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Abstract

Mongolian morphological segmentation is regarded as a crucial preprocessing step in many Mon-
golian related NLP applications and has received extensive attention. Recently, end-to-end seg-
mentation approaches with long short-term memory networks (LSTM) have achieved excellent
results. However, the inner-word features among characters in the word and the out-word features
from context are not well utilized in the segmentation process. In this paper, we propose a neural
network incorporating inner-word and out-word features for Mongolian morphological segmen-
tation. The network consists of two encoders and one decoder. The inner-word encoder uses the
self-attention mechanisms to capture the inner-word features of the target word. The out-word
encoder employs a two layers BiLSTM network to extract out-word features in the sentence.
Then, the decoder adopts a multi-head double attention layer to fuse the inner-word features and
out-word features and produces the segmentation result. The evaluation experiment compares
the proposed network with the baselines and explores the effectiveness of the sub-modules.

1 Introduction

Mongolian is a morphologically rich language and its words are formed by attaching suffixes to
roots (Kullmann and Tserenpil, 2008). Each word has a root and zero or more suffixes, which are called
Mongolian morphemes. The morphemes in a word indicate the basic word features and provide gram-
matical and semantic relations among words in the sentence. Mongolian morphological segmentation
aims to split Mongolian words into their morphemes, which facilitates the Mongolian NLP tasks, such as
name entity recognition (Wang et al., 2016; Wang et al., 2019), information retrieval (Liu et al., 2012),
machine translation (Fan et al., 2017; Yang et al., 2016), and speech synthesis (Liu et al., 2017). There
are about 60 thousand of morphemes in Mongolian, and the number of their formed words is more than
7 million. It becomes a tendency to process Mongolian text on morphemes rather than on words to make
full use of the morpheme information in Mongolian NLP tasks. Besides, Segmenting Mongolian words
into morpheme can alleviate the data-sparse problem and out-of-vocabulary (OOV) problem. Therefore,
Mongolian morphological segmentation is an essential preprocessing step and effects the downstream
Mongolian NLP tasks.

Mongolian morphological segmentation is closely related to the words themselves and their context.
Table 1 shows several morphological segmentation examples. In usual, a Mongolian word corresponds
to only one segmentation, such as the target words “ (bariba)” and “ (barigulba)” in sentences I and
II. But in some cases, parts of Mongolian words correspond to different segmentation results according
to the context where they appear. For example, the target word “ (higed)” in the sentences V and VI is
segmented into different morphemes due to its different contexts. Such words are called multi-category
word. In addition, some morphemes are the constituent parts of other morphemes. This further makes
the segmentation more difficult. Here, the unit “ (n)” in the word “ (negun)” in the sentence III is a
morpheme while it is just part of the morpheme “ (han)” in the word “ (algvrhan)” in the sentence
IV. In summary, Mongolian morphological segmentation is still a challenging task.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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Table 1: An example of traditional Mongolian word segmentation and the words in the brackets is the
Latin form of Mongolian words.

This study proposes a novel approach to Mongolian morphological segmentation, which addresses
challenges by incorporating inner-word and out-word features. The proposed network consists of two
encoders and one decoder. First, a standard self-attention network is utilized as an inner-word encoder,
which conducts connections between two arbitrary characters in a word and draws the inner-word fea-
tures directly. Meanwhile, a bidirectional LSTM (BiLSTM) network is used as the out-word encoder to
extract the out-word features of the word in the sentence. Finally, a doubly attentive decoder is employed
to fuse the inner-word features and out-word features and produce the segmentation result. The evalua-
tion experiment compares the proposed network with the baselines and explores the effectiveness of the
sub-modules.

The contribution of this paper is as follows. This paper proposed a network for Mongolian mor-
phological segmentation according to the Mongolian characteristics. Two well-designed encoders were
introduced in the network to extract the inner-word-level feature information and the out-word-level
information between the target word and other words in the sentence. A doubly attentive decoder dis-
tinguishes and balances the inner-word and out-word information utilization in the decode stage. The
experiment demonstrates that our approach achieves the SOTA performance.

