalone
components based on the data representation.

We demonstrate two case studies on using the
framework to build a sophisticated assistive medi-
cal workflow and a neural-symbolic hybrid chatbot.

2 Data-Centric NLP Framework

Figure 1 shows the stack of the framework, con-
sisting of several major parts: (1) We first intro-
duce the underlying infrastructure (§2.1), in par-
ticular, a universal representation scheme for het-
erogeneous NLP data. The highly-organized uni-
fied representation plays a key role in supporting
composable NLP workflows, which differentiates
our framework from prominent toolkits such as
CoreNLP (Manning et al., 2014), spaCy (Honnibal
and Montani, 2017), and AllenNLP (Gardner et al.,
2018). We then introduce a range of functionali-
ties that enable the convenient use of the symbolic
data/features in neural modeling, which are not
available in traditional NLP workflow toolkits such
as DKPro (Eckart de Castilho and Gurevych, 2014).
(2) §2.2 describes how processors for various NLP

tasks can be developed with a uniform interface,
and can be simply plugged into a complex work-
flow. (3) finally, the human interaction part offers
rich composable processors for visualization, anno-
tation, and other forms of interactions.

2.1 Infrastructure
2.1.1 Universal Data Representation
NLP data primarily consists of two parts: the raw
text source and the structured markups on top of it
(see Figure 3 for an example). The markups repre-
sent the information overlaid on the text, such as
part-of-speech tags, named entity mentions, depen-
dency links, and so forth. NLP tasks are to produce
desired text or markups as output, based on vastly
different input information and structures,

To enable full interoperation among distinct
tasks, we summarize the underlying commonalities
between the myriad formats across different NLP
tasks, and develop a universal data representation
encapsulating information uniformly. The represen-
tation scheme defines a small number of template
data types with high-level abstraction, which can
be further extended to encode domain-specific data.

Template data types: We generalize the previ-
ous UIMA representation scheme (Götz and Suhre,
2004) to cover the majority of common NLP
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Figure 2: Top Left: A dependency parser processor that calls a neural model and save the results; Top Right: A re-
lation extractor can use the same model architecture. Bottom Left: A pipeline can be constructed by simply adding
processors. Bottom Right: Example data types offered by the framework or customized by users. Relation and
Dependency both extends Link. Definition of dependency is done through a simple JSON configuration.

markups. This results in three template data types,
each of which contains a couple of attributes.

• Span contains two integer attributes, begin and
end, to denote the offsets of a piece of text. This
type can mark tokens, entity mentions, and etc.
• Link defines a pair of (parent, child) which are

pointers to other markups, to mark dependency
arcs, semantic roles, entity relations, etc.
• Group has a members attribute, which is a col-

lection of markups. This type can mark corefer-
ence clusters, topical clusters, etc.

Extended data types: In order to encode more
specific information, each of the template data
types can be extended by adding new attributes. For
example, the framework offers over 20 extended
types for commonly used NLP concepts, such as
Token and EntityMention. Moreover, users
can easily add custom data types through sim-
ple JSON definitions (Figure 2) to fulfill specific
needs, such as MedicalEntity that extends
EntityMention with more attributes like pa-
tient IDs. Once a new data type is defined, rich
data operations (e.g., structured access) as below
are automatically enabled for the new type.

Flexible Data Sources: Modern NLP systems
face challenges imposed by the volume, veracity

and velocity of data. To cope with these, the sys-
tem is designed with customizable and flexible data
sources that embrace technologies such as Index-
ing (e.g. Elastic Search (Elastic.co)), Databases
(e.g. Sqlite), Vector Storage (e.g. Faiss (Johnson
et al., 2017)). Users are free to implement flexible
“Reader” interface to ingest any source of data.

2.1.2 Facilitation for Neural Modeling
The framework provides extensive functionalities
for effortless integration of the above symbolic data
representation with tensor-based neural modeling.

Neural representations. All data types are as-
sociated with an optional embedding attribute to
store continuous neural representations. Hence,
users can easily access and manipulate the embed-
dings of arbitrary markups (e.g., entity, relation) ex-
tracted from neural models like word2vec (Mikolov
et al., 2013) and BERT (Devlin et al., 2019). The
system also supports fast embedding indexing and
lookup with embedding storage systems such as
Faiss (Johnson et al., 2017).

