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Abstract

While internalized “implicit knowledge” in pretrained transformers has led to fruitful
progress in many natural language understanding tasks, how to most effectively elicit such
knowledge remains an open question. Based on the text-to-text transfer transformer (T5)
model, this work explores a template-based approach to extract implicit knowledge for
commonsense reasoning on multiple-choice (MC) question answering tasks. Experiments
on three representative MC datasets show the surprisingly good performance of our simple
template, coupled with a logit normalization technique for disambiguation. Furthermore,
we verify that our proposed template can be easily extended to other MC tasks with
contexts such as supporting facts in open-book question answering settings. Starting
from the MC task, this work initiates further research to find generic natural language
templates that can effectively leverage stored knowledge in pretrained models.

1 Introduction

Scaling and unifying deep neural models via building task-agnostic architectures and pretraining
objectives have brought about significant progress in performing various downstream natural
language understanding tasks (Devlin et al., 2019; Yang et al., 2019; Liu et al., 2019; Lewis et al.,
2019; Raffel et al., 2020). According to recent findings, impressive performance can be attributed
to a sort of internalized implicit “knowledge base” contained in pretrained models (Petroni et al.,
2019; Jiang et al., 2019). Since such knowledge is drawn from unstructured and unlabeled text
via the design of neural architectures and pretraining objectives, it is non-trivial to identify an
effective way to explicitly elicit such stored knowledge for each NLP task.

Challenging NLP tasks that require commonsense reasoning abilities (or background knowledge)
could benefit from implicit knowledge captured in pretrained models. Various research lines
have explored techniques that effectively leverage reasoning abilities based on BERT (Devlin et
al., 2019). For example, Sakaguchi et al. (2019) use a classification head capped on pretrained
BERT variants to tackle commonsense reasoning. Zhu et al. (2020) propose to perturb token
embeddings to improve model performance and robustness. Alternatively, many researchers
recast the multiple-choice (MC) problem setting, which is frequently used in verbal reasoning
benchmarks, as a ranking problem regarding statement possibilities (Li et al., 2019; Pirtoaca
et al., 2019). Tamborrino et al. (2020) further present a hybrid method that combines full-text
inputs, pretrained token representations, and learning-to-rank objectives. Finally, Khashabi et
al. (2020) propose to unify and fine-tune pretrained models on many QA tasks jointly.

As an alternative to designing task-specific architectures on top of pretrained transformers, we
propose a new approach to downstream NLP tasks based on task-specific templates exploiting
existing pretrained sequence-to-sequence models. We aim to identify a text-to-text approach that
effectively elicits implicit knowledge embedded in the pretrained text-to-text transfer transformer
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Source Target

hypothesis: home is smaller. premise: He never comes
to my home, but I always go to his house because the

entailment

hypothesis: house is smaller. premise: He never comes
to my home, but I always go to his house because the

contradiction

Table 1: Decomposing WinoGrande problems into training instances for T5.

(T5) (Raffel et al., 2020) for commonsense reasoning. Specifically, we find that T5 performs
surprisingly well by framing multiple-choice (MC) QA problems as ranking multiple text sequences
associated with two predefined (and also pretrained) output tokens. Empirically, we demonstrate
that without fine-tuning, the pretrained sequence-to-sequence model achieves better-than-random
performance on commonsense reasoning tasks. With fine-tuning, our approach yields state-of-the-
art performance (at the time it was proposed) on three MC datasets: WinoGrande (Sakaguchi et
al., 2019), OpenBookQA (Mihaylov et al., 2018), and ARC-Easy (Clark et al., 2018).

