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Abstract

Recurrent neural networks (RNNs) suffer from well-known limitations and complications which
include slow inference and vanishing gradients when processing long sequences in text classi-
fication. Recent studies have attempted to accelerate RNNs via various ad hoc mechanisms to
skip irrelevant words in the input. However, word skipping approaches proposed to date effec-
tively stop at each or a given time step to decide whether or not a given input word should be
skipped, breaking the coherence of input processing in RNNs. Furthermore, current methods
cannot change skip rates during inference and are consequently unable to support different skip
rates in demanding real-world conditions. To overcome these limitations, we propose Pointer-
LSTM, a novel LSTM framework which relies on a pointer network to select important words
for target prediction. The model maintains a coherent input process for the LSTM modules and
makes it possible to change the skip rate during inference. Our evaluation on four public data sets
demonstrates that Pointer-LSTM (a) is 1.1x∼3.5x faster than the standard LSTM architecture;
(b) is more accurate than Leap-LSTM (the state-of-the-art LSTM skipping model) at high skip
rates; and (c) reaches robust accuracy levels even when the skip rate is changed during inference.

1 Introduction

Recurrent neural networks (RNNs), such as Long Short-term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) and Gated Recurrent Unit (GRU) (Chung et al., 2014), are popular architectural choices for
many sequential text processing tasks. Typically, RNNs read in either all or a fixed-length slice of tokens
sequentially, and output a distributed representation for each token. While this paradigm is essential for
some applications such as machine translation (Bahdanau et al., 2015), it may result in suboptimal or
practically prohibitive processing times for long input sequences which are not uncommon in document
classification (Liu et al., 2015) and complex question answering (Tan et al., 2015). Building on wider, es-
tablished observations that (i) not all input tokens are equally important in many tasks (Seo et al., 2017);
(ii) text can be comprehended even through partial reading due to linguistic redundancy effects (Yu et
al., 2017); and (iii) attention, fixations, and saccades govern human reading in general (Hahn and Keller,
2016), recent RNN optimisation efforts have focused on mechanisms to skip irrelevant, unimportant, or
redundant words in the input (Yu et al., 2017; Campos et al., 2017; Seo et al., 2017; Liu et al., 2018;
Hansen et al., 2019; Huang et al., 2019). We refer to such models as selective RNNs.

In general, existing selective RNNs use a decision-making component to predict whether or not a word
should be skipped (skimmed). In a typical selective RNN workflow, the RNN’s input steps are interrupted
by the decision network to make a decision to copy the previous hidden state or calculate a new hidden
state for the next time step, for example. Interruptions of this kind make RNNs unnecessarily complicated
from the point of view of implementation and optimisation. Furthermore, existing selective RNNs make
changes to the skip rate impossible during inference. However, real-world applications frequently call for
flexible skip rates in order to optimise the trade-off between inference time (i.e. latency) and accuracy,
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amongst others. Dynamic skip rates during inference can reduce the cost of iterative model retraining
and make it easier to manage many differently parameterised models.

This paper proposes Pointer-LSTM, a novel selective RNN framework which maintains a coherent
RNN input procedure (i.e. no interruptions at each time step) and supports flexible inference skip rates.
We draw inspiration from the pointer network (Vinyals et al., 2015; Gulcehre et al., 2016; See et al.,
2017) which was designed to select and copy tokens from the input to the output. Pointer-LSTM similarly
learns to select important words from the input. However, instead of merely copying the selected words
to the output, Pointer-LSTM copies a proportion of the input words to a large LSTM network for target
prediction. More specifically, Pointer-LSTM uses a small bidirectional LSTM (BiLSTM) network to
produce a self-attention distribution over the entire input sequence; the attention distribution is then
sampled to select top-K important words for target prediction by a large BiLSTM. The value of K in
top-K is controlled by a pre-set skip rate r following Huang et al. (2019).

The main contribution of this paper is as follows:

• We propose a Pointer-LSTM framework which consists of two jointly trained BiLSTMs: a small
BiLSTM serves as the pointer network to select important words as the input to a large BiLSTM for
text classification. Unlike existing selective RNNs, Pointer-LSTM maintains a coherent RNN input
procedure which is easy to implement with standard neural network libraries.

• Pointer-LSTM offers greater control over the skip rate than existing selective RNNs: the skip rate
can be changed during inference without retraining the model while the performance of the model
remains robust despite variable skip rates.