2 Related work

2.1 Mongolian Morphological Segmentation

Previous works proposed several supervised learning algorithms using artificial features for Mongolian
morphological segmentation (Hou et al., 2009; Shi et al., 2015; Ming and Hou, 2011). These approaches
usually depend on hand-craft features and cannot handle OOV problems well. Recently, several stud-
ies suggested that character-level end-to-end models achieve more superior performance in this task
(Narisong et al., 2016; Liu et al., 2018; Zhu, 2018), compared with hand-craft features. Narisong et
al. (Narisong et al., 2016) proposed a CRF-based multi-task learning model to deal with Mongolian
word segmentation and POS-tagging tasks. Liu et al. (Liu et al., 2018) introduced a two-layers BiLSTM
with a limited search strategy and reported new state-of-the-art results for the Mongolian morpholog-
ical segmentation. These successes reveal that character-level end-to-end neural networks, especially
LSTM, can extract and exploit the potential inner-word features. However, these models do not involve
the out-word features in the segmentation process. Therefore, this paper proposes an end-to-end model
that incorporates the inner-word and the out-word features simultaneously in Mongolian morphological
segmentation.
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2.2 Self-Attention Network
Self-attention network (SAN), as its name suggests, is a special case of attention mechanism that only
needs internal information of a sequence to compute its representation. Thus, it is more flexible at
modeling both long-range and local dependencies comparing to RNN/CNN (Yang et al., 2019). SAN
has been successfully applied to NLP tasks, including machine translation (Yang et al., 2019; Vaswani
et al., 2017; Shen et al., 2018), reading comprehension (Zheng et al., 2018), document summarization
(Al-Sabahi et al., 2018), semantic role labeling (Kitaev and Klein, 2018), and constituency parsing (Tan
et al., 2017). In this study, we choose the Transformer (Vaswani et al., 2017) as the key architecture
of our model. The Transformer consists of two components: an encoder and a decoder. Both encoder
and decoder are built by the same layers, multi-head attention, feed-forward, residual connections and
normalization sub-layer. In contrast, the decoder contains extra masked multi-head attention comparing
to the encoder.

2.3 Integrating Inner-word and Out-word Features
Due to their ability to capture inner-word information of words from the characters, pre-trained character-
level static vectors are used in a lot of NLP downstream tasks (Kim et al., 2015; Melamud et al., 2016)
which achieve the competitive results with fewer parameters. Other work has also focused on encoding
the context around a pivot word dynamically to learn more out-word information (Melamud et al., 2016).
Furthermore, it has proved to be helpful when concatenating word-level and character-level knowledge
(Devlin et al., 2019; Peters et al., 2018; Peters et al., 2017). In the morphological analysis task of
SIGMORPHON 2019, almost all of the researchers use two levels of word representations to capture
more inner- and out-word information (McCarthy et al., 2019; Oh et al., 2019; Chaudhary et al., 2019).

3 Approach

This paper proposes a neural network incorporating the inner-word and the out-word features for Mon-
golian morphological segmentation, as shown in Figure 1. The network consists of two encoders and one
decoder. The inner-word encoder uses the self-attention mechanisms to capture the inner-word features
of the target word. The out-word encoder employs a two layers BiLSTM network to extract out-word
features in the sentence. The decoder adopts a multi-head double attention layer to fuse the inner-word
features and out-word features and produces the segmentation result. The following sections describe
our approach in detail.

Figure 1: The architecture of the proposed network.
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3.1 Inner-word Encoder
3.1.1 Input Embedding
Our model takes a sequence of Mongolian character embeddings [c1, c2, · · · ,cT ] as a part of the input,
where ct is from the random initialization character lookup table, which contains a vector for each char-
acter. All embeddings are learned jointly with the other parameters of the model. We denote the character
position in a word as a vector pt. Both the character embedding and position embedding have the same
dimensionality ∈ Rdm , where the dm is defined as the model dimension. They are added together at
the input layer of our model: xt = ct + pt. There are various ways to encode positions. We adopt the
signal timing approach from (Kitaev and Klein, 2018) for position embedding pt, which is formulated as
follows:  timing(p, 2i) = sin( p

1000
2i/dm

)

timing(p, 2i+ 1) = cos( p

1000
2i/dm

)
(1)

where p represents the character position in a word.

3.1.2 Multi-head Self-attention
The center of this SAN formulation is the multi-head attention sub-layer. The multi-head self-attention
sublayer is a variant of dot-product (multiplicative) attention (Luong et al., 2015). Formally, for a single
attention head, as illustrated in Figure 2, giving an input matrix X,X = T ×dm , where each row vector
xt corresponds to the tth Mongolian character in the tag word and dm is the model dimensionality. And
the trainable parameter matrices CQ, CK , and CV are used to map an input xt to three vectors query
qt = xtCQ, key kt = xtCK and value vt = xtCV , where {CQ,CK ,CV } ∈ Rd and the d is the number
of hidden units of our network. We calculate the probability that character i attending to character j as
p(i → j) ∝ exp(

(qi·kj)√
d

), and the vj for all characters that have been attended to are aggregated to form
an average value vi, vi =

∑
j p(i→ j)vj .