2 Approach

An approach based on natural language templates enables various options in formulating a verbal
reasoning task as a text-to-text problem with T5. Our proposed novel formulation builds on
T5’s MNLI template, composed of a hypothesis and a premise.1 Consider a concrete example in
WinoGrande:

He never comes to my home, but I always go to his house because the _ is smaller.
Option1: home; Option2: house

In this case, the correct replacement for _ is Option1. We decompose the above problem into
two source–target training examples, where _ is replaced with each option and annotated with
the correct answer as the target token, as shown in Table 1. In addition, we reformulate each
example into a commonsense reasoning “template” with two statements: hypothesis (from _ to the
end of the original problem statement) and premise (the remaining part of the original problem
statement). Note that the bold and colored fonts are for clarity only; those tokens are not marked
in any way in the model input.
At inference (test) time, we also decompose the test problem into two inputs, where each

input is formulated in exactly the same manner shown in Table 1, with either one of the answer
options. We then feed each into T5 to predict a target token. In this scenario, there are four
possible outcomes: (1) one produces “entailment” and the other “contradiction”, (2) one produces
“entailment” or “contradiction” and the other some other token, (3) both produce some other
tokens, and (4) both produce the same token, either “entailment” or “contradiction.”

Ideally, T5 would produce contrastive tokens for each input pair, as in case (1), which allows
us to unambiguously select the final answer. However, the model might produce the same tokens
for each input, or even tokens not in the predefined set, as in cases (2) to (4). To deal with
these cases, we apply a softmax over the logits of the pair of predefined target tokens, similar to
Nogueira et al. (2020). From this, we compute the probabilities of the predefined target tokens
(in the case of Table 1, “entailment” and “contradiction”). Then, we compare the probabilities of
both input instances, and in cases (2) to (4), we select the instance that has a higher probability
as the correct answer.

3 Experiments

In our experiments, we fine-tune T5-3B on Google Colab’s TPU v2 with a batch size of 16, a
learning rate of 2× 10−4, save model checkpoints every 5000 steps and choose the checkpoints

1See appendix D.3 in (Raffel et al., 2020) for more details.
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Condition Training size

Condition Target token Logit Zero-Shot XS S M L XL
#1 entailment/contradiction 0.506 0.657 0.693 0.757 0.809 0.840
#2 X 0.608 0.718 0.740 0.788 0.837 0.854

#3 true/false 0.477 0.676 0.697 0.760 0.823 0.852
#4 X 0.566 0.723 0.752 0.800 0.843 0.865

Our leaderboard submission (test set) - 0.683 0.705 0.776 0.824 0.846

Table 2: Results on WinoGrande, measured by the accuracy of models trained on different dataset
sizes. Condition #2 is our leaderboard submission.

with the best performance on the development set. At inference, we use greedy decoding and
select for evaluation the model checkpoint that achieves the highest score on the development set.
Note that we do not experiment with T5-11B due to limited computational resources. We report
accuracy as our scoring metric for evaluating model performance.

3.1 WinoGrande

Experimental results on WinoGrande are reported in Table 2 for different training dataset sizes;
Conditions #1–#4 report development set results. Note that we fine-tune the model for each
training dataset size separately. A Xunder the “logit” column indicates that we apply the softmax
over the target tokens as described above. Without this technique, given the original two-choice
question, if T5 outputs the same tokens for the two processed inputs, we simply assign Option1
as the answer. The table also reports “zero-shot” performance, i.e., performing inference on the
development set without any model fine-tuning. Condition #2 represents our submission to the
official leaderboard, which performs consistently well on the held-out test set.

We see that the logit trick improves performance, which is consistent with the observations in
Nogueira et al. (2020). Applying the technique in the zero-shot setting yields performance that
is clearly better than random. Our general problem setup allows us to choose different target
tokens: In addition to selecting “entailment” vs. “contradiction” as the target, we also try the
contrastive pair “true” vs. ”false”. The choice of the target token appears to have an impact on
the performance, which is also consistent with the findings in Nogueira et al. (2020).

Looking at the WinoGrande leaderboard, our submission represents the state of the art at the
time of submission. As of November 2020, two other entries achieve better performance, both
based on T5-11B (an even larger model) and exploiting multi-task learning. Clearly, both are
inspired by and built on our work.