• Experiments on four public data sets show that Pointer-LSTM speeds up the inference by 1.1x∼3.5x
compared to the standard LSTM architecture, and achieves better performance than Leap-LSTM,
the state-of-the-art LSTM skipping model (Huang et al., 2019), at the skip rate of 0.9.

2 Related Work

In this section, we first review some representative selective RNN frameworks, and then introduce the
pointer network and its applications in NLP.

Selective RNNs
Selective RNNs started with LSTM-Jump (Yu et al., 2017) which relies on previous hidden states to
predict the number of time steps that should be skipped after reading at least one input token, resulting
in generally faster inference. Skip-RNN (Campos et al., 2017) improves on LSTM-Jump in the form of
a binary gate to decide whether the state of the RNN is updated or copied from the previous time step.
Unlike LSTM-Jump, which stops at certain time steps to make jumping decisions, Skip-RNN interrupts
the input procedure of RNN at each time step. Structural-Jump-LSTM (Hansen et al., 2019) combines the
advantages of LSTM-Jump and Skip-RNN to perform joint text skipping and jumping during inference.
More specifically, Structural-Jump-LSTM consists of two agents: one to skip single words, and another
to exploit punctuation markers (i.e. sub-sentential separators (,:), sentence-final characters (.!?), and
other end-of-text markers) before jumping forward.

JUMPER (Liu et al., 2018), inspired by the cognitive process of text reading, scans a piece of text
sequentially and makes classification decisions only at certain steps triggered by sufficient evidence,
reducing total text reading by up to 30-40%. Even though JUMPER interrupts the LSTM’s input proce-
dure less frequently, it carries two risks: (1) if the critical cue word signalling that reading can stop is
located at the end of the input sequence, JUMPER has to read in the entire input including any irrelevant
information; (2) if reading is stopped prematurely due to sufficient evidence detected, the method may
miss even more important information present in the remaining text not yet read, resulting in suboptimal
performance. Unlike approaches which skip tokens, Skim-RNN skims unimportant tokens with the help
of a small RNN to update only a fraction of the hidden state, as opposed to using a large RNN to update
the entire hidden state when the words are important. However, Skim-RNN has to stop reading at each
time step before it can make a decision.
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None of the above models offer control over the skip rate. The ratio of words to skip or skim is
typically determined automatically during training. Furthermore, these selective RNNs exploit preceding
information (e.g. the hidden state at time step t − 1) only to make skip decisions which not only makes
them unstable in practice and but also harder to converge during training. The most recent skipping
model, Leap-LSTM (Huang et al., 2019), introduces a skip rate which is controllable during training
– but not inference – by adding a related penalty term to its cost function. Even though Leap-LSTM
includes in its skip decisions information both from the following text and the current word, Leap-LSTM
still predicts skipping behaviour at each time step, thus interrupting the LSTM input procedure. Leap-
LSTM is as undesirable as other existing selective RNNs in this regard.

Pointer Network
The first pointer network, proposed by Vinyals et al. (2015), utilises an attention mechanism as a pointer
to select some item in the input sequence as the output, and makes an attempt to solve the problem of
variable size output dictionaries where the number of target classes in each step of the output depends
on the length of the input which is variable. Gulcehre et al. (2016) use the pointer network in neural
machine translation to deal with rare and unseen words: in their approach, the pointer network learns to
either copy a word from the source sentence or generate a word from the target vocabulary for output.
The pointer network has also been used in text summarisation (See et al., 2017) to copy words which
should be maintained in the output. These methods jointly demonstrate that the attention mechanism can
be used as a pointer to copy important information from the input for language generation tasks.

Our approach is similar to two existing proposals, namely 1) the coarse-to-fine question answering
framework for long documents by (Choi et al., 2017) and 2) the Pointer-Generator network for text
summarisation by (See et al., 2017). The first method uses a fast model to select sentences relevant to
a question and feeds them to a slow RNN to produce the final answer. We take a more direct approach
by employing a pointer network to select information at the word level, rather than the sentence level,
and introduce a skip rate to control the percentage of information to be copied in the output. The second
method uses a Pointer-Generator network to decide whether to copy a word from the input or generate a
word from the vocabulary for text summarisation. Although the Pointer-Generator network is used in an
encoder-decoder architecture for language generation, our Pointer-LSTM is designed to select important
words for text classification and hence has a more concise structure.