Figure 2: The dot product attention architecture of a single attention head.
The scaled dot-product attention computes the attention scores based on the following mathematical

formulation:

SingleHead(X) = Attention(Q,K, V ) = Softmax(
QKT

√
d

)V (2)

where Q = XCQ,K = XCK , V = XCV . Finally, all the vectors produced by parallel multi-heads are
added together to form a single vector:M =

∑8
n=1 SingleHead(X)n.This allows a character to gather

information from up to 8 remote locations in the sequence at each attentional layer.

3.1.3 Feed-forward network
Our feed-forward sub-layer is simple and follows Vaswani et al. (Vaswani et al., 2017). It consists of
two linear layers with hidden ReLU (Rectified Linear Unit) nonlinearity in the middle. Formally, the
equation is shown below:
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FeedForward(X) = W2ReLU(W1X + b1) + b2 (3)

where W1 ∈ Rdm×d and W2 ∈ Rd×dm are trainable matrices.

3.2 Out-word Encoder

3.2.1 Character-Surface Embedding
In the out-word encoder, a BiLSTM network is first used to generate the embedding for each word
individually. The input is the Mongolian character embedding of each word and the character lookup
table is that in section 3.1.1. Let wi represents the ith word in the sentence, xt represents the tth character
in wi and eci denotes the character-surface representation. We obtain eci from BiLSTM:

eci =
[ −→
hcT ;

←−
hc1

]
(4)

where the forward LSTM learns the presentation
−→
hcT :

−→
hcT = LSTMforward(

−−−→
hcT−1, xT ) (5)

and the backward LSTM learns the presentation
←−
hc1:

←−
hc1 = LSTM backward(

←−
hc2, x1) (6)

3.2.2 Word-Surface Embedding
In the word-surface embedding layer, we adopt another BiLSTM as the out-word encoder. Its inputs are
the word embeddings and the output is the out-word embedding ewi of the target word. The ewi is shown
in Eqs. (7) .

ewi =
[ −→
hwi ;

←−
hwi

]
(7)

where the forward LSTM learns the presentation
−→
hwi :

−→
hwi = LSTMforward(

−−→
hwi−1, e

c
i ) (8)

and the backward LSTM learns the presentation
←−
hwi :

←−
hwi = LSTMbackward(

←−
hwi,2, e

c
1) (9)

3.3 Doubly Attentive Decoder

As illustrated in Figure 1, the core of the doubly attentive decoder (DAD) is the multi-head double
attention sublayer and separate feed-forward sublayer. It fuses the inner-word features and out-word
features and produces the segmentation result.

3.3.1 Multi-head Double Attention Layer
Doubly attentive decoder integrates two separate attention mechanisms over the inner-word and out-word
word features in a single decoder. The main difference between the multi-head doubly attention and the
standard multi-head attention focus on the dot-product (multiplicative) attention. Here, the dot product
decomposes as qi ·kj = qinneri ·kinnerj + qouti ·koutj . The detail of the multi-head doubly attention head is
shown in Figure 3. can also be viewed as separately applying attention to inner and out, except that the
log-probabilities in the two halves are added together prior to value lookup (Kitaev and Klein, 2018).The
formalized formula as following:

S ingleHead(Zinner, Zout) = Attention(Q,Kinner, V inner,Kout, V out)

= Softmax(QKinnerT

√
d

)V inner + Softmax(QKoutT

√
d

)V out
(10)
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Figure 3: The double dot product attention architecture of a single attention head.

3.3.2 Separate Feed-forward Sublayer
The separate feed-forward sublayer in our doubly attentive decoder is likewise split into two independent
portions that operate on inner and out information. It consists of two linear layers with hidden ReLU
nonlinearity in the middle and the equation is shown below:

FeedForward(xinner) = W inner
2 ReLU(W inner

1 xinner + binner1 ) + binner2 (11)

FeedForward(xout) = W out
2 ReLU(W out

1 xout + bout1 ) + bout2 (12)

where W inner
1 ,W out

1 ∈ R( dm
2
×d) and W inner

2 ,W out
2 ∈ R(d× dm

2
) are trainable matrices.