3.2 OpenBookQA and ARC-Easy

We also investigate how T5’s reasoning capability improves multiple-choice QA. Specifically, we
conduct experiments on two QA datasets: OpenBookQA (Mihaylov et al., 2018) and ARC (Clark
et al., 2018). Consider one example from ARC-Easy:

Question: A green plant absorbs light. A frog eats flies. These are examples of how
organisms
Choice A: obtain energy; B: escape predators; C: produce offspring; D: excrete waste
Context: organism that obtains energy by eating both plants and animals.

This task requires commonsense reasoning capabilities beyond the typical challenges expected for
QA, such as the understanding of paraphrases and coreference resolution.2 That is, to answer
the above question, models need to know that frogs and flies are animals and light is a form of
energy in the context.

2The tasks provide predetermined corpora containing scientific facts relevant to the questions. Although
retrieval methods may affect the results, this is beyond the scope of our discussion.
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Condition Dataset

OpenBookQA ARC-Easy
w/o contexts 0.768 0.808
w/ contexts 0.834 0.872

Our submission (test set) 0.832 0.891

Table 3: Results on OpenBookQA and ARC-Easy, measured by accuracy. We conduct the
experiments with true/false target tokens and the logit trick, corresponding to condition #4 in
Table 2.

Applying the template in Table 1, for each question–choice pair, we take the question text as
its hypothesis, replace each choice text in _, and put the context text as its premise; the target
token is annotated by the ground truth choice. That is to say, if “obtain energy” is the correct
choice, we annotate the corresponding target token with the correct token from our predefined
set (“true” in this case; “false”, otherwise). Table 3 compares the model performance with and
without contexts (i.e., removing the premise part). We observe from Table 3 that there exists
a significant accuracy improvement (around 8% relative) with contexts in both datasets, which
demonstrates T5’s ability to incorporate explicit knowledge contained in the contexts. Based on
the official leaderboard, our technique represents the state of the art at the time of submission.

4 Conclusions

Collectively, the success of large pretrained neural models, both encoder-only BERT-like architec-
tures as well as encoder–decoder architectures such as T5, raises interesting questions for the
pursuit of commonsense reasoning abilities. Researchers have discovered that previous models
perform well on benchmark datasets because they detect incidental biases in the dataset that have
nothing to do with the task; in contrast, the WinoGrande dataset has devoted considerable effort
to reducing such biases, which may allow models to (inadvertently) “cheat” (for example, using
simple statistical associations). While it is certainly true that datasets over-estimate the reasoning
capabilities of modern models (Sakaguchi et al., 2019), there are alternative and complementary
explanations as well.

It has been a fundamental assumption of the research community that commonsense reasoning
is difficult because it comprises tacit rather than explicit knowledge (Winograd, 1972). That
is, commonsense knowledge—like water is wet and that a tuba is usually too big to fit in a
backpack—is not written down anywhere (unlike, say, factual knowledge, which can be modeled
in a knowledge graph). As a result—the reasoning goes—data-driven techniques (even neural
models) will be of limited use due to the paucity of relevant corpora.
Yet, previous encoder-only architectures (Devlin et al., 2019; Liu et al., 2019) that exploit

a language modeling objective (that is, relying only on explicit textual knowledge) can clearly
make headway in language reasoning tasks, and we can further improve upon these approaches
with a encoder–decoder model. This leaves us with two possible explanations: despite careful
controls, the WinoGrande challenge and other datasets still contain incidental biases that these
more sophisticated pretrained models can exploit, or that we are genuinely making at least
some progress in commonsense reasoning. The latter, in particular, challenges the notion that
commonsense knowledge is (mostly) tacit. Perhaps it is the case that in a humongous corpus of
natural language text, someone really has written about trying to stuff a tuba in a backpack?
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