3 Our Approach

With faster long text classification as our goal, we investigate a selective LSTM architecture which uses
the attention mechanism as a pointer to select a controllable portion of important words. We regard word
selection as a generation process and take the Pointer-Generator network for text summarisation (See et
al., 2017) as our starting point. We first introduce the Pointer-Generator network and then describe our
modifications to it suitable for text classification (henceforth referred to as Pointer-LSTM).

3.1 Pointer-Generator Network

The Pointer-Generator network (See et al., 2017) is used in an encoder-decoder architecture for language
generation. The encoder converts an input sequence into a weighted, fixed-dimensional context vector,
and the decoder generates an output sequence based on the decision of the Pointer-Generator network
over two choices: (i) generating a word from the vocabulary or (ii) copying a word from the input
sequence. The Pointer-Generator network produces a probability indicator pgen

pgen = σ(wh∗h
∗
t + wsst + woot−1 + bptr) (1)

where the vectors wh∗ , ws, wo and the scalar bptr are learnable parameters; σ is the sigmoid function;
h∗t , st, and ot−1 are the encoder context vector, decoder hidden state, and preceding decoder output for
the decoder at time step t, respectively; and bptr is a bias term for the pointer network. pgen ∈ [0, 1]
represents the probability of generating a word from the vocabulary versus copying a word from the
source text.
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While it is well suited to text summarisation, the Pointer-Generator network is cumbersome when
it comes to selecting words for text classification: the autoregressive pointer network is slow and the
generation of a word from the vocabulary is unnecessary. We accordingly propose Pointer-LSTM, a
simplified yet effective pointer network architecture dedicated to word selection in text classification.

3.2 Pointer-LSTM: A Simplified Pointer-Generator Network
Pointer-LSTM consists of two BiLSTM networks, namely the Small LSTM and the Main LSTM, as
shown in Figure 1. Small LSTM reads in the entire input sequence and produces an attention distribution
over the input tokens. We set a small hidden state dimension (e.g. 20) for Small LSTM for faster
processing. Gumbel-Softmax (Jang et al., 2017) is then used to sample the attention distribution to
produce an importance distribution over the input tokens. We do not take the attention distribution as
the importance distribution directly. Because there is no explicit supervision for the attention to select
important words, the use of Gumble-Softmax can introduce a random sampling process and helps the
network converge better in training. Based on a pre-set skip rate r, we select top-K words, concatenate
their word embeddings and the hidden states from Small LSTM, and feed them to Main LSTM which
has a larger hidden state dimension (e.g. 200). A softmax function is applied to the final state of Main
LSTM to produce a probability distribution over all classes for text classification.

Figure 1: The proposed Pointer-LSTM architecture.

More specifically, given an input sequence X = {x1, x2, . . . , xT } where xi is the ith word of the
sequence, let Ei denote the pre-trained word embedding of xi for Small LSTM, and ht denote the
concatenation of forward and backward LSTM hidden states at time step t. Small LSTM calculates
a self-attention distribution over the input sequence as follows:

α = softmax(ωtanh(H)) (2)

where H = [h1, h2, . . . , hT ]; ω is a learnable weight vector; and α is the attention distribution.
The Gumbel-Softmax for sampling the attention distribution is defined as follows:

di =
exp((log(αi) + gi)/τ∑T

j=1 exp((log(αj) + gj)/τ)
(3)
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where i = {1, . . . , T}; αi is the ith weight in the attention distribution α; τ is the softmax temperature;
and d = {d1, d2, . . . , dT } is the importance distribution over the input sequence.

We rank the importance distribution d and select top-K important words based on the skip rate r via

K = dT ∗ (1− r)e (4)

where de is the ceiling operation.
Figure 1 illustrates the Pointer-LSTM workflow on a sentence from the AGNews data set (“Lithuania

defeated the United States 94-90 in an Olympic men ’s basketball preliminary round game , only the
fourth loss in 115 Olympic starts for the defending champions”) (see Section 4.1). The topic label of this
sample sentence with 28 words is Sports. The small attentive LSTM encodes the entire input sequence
into an attention distribution which is then sampled by Gumbel-Softmax to select important words such
as “defeated” and “basketball”. If the skip rate is set to r = 0.9, then K = d28 ∗ (1− 0.9)e = 3 as a
result of which only three words with the highest probability scores in the importance distribution d are
selected for class prediction.