From the perspective of parameters, the trainable parameter matrix of our decoder can be regarded as
consisting of two independent matrix blocks:

W =

[
W inner 0

0 W out

]
(13)

4 Experiments

4.1 Dataset
Nowadays, the public Mongolian corpus with morphological information are not available. In the ex-
periment, the corpus we used has been annotated by a group of Mongolian native speakers. It includes
20,000 labeled Mongolian sentences, whose length varies from 1 to 84. The average length is 16.63.
There are 334,627 words and 24,336 different words in total. The word length is between 1 to 28, and
the average length is 8.14. We split it into training dataset (14,000 sentences, 70%), developing dataset
(2,000 sentences, 10%) and testing (4,000 sentences, 20%).

We randomly selected 10% of the test set (400 sentences) and named this collection as the review set.
Overall, this data set contains 6523 words in total, of which there are 4852 unique words (966 words
appear in more than one sentence and three multi-category words).

4.2 Evaluation Metrics
Following the work (Hou et al., 2009; Shi et al., 2015; Ming and Hou, 2011; Liu et al., 2018; Zhu,
2018), we use Precision (P ), Recall (R) and F1-score to quantitatively evaluate the proposed network.
We defined each morpheme as one unit after Mongolian word segmentation. The P is the proportion of
the collected units provided by the morphological segmentation model. R is defined as the percentage of
corrected units among the reference units.

P =
#(correctly tagged units)

#(model tagged units)
× 100% (14)
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R =
#(correctly tagged units)

#(manually annotated units)
× 100% (15)

F1 =
2× P ×R

P +R
× 100% (16)

4.3 Baseline Approaches
This paper compares our Mongolian morphological segmentation model with the following approaches,
including the BiLa* (Zhu, 2018) and the True and pseudo mapping model (Liu et al., 2018).

• BiLa*: BiLa* is an LSTM-based tagging morphological segmentation approach. It applies a BiL-
STM layer as the encoder and a LSTM layer as the decoder. We use the same implementation as
BiLa* for Mongolian morphological segmentation and keep its default parameters unchanged.

• True and pseudo mapping model: This model is a BiLSTM network for Mongolian morphological
segmentation, using a limited search strategy (LSS). We use the same model and hyperparameter as
that in (Liu et al., 2018).

4.4 Experiment Setting
The settings of our models are described as follows.

• SAN. The number of our attention layers N is set to 2. The dimension of the model dm equals 200
and the number of attention heads is set to 8. The dimension sizes of attention query, key and value
vectors all are 64. The attention dropout probability is set to 0.2, and the ReLU dropout probability
in the feed-forward sublayer is 0.1. The label smoothing technique (Szegedy et al., 2016) is applied
with a smoothing value of 0.1 during training.

• BiLSTM. The BiLSTM models have one layer, both for character-surface embedding and word-
surface embedding and initialized all of the LSTM’s parameters with the uniform distribution be-
tween -0.1 and 0.1. The optimization algorithm is stochastic gradient descent without momentum,
with a fixed learning rate of 0.8.

5 Results and Discussion

5.1 Comparison with Baselines
Table 2 presents the comparisons of our model and baselines. The proposed model consists of two
encoders and a decoder. It achieves 98.35% Precision, 98.18% Recall, and 98.06% F1-score, which
improves almost 2.56 F1-score over the state-of-the-art baseline. This shows that in the Mongolian mor-
phological segmentation model, the use of SAN obtains the better segmentation results by introducing
both inner and out features. These results show that a better segmentation result can be obtained by intro-
ducing both inner- and out-word features. By using SAN we propose a better Mongolian morphological
segmentation model.

Model P (%) R(%) F1(%)
BiLa* (Zhu, 2018) 93.93 94.03 93.98
True and pseudo mapping model (Liu et al., 2018) 95.59 94.42 95.50
Ours 98.35 98.18 98.06

Table 2: Comparative results with our model and baseline approaches.

5.2 The Effect of Different Level Features
We evaluated the effectiveness of the different level features in our model and list the results of a single
encoder, a standard SAN inner-word encoder or a BiLSTM out-word encoder, as shown in Table 3. The
conclusions were obtained as follows:
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Model P (%) R(%) F1(%)
Transformer (SAN-SAN) 95.83 96.52 96.18
BiLSTM-SAN 97.12 96.59 96.85

Table 3: Performance of different level features.