Rich data operations: auto-batching, struc-
tured access, etc. Unified data representation
enables a rich array of operations to support dif-
ferent data usage, allowing users to access any in-
formation in a structured manner. Figure 2 (top
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left) shows API calls that get all dependency links
in a sentence. Utilities such as auto-batching and
auto-padding help aggregates relevant information
(e.g., event embeddings) from individual data in-
stances into tensors, which are particularly useful
for neural modeling on GPUs.

Neural-symbolic hybrid modeling. Unified
data representations and rich data operations make
it convenient to support hybrid modeling using both
neural and symbolic features. Take retrieval for ex-
ample, the framework offers retrieval processors
(§2.2) that retrieve a coarse-grained candidate set
with symbolic features (e.g., TF.IDF) first, and then
refine the results with more expensive embedding-
based re-ranking (Nogueira and Cho, 2019). Like-
wise, fast embedding based search is facilitated
with the Faiss library (Johnson et al., 2017).

Shared modeling approaches. The uniform
input/output representation for NLP tasks makes
it easy to share the modeling approaches across
diverse tasks. For example, similar to Jiang et al.
(2020), all tasks involving the Span and Link
data types as outputs (e.g., dependency parsing,
relation extraction, coreference resolution) can po-
tentially use the exact same neural network archi-
tecture for modeling. Further with the standardized
APIs of our framework, users can spawn models
for all such tasks using the same code with mini-
mal edits. Top right of Figure 2 shows an example
where the same relation extractor is implemented
with dependency parser for a new task, and the only
difference lies in accessing different data features.

2.2 Processors
Universal data representation enables a uniform in-
terface to build processors for different NLP tasks.
Most notably, interoperation across processors sup-
ported by the system abstraction allows each pro-
cessor to interacts with each other via the data flow.

Each processor takes uniformly represented data
as inputs and performs arbitrary actions on them.
A processor can edit text source (e.g., language
generation), add additional markups (e.g., entity
detection), or produce side effects (e.g., writing
data to disk). Top left of Figure 2 shows the com-
mon structure of a processor, that fetches relevant
information from the data pack with high-level
APIs, performs operations such as neural model
inference, writes results back to the data pack and
pass them over to subsequent processors. Top right
shows the simple API used for plugging processors

into the workflow.
A comprehensive repository of pre-built pro-

cessors. With the standardized concept-level APIs
for NLP data management, users can easily de-
velop any desired processors. One can wrap exist-
ing models from external libraries by conforming
to the simple interfaces. Moreover, we offer a large
set of pre-built processors for various NLP tasks,
ranging from text retrieval, to analysis and genera-
tion. Figure 1 lists a subset of processors.

2.3 Visualization, Annotation, & Interaction
The interfaces for visualization and annotation are
implemented as standalone components and de-
signed for different data types.

Single document viewer. We provide a single
document interface (Figure 3) that renders the tem-
plate types. For example, Spans are shown by col-
ored highlights, Links are shown as connectors be-
tween the spans. A user can create new spans, add
links, create groups, or edit the attributes through
intuitive interfaces.

Multi document viewer. Stave currently sup-
ports a two-document interface. Users can create
links across documents. The bottom of Figure 3
shows an example of annotating event coreference.
The system is suggesting an event coreference pair
and asking for the annotator’s decision.

Customization with plugins. While default
interfaces support a wide range of tasks, users can
create customized interfaces to meet more specific
needs. We build a system that can quickly incor-
porate independently-developed plugins, such as a
plugin for answering multiple-choice questions, or
a dialogue interface for chat-bots. Some pre-built
plugins are showcased in Figure 4. Additionally,
the layout can be customized to display specific
UI elements, allowing for greater flexibility to use
plugins together.