3.3 Reinforcement Learning
The selection of top-K words unfortunately makes the entire framework non-differentiable because
Small LSTM is separated from Main LSTM in training. Another complication arises from the fact that
there exists no ground truth for the selection of important words in text classification. In order to train
Small LSTM, we use a reinforcement learning method after Williams (1992). We regard word selection
as actions taken to maximise a reward related to the classification result. Similar to Choi et al. (2017),
we define the reward to be the log probability of the corrected class given a word in K selected words:

R(xl) = log p(y = y∗|xl) (5)

where xl is an important word in the set SK which contains the selected top-K words; y∗ is the true
class; y is the predicted class; and Rθ(SK) is the reward. According to this equation, the reward is close
to zero when the prediction is correct; if the prediction is incorrect, the reward becomes negative.

The learning objective is to maximise the expected reward which is equivalent to minimising the
negative expected reward via

Lr = −
∑
xl∈SK

d(x = xl|X) · log p(y = y∗|xl) (6)

where X is the input sequence; xl denotes an important word; and dθ(x = xl|X) is the importance
probability from Eq. (3).

The final cost function of the Pointer-LSTM networks is defined as

L = Lc + Lr (7)

where Lc is classification loss; and Lr is the reward loss.

4 Experiments

We evaluate Pointer-LSTM on four benchmark data sets for long text classification. The state-of-the-
art selective RNN - Leap-LSTM (Huang et al., 2019) - is used as our baseline1. We first compare the
accuracy of our models and their speed-up over the standard LSTM architecture2. We then investigate
the robustness of Pointer-LSTM in cases where the skip rate is changed during inference, focusing on
accuracy at different skip rates.

1The source code for Leap-LSTM (on Tensorflow) can be found at: https://github.com/ht1221/leap-lstm.
We re-implemented their work on PyTorch.

2Leap-LSTM is a unidirectional LSTM framework which skips words from left to right. Therefore, to perform a fair
comparison, we follow the baseline of standard LSTM in (Huang et al., 2019). We will compare our work with more diverse
baselines (such as BiLSTM and Transformers) in terms of accuracy and speed in future work.
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Data Set Task #Train #Validation #Test Classes Avg. #Words
AGNews News classification 110K 10K 76K 4 45
DBPedia Ontology classification 540K 20K 70K 14 55
Yelp Polarity Binary sentiment analysis 540K 20K 38K 2 154
Yelp Full Multi-class sentiment analysis 600K 50K 50K 5 156

Table 1: Summary statistics of our four benchmark data sets. NB. Because the original data sets do not
come with separate validation sets, we split the original training sets by 90%-10% to obtain new training
vs. validation partitions within each data set.

4.1 Data Sets

Following Zhang et al. (2015), we use the large-scale AG’s News, DBPedia Ontology, Yelp Review
Full, and Yelp Review Polarity data sets to represent challenging long text classification conditions.
Table 1 provides overall summary statistics of these data sets. As we can see, sentences in the AGNews
and DBPedia data sets contain ca. 50 words on average while those in the Yelp Review data sets are
considerably longer, with more than 150 words on average. The maximum length of sentences in the
DBPedia, Yelp Full, and Yelp Polarity data sets is over 1,000 words each.

4.2 Model Settings

Our neural networks were implemented on PyTorch3. We initialise word embeddings with GloVe 100-D
6B word vectors (Pennington et al., 2014). For word embeddings not included in GloVe word vectors,
we use random initialisation. The word embeddings are updated during training. The hyper-parameters
for Pointer-LSTM are summarised in Table 2.

Parameter Value
optimiser Adam
dimension of pre-trained GloVe word embeddings 100
size of hidden states in Small LSTM 20
size of hidden states in Main LSTM 200
direction of two LSTMs bidirectional
learning rate 0.001
number of layers in LSTM 1
epochs 5
batch size 64
dropout rate 0.3
lowercase True
temperature τ 0.1

Table 2: Pointer-LSTM model settings and hyper-parameters.