• Compared with the original Transformer (SAN-SAN) model (Vaswani et al., 2017), the BiLSTM-
SAN model obtains better performance (improvements of 1.29, 0.07, and 0.67% in Precision, Recall
and F1-score, respectively). The results show that our model improves Precision significantly with
no reducing Recall. After analysis, we found that the reason for the Precision improvement is the
overcutting problem is alleviated. In the experiment, SAN-SAN and BiLSTM-SAN obtain 106 and
87 overcutting words, respectively. The latter has 19 words less than the former. This is because the
BiLSTM out-word encoder could capture more contextual features to inhibit overcut.

• In addition, we compare the effects of the Transformer (SAN-SAN) model and the BiLa* model
(provided in Table 2). Both of them include an inner-word encoder only and without any decode
constraint. The results show that SAN-SAN achieves better performance than BiLa*.Further re-
search shows that the F1-score dropped significantly when the word length is longer than 21 in
BiLa* because of the bias in LSTM. Although LSTM can solve hard long time lag problems with
the gating mechanism (Hochreiter and Schmidhuber, 1997) and the attention mechanism (Lu-
ong et al., 2015), the problem of segmentation on long sequence remains. Compared with BiLa*,
SANSAN obtains a higher F1-score until the word length is longer than 25. This shows that SAN-
SAN learns more abundant inner-word information even when dealing with long words, and provide
a more flexible way to represent and focus on the crucial information.

5.3 The Effect of Doubly Attentive Decoder
We also evaluate the effect of three decoders (BiLSTM, SAN and DAD) on the same encoder
(SAN+BiLSTM), as shown in Table 4. The encoders and decoder are divided by a “-”. The conclu-
sions as follows:

Model P (%) R(%) F1(%)
SAN+BiLSTM-BiLSTM 95.62 95.44 95.53
SAN+BiLSTM-SAN 97.64 97.05 97.34
SAN+BiLSTM-DAD 98.15 97.98 98.06

Table 4: Performance of different decoders.

• Our model achieves the best performance (98.26% in F1-score, and over 2.56% than the state-
of-the-art baseline). Compared with the SAN+BiLSTM-BiLSTM and SAN+BiLSTM-SAN mod-
els, SAN+BiLSTM-DAD achieves the best effect (over 2.54% and 0.87% in F1-score than
other two structures). We performed an error analysis of the reviewed set. The result denotes
SAN+BiLSTMBiLSTM, SAN+BiLSTM-SAN and SAN+BiLSTM-DAD obtain 121, 84 and 53
overcutting words, respectively. And in the three multi-category words, they segment 1, 1 and 2
words correctly according to the gold standard. Based on the above analysis, the SAN+BiLSTM-
DAD model has the best effect on the overcoming overcutting and the multi-category words prob-
lem. The gains are due to the explicitly doubly attentive decoder which can distinguish and balance
the inner-word and out-word information to find the morpheme boundaries better.

• For the Transformer (SAN-SAN) model, when adding the out-word information (the
SAN+BiLSTM-SAN), the high F1-score (an the improvement of 1.16% in F1-score) is achieved.
The main reason is that out-word information can revise some morpheme boundary errors. Com-
pared with the original baseline BiLa* model, the SAN+BiLSTM-BiLSTM model obtains better
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performance (improvements of 1.69, 1.41 and 1.55% in Precision, Recall and F1-score, respec-
tively). The result has shown once again that no matter which decoder is used, the segmentation
performance effectively improves when adding the out-word information.

6 Conclusion

This paper proposed a neural network incorporating inner-word and out-word features for Mongolian
morphological segmentation. We employ a standard SAN to encode the inner-word features between the
characters in the word and a BiLSTM to encode the implicit out-word features between the target word
and other words in the whole sentence. To distinguish and balance utilizing the inner-word and out-word
features, we apply a doubly attentive decoder to decode two-level features jointly. The experimental
results show that (1) the self-attention mechanism introduced to capture the inner-word information is
shown to be more flexible in representing and focusing on the crucial information; (2) the BiLSTM,
our out-word information encoder, which has been proved to be sufficient to alleviate the overcutting
problem; (3) the doubly attentive decoder is used to distinguish and balance information, allowing the
model better to find the morpheme boundaries. Our experiment results show that the proposed model
can obtain competitive results compared to early methods. Since the introduction of inner-word and
out-word information in the doubly attentive decoder, our method achieves state-of-the-art performance.
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