Human-machine collaboration. Universal
data representation across all modules not only
enhances interoperation between components, but
also allows machines and humans to collaborate
in a workflow. Human-interactive components can
be integrated at any part of the workflow for visu-
alization/reviewing to produce a downstream sys-
tem that combines the advantages of humans and
machines. Machine-assisted annotation can be un-
dertaken straightforwardly: the annotation system
simply ingests the data produced by a back-end
processor (Figure 3).



201

Figure 3: Top: Screenshot of the single doc interface shows predicates, entity mentions and semantic role links
of one sentence. A new link is being created from “bring” to “Sharm Ei-eikh”. Bottom: Screenshot of the two
document interface for annotating event coreference. The system is suggesting a potential coreference pair. The
interfaces are rendered based on the data types. Users can customize the interface to use different UI components.

3 Case Studies

3.1 A Clinical Information Workflow
We demonstrate an information system for clinical
diagnosis analysis, retrieval, and user interaction.
Figure 4 shows an overview of the system. To build
the workflow, we first define domain-specific data
types, such as Clinical Entity Mention,
via JSON config files as shown in Figure 2. We then
develop processors for text processing: (1) we cre-
ate an LSTM-based clinical NER processor (Boag
et al., 2015), a Span-Relation model based relation
extraction processor (He et al., 2018), and a coref-
erence processor with the End-to-End model (Lee
et al., 2017) to extract key information; (2) we
build a report generation processor following Li
et al. (2019) with extracted mentions and relations;
(3) we build a simple keyword based dialogue sys-
tem for user to interact using natural languages.
The whole workflow is implemented with minimal
engineering effort. For example, the workflow is
assembled with just 20 lines of code; and the IE
processors are implemented with around 50 lines
of code by reusing libraries and models.

3.2 A ChatBot Workflow
The case study considers the scenario where we
have a corpus of movie reviews in English to an-
swer complex queries (e.g., “movies with a pos-
itive sentiment starring by a certain actor”) by a

German user. The iterative workflow consists of
a review retrieval processor based on the hybrid
symbolic-neural feature modeling (§2.1.2), an NER
processor (Gardner et al., 2018) to find actors and
movies from the retrieved reviews, a sentiment pro-
cessor (Hutto and Gilbert, 2014) for sentence polar-
ity, and an English-German translation processor.

4 Related Work

The framework shares some characteristics with
UIMA (Götz and Suhre, 2004) backed sys-
tems, such as DKPro (Eckart de Castilho and
Gurevych, 2014), ClearTK (Bethard et al., 2014)
and cTakes (Khalifa and Meystre, 2015). There
are NLP toolboxes like NLTK (Bird and Loper,
2016) and AllenNLP (Gardner et al., 2018), Glu-
onNLP (Guo et al., 2019), NLP pipelines like Stan-
ford CoreNLP (Manning et al., 2014), SpaCy (Hon-
nibal and Montani, 2017), and Illinois Cura-
tor (Clarke et al., 2012). As in §2.2, our system de-
velops a convenient scaffold and provides a rich set
of utilities to reconcile the benefits of symbolic data
system, neural modeling, and human interaction,
making it suit for building complex workflows.

Compared to open-source text annotation toolk-
its, such as Protégé Knowtator (Ogren, 2006),
BRAT (Stenetorp et al., 2012), Anafora (Chen and
Styler, 2013), GATE (Cunningham et al., 2013),
WebAnno (Castilho, 2016), and YEDDA (Yang
et al., 2018), our system provides a more flexi-
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Figure 4: A system for diagnosis analysis and retrieval from clinical notes. The data-centric approach makes it easy
to assemble a variety of components and UI elements. Example text was obtained from UNC School of Medicine.

ble experience with customizable plug-ins, extend-
able data types, and full-fledged NLP support. The
Prodigy tool by spaCy is not open-source and sup-
ports only pre-defined annotation tasks like NER.

5 Conclusions and Future Work

We present a data-centric framework for building
complex NLP workflows with heterogeneous mod-

ules. We will continue to improve the framework
on other advanced functionalities, such as multi-
task learning, joint inference, data augmentation,
and provide a broader arsenal of processors to help
build better NLP solutions and other data science
workflows. We also plan to further facilitate work-
flow development by providing more flexible and
robust data management processors.
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