We trained Pointer-LSTM at two skip rates that have been tested on the Leap-LSTM baseline: (i) a
low skip rate at r = 0.25, and (ii) a high skip rate at r = 0.9. Note that the skip-rate of Leap-LSTM
is fixed after training: a model trained with a skip rate of r = 0.25 cannot be changed to any other
skip rate during inference, for example. As a result, multiple Leap-LSTM models need to be trained
to actualise different skip rates. By contrast, Pointer-LSTM allows changes to be made to the skip rate
during inference which we illustrate in our experiments.

4.3 Accuracy and Speed-up

Table 3 compares the accuracy, actual skip rate, and speed of Pointer-LSTM and the Leap-LSTM. The
LSTM and Leap-LSTM scores were obtained from (Huang et al., 2019). Acc. denotes the accuracy

3https://pytorch.org/
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Model r
AGNews DBPedia Yelp Full Yelp Polarity

Acc. Skip Speed Acc. Skip Speed Acc. Skip Speed Acc. Skip Speed

Leap-LSTM 0.25 93.93 24.93 1.1x 99.10 27.94 1.2x 65.91 22.71 1.1x 96.20 23.57 1.1x
0.9 92.62 86.33 2.3x 98.87 87.58 2.8x 61.70 80.03 1.9x 94.34 86.17 2.0x

Pointer-LSTM 0.25 93.86 23.59 1.1x 99.01 23.85 1.1x 65.63 24.60 1.1x 96.44 24.59 1.2x
0.9 93.30 88.76 2.6x 98.89 88.99 3.5x 63.18 89.65 3.3x 95.82 89.64 2.2x

LSTM 93.23 – 1.0x 99.01 – 1.0x 65.93 – 1.0x 95.92 – 1.0x

Table 3: Results on four benchmark data sets.

metric; r is the pre-set skip rate for training; Skip denotes the actual skip rate during inference; and
Speed is the speed-up in runtime on the test set compared to LSTM.

In terms of accuracy, Pointer-LSTM and Leap-LSTM both outperform LSTM in both skip rate con-
ditions (except on the Yelp Full data set). Nevertheless, even on the Yelp Full data set, Pointer-LSTM
and Leap-LSTM can outperform LSTM when the skip rate is lowered (e.g. to 0.15), as verified in our
experiments and discussed in (Huang et al., 2019). This provides further evidence that the reduction of
unimportant words in the input can lead to an increase in accuracy.

Furthermore, Pointer-LSTM is more accurate than Leap-LSTM when the skip rate is high. Leap-
LSTM performs marginally better than Pointer-LSTM on three data sets (NB. not on Yelp Polarity)
when the skip rate r is set to 0.25 (i.e. when only a quarter of the words are skipped). Pointer-LSTM
in turn achieves better results than Leap-LSTM on all four data sets when the skip rate r is set to 0.9
(i.e. when ca. 90% of words are skipped). Moreover, Pointer-LSTM performs particularly well on long
sentences at very high skip rates. Table 3 shows that the accuracy gain of Pointer-LSTM over Leap-
LSTM at r = 0.9 is more significant on Yelp Full and Yelp Polarity data where, on average, sentences
are approximately three times longer than sentences in the other two data sets.

We believe that the advantage brought by Pointer-LSTM in the high skip rate setting reflects the fact
that Small LSTM was used to learn a complete context representation of the entire input sequence: with-
out ground truth information, word selection or skipping in selective RNNs is not explicitly supervised
during training and may hence be more error-prone, leading to the absence of some important words in
the input. The ramifications of such errors become markedly prominent when the skip rate is high while
the input sequence is long. Unlike Leap-LSTM and other existing selective RNNs which decide whether
or not a word should be skipped at each time step and which use only the selective words as their input,
Pointer-LSTM learns a context representation over the entire input sequence for each time step, and feeds
the context representations of selected words into the main LSTM. Pointer-LSTM can effectively capture
some global context in the input sequence, mitigating information loss stemming from word selection.

In terms of inference time4, Pointer-LSTM performs significantly faster than Leap-LSTM in the high
skip rate setting at r = 0.9, achieving up to 2.2x∼3.5x speed-ups over LSTM. At r = 0.25, Pointer-
LSTM is 1.1x∼1.2x faster than LSTM, suggesting a speed-up rate similar to that of Leap-LSTM. These
results indicate that Pointer-LSTM is an effective approach towards faster long text classification. The
higher speed of Pointer-LSTM over Leap-LSTM at high skip rates may correlate with the maintenance
of a coherent input procedure for the LSTM components.

4.4 Dynamic Skip Rate: Flexibility and Robustness of Pointer-LSTM

Leap-LSTM has an advantage over other existing selective RNNs in that it enables greater control over
the skip rate for training. However, the skip rate of Leap-LSTM cannot be trained during inference.
As a result, distinct skip rate-specific Leap-LSTM models need to be trained which is inconvenient or
simply impossible in some real-world conditions, especially when computational resources are limited.
Pointer-LSTM addresses this issue by offering control over the skip rate during inference. The skip rate
can be set to any value between 0 and 1. To investigate the robustness of Pointer-LSTM when the skip
rate is changed during inference, we evaluate the accuracy and actual skip rate of Pointer-LSTM in such
scenarios. We use tuned to refer to a scenario in which Pointer-LSTM is trained with a fixed skip rate

4To evaluate the speed-up, we implemented a standard LSTM network on PyTorch, ran it on all four data sets, and compared
its inference times with Pointer-LSTM on a CPU-only machine.
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r during training and r for inference. We use dynamic to refer to a scenario whereby the skip rate is
changed to a different value r∗ during inference while all other model parameters stay unchanged.

Table 4 demonstrates accuracy and actual skip rates when we change the pre-set skip rate from the
default r = 0.25 and r = 0.9 for training (see Table 3) to some other values during inference. As
we can see, Pointer-LSTM remains robust at dynamic skip rates during inference. When the skip rate
increases from 0.25 during inference to r = {0.3, 0.4, 0.5}, the accuracy of Pointer-LSTM decreases
only marginally on all four data sets; correspondingly, when the skip rate decreases from 0.9 to r =
{0.8, 0.7, 0.6}, Pointer-LSTM either maintains comparable accuracy levels or indeed achieves better
performance in many scenarios apart from the AGNews data set which led to a significant drop when the
skip rate was set dynamically to r = 0.6. Because Pointer-LSTM relies heavily on global contexts to
select words, the significant drop on this very data set may correlate with the larger number of shorter
sentences in the AGNews data compared to other data sets. We will explore this topic on additional data
sets which contain either short or long sentences only in future work.

r
AGNews DBPedia Yelp Full Yelp Polarity

Acc. Skip Acc. Skip Acc. Skip Acc. Skip
Tuned 0.25 93.86 23.59 99.01 23.85 65.63 24.60 96.44 24.59

Dynamic
0.3 93.67 28.77 99.00 28.99 65.36 29.65 96.27 29.64
0.4 93.21 38.66 98.91 38.90 64.66 39.62 96.12 39.61
0.5 91.82 48.31 98.79 48.64 63.45 49.52 95.69 49.51

Tuned 0.9 93.30 88.76 98.89 88.99 63.18 89.65 95.82 89.64

Dynamic
0.8 91.25 78.65 98.89 78.90 63.23 79.62 95.93 79.61
0.7 80.47 68.76 98.87 69.00 63.17 69.65 95.92 69.64
0.6 67.58 58.65 98.87 58.90 63.13 59.62 95.92 59.61

Table 4: Impact of dynamic skip rates on Pointer-LSTM performance.

Furthermore, the actual skip rate of Pointer-LSTM is (i) close to the pre-set skip rate of Leap-LSTM
and (ii) more stable than the actual skip rate of Leap-LSTM, as can can seen in Tables 3 and 4. We
observe that:

• at r = 0.25, the mean and unbiased variance of the actual skip rate for Pointer-LSTM are 24.16 and
0.27, respectively, compared to 24.76 and 5.34 for Leap-LSTM. Although the actual skip rate of
Leap-LSTM is on average slightly closer to the pre-set skip rate in comparison with Pointer-LSTM,
our variance is much lower, indicating a more stable skip rate over different data sets;

• at r = 0.9, the mean and unbiased variance of Pointer-LSTM are 89.26 and 0.21, respectively,
while those of Leap-LSTM are only 85.03 and 11.5. In this setting, the average actual skip rate
of Pointer-LSTM is much closer to the pre-set skip rate of Leap-LSTM and it is also much more
stable; and

• when the skip rate of Pointer-LSTM is dynamically set to r = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
during inference, the mean and unbiased variance values of the actual skip rates are
{29.26, 39.20, 49.0, 59.19, 69.26, 79.20} and {0.2, 0.24, 0.38, 0.25, 0.2, 0.25}, respectively. These
average skip rates are close to the pre-set values at low variance levels, showing that Pointer-LSTM
offers good control of the skip rate even in dynamic settings.

4.5 Sample Output
To further compare Pointer-LSTM with the baseline Leap-LSTM, we use the examples in Huang et al.
(2019) to illustrate word selection for target prediction.

Table 5 compares the outputs of Pointer-LSTM and Leap-LSTM on sample Business and Sports snip-
pets. Words in red are kept while the rest are skipped. In these two examples, Leap-LSTM kept 10/40
vs. 12/31 words while our Pointer-LSTM kept 5/40 vs. 4/31 words, respectively, calculated by Eq. (4).
Accordingly, on these two specific snippets, the actual skip rates of Leap-LSTM are 75.0% and 61.3%
which are far lower than the pre-set skip rate of 0.9; ours are 87.5% and 87.1% both of which are signif-
icantly closer to r = 0.9. With respect to actual skip rates, Pointer-LSTM offers greater controllability
and stability compared to Leap-LSTM.
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System Example 1 (Business) Example 2 (Sports)
Leap-LSTM new york ( reuters ) - u.s. treasury prices paused

for breath on tuesday after a blistering two-session
rally ran out of steam , though analysts still saw
room to the upside given the large short-base in the
market .

afp - lithuania defeated the united states 94-90 in an
olympic men ’s basketball preliminary round game
, only the fourth loss in 115 olympic starts for the
defending champions .

Pointer-LSTM new york ( reuters ) - u.s. treasury prices paused
for breath on tuesday after a blistering two-session
rally ran out of steam , though analysts still saw
room to the upside given the large short-base in the
market .

afp - lithuania defeated the united states 94-90 in an
olympic men ’s basketball preliminary round game
, only the fourth loss in 115 olympic starts for the
defending champions .

Table 5: Two examples from the AGNews test set with skip rate at r = 0.9.

From the selected words’ perspective, we can see that most of the words selected by Pointer-LSTM
represent a subset of the words selected by Leap-LSTM. For example, {treasury, analysts, market} in
Example 1 were selected by both systems, indicating that they are recognised as important words for the
Business topic. However, Pointer-LSTM also selected the comma {,} in Example 1 which is counter-
intuitive to humans. We infer that, although the attention mechanism can learn a probability distribution
to distinguish between important and unimportant words, it cannot be guaranteed that the probability
distribution is accurate due to the fact that important word selection is not a supervised learning process.
The ability to learn an accurate attention distribution by the small LSTM in Poiner-LSTM framework
also deteriorates when the input sequence is long. These observations guide our future work towards
more advanced mechanisms to score important words, accordingly.

5 Conclusion and Future Work

In this paper, we propose a novel selective RNN framework for long text classification – Pointer-LSTM
– which can select important words from the input sequence more effectively than recent state-of-the-art
methods. Pointer-LSTM uses a small attentive LSTM network to produce an importance distribution
over all input tokens using a pre-set skip rate to select important words as the input to a large LSTM
network for target prediction. This architectural design offers two advantages over existing selective
RNN frameworks in that (i) Pointer-LSTM maintains a coherent, uninterrupted input process for the
LSTM components, and (ii) the skip rate can be adjusted during inference. Our experiments on four long
text classification data sets demonstrate that Pointer-LSTM offers higher accuracy and faster inference
than the state-of-the-art selective RNN (Leap-LSTM) at a high skip rate. The Pointer-LSTM’s accuracy
also remains high when the skip rate is changed during inference. Compared to Leap-LSTM, Pointer-
LSTM offers a more stable control over the skip rate during training.

In many industry scenarios under heavy resource constraints (such as memory-limited or CPU-only
hardware, limited training data, and latency requirements), not all large-scale deep architectures can be
deployed as-is. Our skipping model, which can scan any long sequence and keep important words while
reducing information loss, does not suffer from the inherent maximum input length limitation which
hamstrings many a deep architecture.

We will explore alternative attention mechanisms to select important words in future work. Owing to
the fact that the input into the main model can be condensed significantly after word selection, we will
explore non-RNN networks (for example, convolutional neural networks and Transformer variants) as
the main model for target classification.
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